Showing posts with label areology. Show all posts
Showing posts with label areology. Show all posts

Friday, July 05, 2019

China's Space Ambitions may be Facing Delays

China’s major space missions including a lunar sample return, Mars orbiter and rover and a modular space station could be facing delays due to an apparent issue affecting rockets required for launches.

The Long March 5 heavy-lift rocket is China’s most powerful launch vehicle and was designed to launch large spacecraft to geosynchronous orbits and planetary bodies. It was being prepared for a third flight in July, Yang Baohua, vice president of the China Aerospace Science and Technology Corporation (CASC), China’s main space contractor and developer of the Long March 5, announced in a Jan. 29 news conference in Beijing.

The mission would come two years after the failure of the second launch. However that schedule appears to have slipped as the launch vehicle has yet to be delivered to the launch site, with knock-on effects possible for China’s major space plans.

Sunday, June 02, 2019

China Remains on Course for 2020 Launch of Mars Missions

China remains on schedule to ready its first independent mission to Mars in time for a short launch window in mid-2020, according to a leading space official.

“Mars 2020 mission spacecraft is undergoing integration,” Wang Chi, director of the National Space Science Center (NSSC) in Beijing, told SpaceNews in a rare update on the mission.

Ambitiously, the mission consists of both an orbiter and a rover, with a total of 13 science payloads. The NSSC will be involved in integration of the instruments with the spacecraft.

The orbiter will be equipped with a high-resolution camera comparable to HiRise on board NASA’s Mars Reconnaissance Orbiter, a medium-resolution camera, subsurface radar, minearology spectrometer, neutral and energetic particle analyzers and a magnetometer.

The 240-kilogram solar-powered rover, nearly twice the mass of China’s Yutu lunar rovers, will carry a ground-penetrating radar, multispectral camera, a Laser Induced Breakdown Spectroscopy instrument and payloads for detecting the climate and magnetic environment.

Friday, August 03, 2018

There's not Enough Sequestered Gases on Mars for Terraforming


Science fiction writers have long featured terraforming, the process of creating an Earth-like or habitable environment on another planet, in their stories. Scientists themselves have proposed terraforming to enable the long-term colonization of Mars. A solution common to both groups is to release carbon dioxide gas trapped in the Martian surface to thicken the atmosphere and act as a blanket to warm the planet.

However, Mars does not retain enough carbon dioxide that could practically be put back into the atmosphere to warm Mars, according to a new NASA-sponsored study. Transforming the inhospitable Martian environment into a place astronauts could explore without life support is not possible without technology well beyond today's capabilities.

Although the current Martian atmosphere itself consists mostly of carbon dioxide, it is far too thin and cold to support liquid water, an essential ingredient for life. On Mars, the pressure of the atmosphere is less than one percent of the pressure of Earth's atmosphere. Any liquid water on the surface would very quickly evaporate or freeze.

Proponents of terraforming Mars propose releasing gases from a variety of sources on the Red Planet to thicken the atmosphere and increase the temperature to the point where liquid water is stable on the surface. These gases are called "greenhouse gases" for their ability to trap heat and warm the climate.

"Carbon dioxide (CO2) and water vapor (H2O) are the only greenhouse gases that are likely to be present on Mars in sufficient abundance to provide any significant greenhouse warming," said Bruce Jakosky of the University of Colorado, Boulder, lead author of the study appearing in Nature Astronomy July 30.

Although studies investigating the possibility of terraforming Mars have been made before, the new result takes advantage of about 20 years of additional spacecraft observations of Mars. "These data have provided substantial new information on the history of easily vaporized (volatile) materials like CO2 and H2O on the planet, the abundance of volatiles locked up on and below the surface, and the loss of gas from the atmosphere to space," said co-author Christopher Edwards of Northern Arizona University, Flagstaff, Arizona.



The atmospheric pressure would be the same as 61,000 feet on Earth and would still require a pressure suit to go outside.

Let's not forget the perchlorates.  They make up .5% of Martian soil and are toxic to humans.

Friday, February 10, 2017

Primordial Martian Atmosphere had Little Carbon Dioxide?


The CO2 level in Mars' primitive atmosphere 3.5 billion years ago was too low for sediments, such as those found by NASA's Curiosity exploration vehicle in areas like the Gale Crater on the planet's equator, to be deposited. This and other conclusions are drawn from a paper written with the participation of researchers from the Spanish National Research Council (CSIC) and published in the latest issue of the journal, Proceedings of the National Academy of Sciences (PNAS).

The area Curiosity has been analysing since 2012, as part of NASA's Mars Science Laboratory mission, is composed primarily of sedimentary sequences deposited at the bottom of a lake 3.5 billion years ago. These sediments contain various secondary minerals, such as clays or sulphates, which indicate that the primitive surface was in contact with liquid water.

The existence of liquid water requires a warm surface temperature brought about by a minimum content of CO2 in the atmosphere. Yet this was not the case with Mars in its beginnings. "This contradiction has two possible solutions. Either we have not yet developed climatic models which explain the environmental conditions on Mars at the beginning of its history, or the Gale sedimentary sequences really did form in a very cold climate. The second option is the most reasonable", explains CSIC researcher Alberto Fairén, who works at the Centre for Astrobiology near Madrid (a joint centre run by CSIC and Spain's National Institute of Aerospace Technology).

[...]

"However, the rover has not found carbonates, thereby confirming the results of studies by all previous probes: carbonates are very scarce on the surface of Mars and, therefore, the CO2 level in the atmosphere was very low", adds. Fairén.

Friday, February 03, 2017

Candidate volcanic and impact-induced ice depressions on Mars


Authors:

Levy et al

Abstract:

We present an analysis of two concentrically-fractured depressions on Mars, one in northern Hellas and the second in Galaxias Fossae. Volumetric measurements indicate that ∼2.4 km3 and ∼0.2 km3 of material was removed in order to form the North Hellas and Galaxias depressions. The removed material is inferred to be predominantly water ice. Calorimetric estimates suggest that up to ∼103–105 m3 of magma would have been required to melt/sublimate such a volume of ice under an ice/magma interaction scenario. This process would lead to subsidence and cracking of the surface, which could produce the observed concentric fracture (crevasse-like) morphology. While the Galaxias Fossae landform morphology is consistent with an impact origin, the large volume of removed material in North Hellas is less consistent with an impact origin and is interpreted to have resulted from volcanic melting of ice. The possibility of liquid water formation during or subsequent to volcanism or an impact could generate locally-enhanced habitable conditions, making these features tantalizing geological and astrobiological exploration targets.

Friday, January 06, 2017

How Stable Would Organic Molecules be on the Martian Surface


Authors:

Lasne et al

Abstract:

In 1976, the Viking landers carried out the most comprehensive search for organics and microbial life in the martian regolith. Their results indicate that Mars' surface is lifeless and, surprisingly, depleted in organics at part-per-billion levels. Several biology experiments on the Viking landers gave controversial results that have since been explained by the presence of oxidizing agents on the surface of Mars. These oxidants may degrade abiotic or biological organics, resulting in their nondetection in the regolith. As several exploration missions currently focus on the detection of organics on Mars (or will do so in the near future), knowledge of the oxidative state of the surface is fundamental. It will allow for determination of the capability of organics to survive on a geological timescale, the most favorable places to seek them, and the best methods to process the samples collected at the surface. With this aim, we review the main oxidants assumed to be present on Mars, their possible formation pathways, and those laboratory studies in which their reactivity with organics under Mars-like conditions has been evaluated. Among the oxidants assumed to be present on Mars, only four have been detected so far: perchlorate ions (ClO4−) in salts, hydrogen peroxide (H2O2) in the atmosphere, and clays and metal oxides composing surface minerals. Clays have been suggested as catalysts for the oxidation of organics but are treated as oxidants in the following to keep the structure of this article straightforward. This work provides an insight into the oxidizing potential of the surface of Mars and an estimate of the stability of organic matter in an oxidizing environment.

Friday, December 23, 2016

Boron has been Detected on Mars

Boron has been identified for the first time on the surface of Mars, indicating the potential for long-term habitable groundwater in the ancient past. This finding and others from NASA's Curiosity rover science team will be discussed in a press conference today in San Francisco during the American Geophysical Union conference.

"No prior mission to Mars has found boron," said Patrick Gasda, a postdoctoral researcher at Los Alamos National Laboratory. "If the boron that we found in calcium sulfate mineral veins on Mars is similar to what we see on Earth, it would indicate that the groundwater of ancient Mars that formed these veins would have been 0-60 degrees Celsius [32-140 degrees Fahrenheit] and neutral-to-alkaline pH." The temperature, pH, and dissolved mineral content of the groundwater could make it habitable.

The boron was identified by the rover's laser-shooting Chemistry and Camera (ChemCam) instrument, which was developed at Los Alamos National Laboratory in conjunction with the French space agency. Los Alamos' work on discovery-driven instruments like ChemCam stems from the Laboratory's experience building and operating more than 500 spacecraft instruments for national defense.

Boron is famously associated with arid sites where much water has evaporated away--think of the borax that mule teams once hauled from Death Valley. However, environmental implications of the boron found by Curiosity are still open to debate. Scientists are considering at least two possibilities for the source of boron that groundwater left in the veins: It could be that the drying out of part of Gale lake resulted in a boron-containing deposit in an overlying layer, not yet reached by Curiosity. Some of the material from this layer could have later been carried by groundwater down into fractures in the rocks. Or perhaps changes in the chemistry of clay-bearing deposits and groundwater affected how boron was picked up and dropped off within the local sediments.

The discovery of boron is only one of several recent findings related to the composition of Martian rocks. Curiosity is climbing a layered Martian mountain and finding rock-composition evidence of how ancient lakes and wet underground environments changed, billions of years ago, in ways that affected their favorability for microbial life.

Friday, December 09, 2016

The Hellas Basin on Mars has the Remnants of an Ocean Frozen Within


Authors:

Weiss et al

Abstract:

The “honeycomb” terrain is a Noachian-aged cluster of ∼7 km wide linear cell-like depressions located on the northwestern floor of Hellas basin, Mars. A variety of origins have been proposed for the honeycomb terrain, including deformation rings of subglacial sediment, frozen convection cells from a Hellas impact melt sheet, a swarm of igneous batholiths, salt diapirism, and ice diapirism. Recent work has shown that the salt or ice diapirism scenarios appear to be most consistent with the morphology and morphometry of the honeycomb terrain. The salt and ice diapirism scenarios have different implications for the ancient martian climate and hydrological cycle, and so distinguishing between the two scenarios is critical. In this study, we specifically test whether the honeycomb terrain is consistent with a salt or ice diapir origin. We use thermal modeling to assess the stability limits on the thickness of an ice or salt diapir-forming layer at depth within the Hellas basin. We also apply analytical models for diapir formation to evaluate the predicted diapir wavelengths in order to compare with observations. Ice diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ∼100 m to ∼1 km thick ice deposits. Gypsum and kieserite diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ≥ 600–1000 m thick salt deposits, but only with a basaltic overburden. Halite diapirism generally requires approx. ≥ 1 km thick halite deposits in order to reproduce the observed honeycomb wavelengths. Hellas basin is a distinctive environment for diapirism on Mars due to its thin crust (which reduces surface heat flux), low elevation (which allows Hellas to act as a water/ice/sediment sink and increases the surface temperature), and location within the southern highlands (which may provide proximity to inflowing saline water or glacial ice). The plausibility of an ice diapir mechanism generally requires temperatures ≤ 250 K within Hellas in order to reproduce the observed diapir wavelength. Conversely, the viability of the salt diapir mechanism requires sufficiently thick evaporite deposits to accumulate in Hellas (generally ≃1–3 km), which requires the emplacement and evaporation within Hellas of a 14–2045 m global equivalent layer (GEL) of saline water (∼2 × 106 km3 to ∼3 × 108 km3). On the basis of our analysis, we conclude that ice diapirism is more likely due to the thin deposits (∼0.1–1 km thick) and low water volumes required (only 0.3–24 m GEL water), and the potential for either glacial deposits or a frozen ocean to supply the necessary ice. Salt diapirism requires thick evaporite deposits and high water volumes by comparison, and thus appears less likely.

Friday, December 02, 2016

Martian Lakes Forming Climates Were Caused by Methane Outbursts and Short Term


Authors:

Kite et al

Abstract:

Build-up of relatively young (<∼3.6 Ga) deltas and alluvial fans on Mars required lakes to persist for >3 Kyr (assuming dilute flow), but the watersheds' little-weathered soils indicate a climate history that was >99% dry. The lake-forming climates' trigger mechanism remains unknown. Here we show that these intermittency constraints, while inconsistent with many previously-proposed triggers for lake-forming climates, are consistent with a novel CH4-burst mechanism. Chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize CH4 clathrate. For past clathrate hydrate stability zone occupancy fractions >∼0.2, we show that CH4(±C2H6) builds up to levels whose radiative forcing (>15 W/m2, plus feedbacks) is sufficient to modulate lake-forming climates. Such occupancy fractions are consistent with CH4+C2H6 production by >3 Ga water-rock reactions. Sub-lake CH4 destabilization provides positive feedback. UV-limited CH4 photolysis curtails individual lake-forming climates to

Friday, November 18, 2016

Meteorites Show Mars Dry, Inhospitable for Billions of Years

he lack of liquid water on the surface of Mars today has been demonstrated by new evidence in the form of meteorites on the Red Planet examined by an international team of planetary scientists.

In a study led by the University of Stirling, an international team of researchers has found the lack of rust on the meteorites indicates that Mars is incredibly dry, and has been that way for millions of years.

The discovery, published in Nature Communications, provides vital insight into the planet's current environment and shows how difficult it would be for life to exist on Mars today.

Mars is a primary target in the search for life outside Earth, and liquid water is the most important pre-requisite for life.

Dr Christian Schröder, Lecturer in Environmental Science and Planetary Exploration at the University of Stirling and Science Team Collaborator for the Mars Exploration Rover Opportunity mission, said:

"Evidence shows that more than 3 billion years ago Mars was wet and habitable. However, this latest research reaffirms just how dry the environment is today. For life to exist in the areas we investigated, it would need to find pockets far beneath the surface, located away from the dryness and radiation present on the ground."

A study published last year, which used data from the Curiosity Rover investigating Gale crater on Mars, suggested that very salty liquid water might be able to condense in the top layers of Martian soil overnight.

"But, as our data show, this moisture is much less than the moisture present even in the driest places on Earth," explains Dr Schröder.

Friday, November 11, 2016

A Faint Young Sun Paradox Solution for Mars


Authors:

Wordsworth et al

Abstract:

The evidence for abundant liquid water on early Mars despite the faint young Sun is a long-standing problem in planetary research. Here we present new ab initio spectroscopic and line-by-line climate calculations of the warming potential of reduced atmospheres on early Mars. We show that the strength of both CO2-H2 and CO2-CH4 collision-induced absorption (CIA) has previously been significantly underestimated. Contrary to previous expectations, methane could have acted as a powerful greenhouse gas on early Mars due to CO2-CH4 CIA in the critical 250-500 cm^-1 spectral window region. In atmospheres of 0.5 bar CO2 or more, percent levels of H2 or CH4 raise annual mean surface temperatures by tens of degrees, with temperatures reaching 273 K for pressures of 1.25-2 bar and 2-10% of H2 and CH4. Methane and hydrogen produced following aqueous alteration of Mars' crust could have combined with volcanically outgassed CO2 to form transient atmospheres of this composition 4.5-3.5 Ga. This scenario for the late Noachian climate can be tested via future in situ and orbital studies of the martian crust.

Friday, November 04, 2016

Using Small Craters to Determine the Erosion Rates of Martian Sedimentary Rock


Authors:

Kite et al

Abstract:

Small-crater counts on Mars light-toned sedimentary rock are often inconsistent with any isochron; these data are usually plotted then ignored. We show (using an 18-HiRISE-image, >10^4 crater dataset) that these non-isochron crater counts are often well-fit by a model where crater production is balanced by crater obliteration via steady exhumation. For these regions, we fit erosion rates. We infer that Mars light-toned sedimentary rocks typically erode at ~10^2 nm/yr, when averaged over 10 km^2 scales and 10^7-10^8 yr timescales. Crater-based erosion-rate determination is consistent with independent techniques, but can be applied to nearly all light-toned sedimentary rocks on Mars. Erosion is swift enough that radiolysis cannot destroy complex organic matter at some locations (e.g. paleolake deposits at SW Melas), but radiolysis is a severe problem at other locations (e.g. Oxia Planum). The data suggest that the relief of the Valles Marineris mounds is currently being reduced by wind erosion, and that dust production on Mars older than 3 Gya greatly exceeds the modern reservoir of mobile dust.

Friday, October 21, 2016

ESA's Exomars Schiaparelli Lander Lost

Essential data from the ExoMars Schiaparelli lander sent to its mothership Trace Gas Orbiter during the module’s descent to the Red Planet’s surface yesterday has been downlinked to Earth and is currently being analysed by experts.

Early indications from both the radio signals captured by the Giant Metrewave Radio Telescope (GMRT), an experimental telescope array located near Pune, India, and from orbit by ESA’s Mars Express, suggested the module had successfully completed most steps of its 6-minute descent through the martian atmosphere. This included the deceleration through the atmosphere, and the parachute and heat shield deployment, for example.

But the signals recorded by both Pune and Mars Express stopped shortly before the module was expected to touchdown on the surface. Discrepancies between the two data sets are being analysed by experts at ESA’s space operations centre in Darmstadt, Germany.

The detailed telemetry recorded by the Trace Gas Orbiter was needed to better understand the situation. At the same time as Schiaparelli’s descent, the orbiter was performing a crucial ‘Mars Orbit Insertion’ manoeuvre – which it completed successfully. These important data were recorded from Schiaparelli and beamed back to Earth in the early hours of Thursday morning.

link.

In fact, ESA stated the lander may have exploded.

NASA appears to have found what may be the wreckage.

Friday, October 07, 2016

Evidence of an Impact Induced Hydrothermal System in the Auki Crater on Mars?

Geology and mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A possible post impact-induced hydrothermal system

Authors:

Carozzo et al

Abstract:

A variety of hydrothermal environments have been documented in terrestrial impact structures. Due to both past water interactions and meteoritic bombardment on the surface of Mars, several authors have predicted various scenarios that include the formation of hydrothermal systems. Geological and mineralogical evidence of past hydrothermal activity have only recently been found on Mars. Here, we present a geological and mineralogical study of the Auki Crater using the spectral and visible imagery data acquired by the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars), CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) instruments on board the NASA MRO mission.

The Auki Crater is a complex crater that is ∼38 km in diameter located in Tyrrhena Terra (96.8°E and 15.7°S) and shows a correlation between its mineralogy and morphology. The presence of minerals, such as smectite, silica, zeolite, serpentine, carbonate and chlorite, associated with morphological structures, such as mounds, polygonal terrains, fractures and veins, suggests that the Auki Crater may have hosted a post impact-induced hydrothermal system. Although the distribution of hydrated minerals in and around the central uplift and the stratigraphic relationships of some morphological units could also be explained by the excavation and exhumation of carbonate-rich bedrock units as a consequence of crater formation, we favor the hypothesis of impact-induced hydrothermal circulation within fractures and subsequent mineral deposition. The hydrothermal system could have been active for a relatively long period of time after the impact, thus producing a potential transient habitable environment.

Friday, September 16, 2016

Was Early Martian Climate Cold but Warmed Periodically by Volcanism & Impacts?


Authors:

Batalha et al

Abstract:

For decades, scientists have tried to explain the evidence for fluvial activity on early Mars, but a consensus has yet to emerge regarding the mechanism for producing it. One hypothesis suggests early Mars was warmed by a thick greenhouse atmosphere. Another suggests that early Mars was generally cold but was warmed occasionally by impacts or by episodes of enhanced volcanism. These latter hypotheses struggle to produce the amounts of rainfall needed to form the martian valleys, but are consistent with inferred low rates of weathering compared to Earth. Here, we provide a geophysical mechanism that could have induced cycles of glaciation and deglaciation on early Mars. Our model produces dramatic climate cycles with extended periods of glaciation punctuated by warm periods lasting up to 10 Myr, much longer than those generated in other episodic warming models. The cycles occur because stellar insolation was low, and because CO2 outgassing is not able to keep pace with CO2 consumption by silicate weathering followed by deposition of carbonates. While CO2 by itself is not able to deglaciate early Mars in our model, we assume that the greenhouse effect is enhanced by substantial amounts of H2 outgassed from Mars' reduced crust and mantle. Our hypothesis can be tested by future Mars exploration that better establishes the time scale for valley formation.

Friday, September 09, 2016

NASA Approves Mars InSight Lander Launch for 2018 at Additional $180 Million Cost

NASA announced Sept. 2 that it has approved plans to launch a delayed Mars lander mission in 2018, although at an additional cost that could affect plans for later planetary missions.

The InSight Mars lander, originally scheduled for launch in March, will now launch no earlier than May 5, 2018, after NASA’s Science Mission Directorate formally approved the revised mission plan this week. That launch will allow a landing on Mars in November 2018.

NASA postponed the launch in December 2015 after a series of problems with one of its primary instruments, the Seismic Experiment for Interior Structure (SEIS), provided by the French space agency CNES. The instrument suffered a series of vacuum leaks that NASA concluded could not be fixed in time to permit a launch during a window that lasted about a month.

Friday, September 02, 2016

Extensive Noachian fluvial systems in Arabia Terra on Mars



Authors:

Davis et al

Abstract:

Valley networks are some of the strongest lines of evidence for extensive fluvial activity on early (Noachian; >3.7 Ga) Mars. However, their purported absence on certain ancient terrains, such as Arabia Terra, is at variance with patterns of precipitation as predicted by "warm and wet" climate models. This disagreement has contributed to the development of an alternative "icy highlands" scenario, whereby valley networks were formed by the melting of highland ice sheets. Here, we show through regional mapping that Arabia Terra shows evidence for extensive networks of sinuous ridges. We interpret these ridge features as inverted fluvial channels that formed in the Noachian, before being subject to burial and exhumation. The inverted channels developed on extensive aggrading flood plains. As the inverted channels are both sourced in, and traverse across, Arabia Terra, their formation is inconsistent with discrete, localized sources of water, such as meltwater from highland ice sheets. Our results are instead more consistent with an early Mars that supported widespread precipitation and runoff.

Thursday, August 25, 2016

A Classification of Martian Gullies


Authors:

Auld et al

Abstract:

Due to the large and varied population of gullies observed in Mars High Resolution Imaging Science Experiment (HiRISE) imagery that exhibit diverse characteristics, this paper develops a classification of martian gullies based on their morphological characteristics. This provides a firmer foundation for future investigation of the genesis of different gully morphologies. The Mars Reconnaissance Orbiter (MRO) image catalog on the HiRISE website was examined and 869 images, chosen from the first 25,000 orbits, show a wide variety of gully morphologies. The images were analyzed using ENVI 4.4 and ENVI Zoom and the gullies were cataloged and divided into groups based on the presence and character of the dominant morphological components of alcove, channel, and apron associated with each gully. 7519 gullies were identified in the images and the length and width of the components were measured in ENVI to facilitate classification. Seven classes were developed based on morphology.

Friday, August 19, 2016

Could Cirrus Clouds Have Warmed Early Mars?

Could Cirrus Clouds Have Warmed Early Mars?

Authors:

Rameriz et al

Abstract:

The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2-H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radiative-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ~75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

Friday, August 12, 2016

Veins of Minerals in Gale Crater on Mars Probably From Evaporating Lakes

Mineral veins found in Mars's Gale Crater were formed by the evaporation of ancient Martian lakes, a new study has shown.

The research, by Mars Science Laboratory Participating Scientists at The Open University and the University of Leicester, used the Mars Curiosity rover to explore Yellowknife Bay in Gale Crater on Mars, examining the mineralogy of veins that were paths for groundwater in mudstones.

The study suggests that the veins formed as the sediments from the ancient lake were buried, heated to about 50 degrees Celsius and corroded.

Professor John Bridges from the University of Leicester Department of Physics and Astronomy said: "The taste of this Martian groundwater would be rather unpleasant, with about 20 times the content of sulphate and sodium than bottled mineral water for instance!

"However as Dr Schwenzer from The Open University concludes, some microbes on Earth do like sulphur and iron rich fluids, because they can use those two elements to gain energy. Therefore, for the question of habitability at Gale Crater the taste of the water is very exciting news."