Showing posts with label Spudis. Show all posts
Showing posts with label Spudis. Show all posts

Wednesday, September 14, 2016

Disrupted Terrain at the Antipodes of Young Great Basins

A new study of areas diametrically opposite from the Moon's youngest basins goes beyond crustal magnetic fields and swirl albedo features found at these focal points and proposes examples of highly modified terrain. Animation from preliminary lunar crust thickness maps prepared from GRAIL (2012) data by the Science Visualization Studio. [NASA/GSFC].
Joel Raupe
Lunar Pioneer

Studying the lunar magnetic anomalies and albedo swirls nested near the antipodes, at those points that are absolute opposite on the Moon from its youngest basins, can be a little disorienting. The antipodes of the two most familiar nearside basins Mare Imbrium and Mare Serenitatis, for example, are also near the mountainous northwest and northern border region of the vast (and more ancient) South Pole-Aitken (SPA) basin.

Such simple facts as these, derived during the relatively short history of modern lunar exploration, camouflage a variety of unknowns and complexities, as well as some controversy over the origin of the peculiar features discovered there.

Within ten degrees of the farside coordinates diametrically opposite from the officially designated center of Mare Imbrium, close to the surface, is a fairly well-known local magnetic field. Associated with this crustal magnetism is one of the Moon's most familiar tracings of delicate and bright albedo "swirls," apparently composed of a very thin layer of fine dust of the sort of low optical maturity, a signature of the Moon's youngest features draped over its oldest.

Like some kind of alien graffiti, these swirls really stand out as attributes of Mare Ingenii, the largest lava-flooded plain on the farside, a hemisphere almost as devoid of "seas" as the Moon's Earth-facing side is covered by them.

The Ingenii swirl fields are a highlight of anyone's tour of the Moon. To start considering these giant swirls traced over the surface of Ingenii as integral to Mare Imbrium on the Moon's nearside can sometimes seem like reading through a mirror.

Mare Imbrium is probably the most easily detected 'naked-eye feature' of the tidally-bound Earth-facing hemisphere. Centered officially by the IAU at 34.72°N, 345.09°E, the corresponding, though still preliminary, antipode for the Imbrium basin should be near 34.72°S,165.09°E, on the farside's southern hemisphere.

The antipode of Mare Imbrium (yellow spot) was a foci of conjoining seismic shock and ejecta from the epoch-changing basin-forming impact that hollowed out Mare Imbrium, roughly 3.85 billion years ago. Persistent bright surface markings that have lasted beyond the 800 million to 1 billion years thought to inevitably darken lunar regolith are thought to be the result of a cyclical interaction of charged lunar dust precipitating through the locally intense magnetic field. The white rectangle outlines one of many areas of disrupted terrain, "material of grooves and mounds" identified on the geological map of Stuart-Alexander (1978). LROC Wide Angle Camera (WAC) monochrome mosaic [NASA/GSFC/Arizona State University].
When we think of the clusters of features often found together near these points directly opposite from the Moon's nearside basins it's often easier to label Mare Ingenii as Imbrium Antipode, and the Gerasimovich region as Crisium Antipode, etc.

This unconventional labeling emerges as we study a whole family of, literally, "far-flung phenomena," though most of the species, fortunately, are not yet associated with a local name. Unlike the more easily spotted features at Mare Ingenii, now thought to have originated with Mare Imbrium, such features elsewhere are less easily picked out, overlapping widely differing terrains and a variety of mountain ranges, plains and crater groups.

A very distinctive bifurcated swirl, one of many similar, striking aspects of Mare Ingenii, on the Moon's farside and immediately adjacent to the antipode of Mare Imbrium. From an oblique LROC NAC observation M191830503R, LRO orbit 13304, May 16, 2012 [NASA/GSFC/Arizona State University].
The point on the Moon opposite Mare Serenitatis is not as distinctive (see image below). The coordinates were easy enough to determine, like the Imbrium Antipode it's just inside the circumference of SPA basin, a little north and east the antipode of Imbrium as Serenitatis basin, on the nearside, is a little south and east of Imbrium.

Like most of the farside, however, there is no mare-inundated plain near the Serenitatis antipode to allow for a clear photographic contrast with local differences in albedo. The crustal magnetism (or the granularity of our data) seems more diffuse, with smaller, less intense knots of crust magnetism.

The absence on the Moon of the kind of global magnetic field that affords life so much welcome protection here on Earth was one of the earliest conclusions of modern lunar exploration. As men and machines transited to and from the surface, however, the magnetic picture became more complex. The earliest magnetometers, in orbit and on the surface, were detecting magnetic signatures bound to local features, but their local intensity and apparent close association of with surfaces that seemed to defy aging were only beginning to be grasped.

The Serenitatis Antipode is not as easy for the naked eye to pick out from the background as points opposite the Imbrium basin associated with Mare Ingenii. The antipode of Serenitatis is marked with a cross in frame one (Figure 5 from the study by Hood, et al (2013). In that same frame the authors draw attention to mountains along the rim of SPA basin (white arrows) as possible examples of terrain disrupted by the Serenitatis basin-forming impact here near the opposite point on the Moon. The frame following draws attention to two anomalous optically immature surface areas within Galois Q crater, followed by Clementine color ratio analysis where the older terrain (red) surface areas stand out with characteristics of new (blue) and reflective regolith fines. The twin patches coincide with a local magnetic field strength "bump" measuring 9nT. The final frame shows the same albedo patches at 77 meters resolution in LROC Wide Angle Camera (WAC) observation M160959807C (604 nm), spacecraft orbit 8854, May 25, 2011, angle of incidence 62° from 60 km [NASA/USGS/DOD/GSFC/Arizona State University].
As the Apollo era came to an end it was understood, at least, that the Moon seemed once to have had an internal dynamo like Earth, generating global magnetism fossilized today in its rocks. A higher resolution picture of the Moon's magnetism and its interrelation with the Sun, Earth and its own dust would wait for a second very slowly renewed period of unmanned exploration beginning with vehicles like the DOD remote sensing test platform Clementine (1994).

At the close of the 20th century the remarkable Lunar Prospector (1998-1999) helped add important pieces to the picture. Specifically, the small vehicle returned highly valued data on the Moon's local magnetic fields very close to the surface, as it was gradually lowered toward a planned impact within the permanently shadowed Shoemaker crater, a feature of the far lunar south today baring the name of the celebrated pioneer Gene Shoemaker (1928-1997) who originally planned the impact that inspired the LCROSS mission ten years later.

Investigators have continued to correct and tease valuable information from the sparse Lunar Prospector magnetometer data to this day. The data sometimes allowed identifying lunar features in a manner opposite than before. Reiner Gamma, the most familiar swirl phenomena in Oceanus Procellarum, stands out in low power telescopes. Its associated crustal magnetism was identified later. Elsewhere on the nearside magnetometer data from as few as one to three late mission low orbital passes by Lunar Prospector allowed diffuse albedo patches at Airy and Descartes to be definitively associated with locally intense crustal magnetism and identified as true "swirl phenomena."

Figure 9 from Hood, et al (2013) - Superposition of the two-dimensionally filtered magnetic field magnitude at approximately 25 km altitude (Lunar Prospector), contour interval 1 nano-Tesla, onto LROC WAC mosaic of the nearside, in the south-central highlands vicinity of the Apollo 16 landing site.
Simulated oblique view over ancient Descartes crater (29 km - 11.74°S, 15.66°E), from the Cayley Formation plains explored by Young and Duke on the Apollo 16 expedition (1972) in the northwest around 80 km southeast over the "disrupted terrain" of the Descartes Formation, highlighting its anomalous albedo, not coincidentally at the heart of one of the Moon's most intense crustal magnetic fields. LROC WAC mosaic, from observations collected in three sequential orbital passes December 3, 2011, averaging 52 meters resolution from 38 km - Figure 5 from "Boulder 668 at Descartes C," July 17, 2012 [NASA/GSFC/Arizona State University].
At Orientale Antipode, opposite from what is the Moon's unequivocally youngest basin, the swirl field is very widespread, associated with more than a few peaks in local crustal magnetism. The largest affected feature on the opposite side of the Moon from Mare Orientale is Mare Marginis, characterized by what is likely the Moon's largest and most complex field of swirls at the surface, overlapping every kind of terrain, but also closely identified with the Goddard and Goddard A crater. Still, the actual boundaries of this field of 'persistent albedo patterns' are difficult to trace.

Adding to this complexity, the swirl field near Orientale Antipode has been affected by relatively recent impacts, some with brightly reflective rays. The field is spread far enough east, extending over the farside's mid-latitudes, it's difficult to say with certainty whether an unnamed, tightly wound spectacular swirl field east of Firsov crater belongs to the group.

The Orientale Antipode (near Goddard A) is characterized by very widespread swirls. The greater manifestation (large oval) extends far from the pronounced magnetic field lines of peak strength near Hubble, Goddard and Goddard A craters east nearly to a distant and weaker peak field strength associated with the spectacular field of swirls seemingly spilling out from a bright unnamed Copernican crater east of Firsov (4.204°N, 112.697°E). LROC WAC global 100 meter mosaic [NASA/GSFC/Arizona State University].
Three investigators with established planetary science resumes which include (among many other things) peer-reviewed study of these bright swirl 'patterns' and associated lunar magnetic anomalies, have recently authored a new study building on continued fine-tuning of Lunar Prospector (1998-1999) magnetometer data and the more recent Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) surveys.

The new paper, published in the Journal of Geophysical Research, “Origin of Strong Lunar Magnetic Anomalies: More Detailed Mapping and Examination of LROC Imagery in Regions Antipodal to Young Large Basins,” demonstrates further the recent end to a long controversy, helping answer the Space Age mystery posed by the Moon’s delicate, bright, often sinuous surface albedo patterns.

A crew member on-board Apollo 10 almost managed to capture the full length of the magnificent but unnamed surficial albedo swirl field now associated with a measurable peak in crustal magnetism east of Firsov crater. AS10-30-4365 [NASA].
As with most controversies on the long climb of science, a quiet resolution drew upon bits and pieces collected in pursuit of answers to many, often unrelated, questions.

Launched in early 1998, Lunar Prospector spent 19 months in a low polar orbit and became notorious for a remarkably low budget and high return of valued data as much as for improved mapping of the scattered neutron absorption strongly hinting at the presence of volatiles, specifically hydrogen, prematurely ruled out following early analysis of Apollo samples in 1969.

In 2013 terms, for the amount of money the federal government collects, borrows and spends every eight and a half minutes Lunar Prospector gained a well-deserved reputation and confirmed still skeptically-received indications of the presence of hydrogen, both inside and outside the permanently shadowed regions of the Moon’s polar latitudes.
“Will your grace command me any service to the world's end?  I will go on the slightest errand now, to the Antipodes that you can devise to send me on…”
- Much Ado About Nothing, (Act II, scene 2)
The planned mission-ending impact of Lunar Prospector on the permanently shadowed floor of Shoemaker crater, near the Moon’s South Pole, July 30, 1999 (a long-shot, ultimately unsuccessful attempt to send up a plume of volatiles detectable from Earth), inspired the very successful LCROSS mission, launched together with LRO, a decade later.

With its neutron spectrometer, mapping the absence, the absorption, of scattered neutrons indicative of hydrogen, possibly water ices, near the lunar poles, Lunar Prospector also deployed a sensitive magnetometer.

The Moon’s lack of an Earth-like global magnetic field was well known, though Apollo and Luna surface samples clearly indicated the Moon may once have had the kind of molten internal dynamo at its core we take for granted on Earth, a now-dormant generator sufficient for global magnetism, its signature locked into the lineup direction of certain materials as volcanic rock cooled in its earliest ages, some of these as much as a billion years apart. The magnetic fields detected at the surface and from orbit, speculation held, were likely fossilized remnants, surviving islands – though the presence of “lunar magnetic anomalies” on the Moon’s Farside, in concentrations near opposite on the Moon (antipodal) from the Nearside’s large basins was seen as an unlikely coincidence very early in post-Apollo studies.

Along with anomalous local crustal magnetism detected near the Moon’s most famous “swirl,” the alluring Reiner Gamma, bright against the darker background of Oceans Procellarum, and the presence of swirls, some of them spectacular, in vicinity of these islands of knotted magnetic field lines - at the antipodes of Mare Imbrium and Serenitatis - was impossible to ignore.

Very near the Antipodes of Mare Imbrium in particular, the earliest photographs of the Moon’s Farside unveiled a spectacular swirl “field,” seeming almost intelligent in origin, Minimalist butterflies or spiders, strange forms seemed lightly painted in white on the darker floor of the melt-inundated basin floor of Mare Ingenii, by some inscrutable giant almost evoking the walls and ceilings of the cave of Lascaux, or the Nazca Lines.

“Swirls” seem immune from “optical maturity,” an inevitable darkening (really reddening) by solar and cosmic radiation. Incessant bombardment should inevitably weather fade such contrast to match its surroundings, on a timescale between 800 million to 1 billion years.

Had there had been any indication the bright patterns were composed of rough, fresh and reflectively bright small ejecta, like the rays of young 109 million year old Tycho, for example, a predictable cycle of meteorite and micro-meteorite “gardening” turns over the upper 3 centimeters of the entire lunar surface each two million years. Space weather, therefore, should have contributed to their erasure. It was a strong argument for direct, or lacking any difference in the crater counts inside and outside the swirls, indirect encounters with comets.

The comet encounter theory for the origin of lunar swirls died hard. Proponents pointed to the optical immaturity, the undeniably fresh material of the brighter surface, and claimed this to be evidence that outweighed other factors.

The predominance of Farside swirls gathered near places opposite from the Nearside basins and in the presence of coincident local crustal magnetism, they wrote, pointed perhaps to relatively recent and oblique encounters with comets interacting electro-chemically with these unusual conditions. The still-interesting fact that Reiner Gamma, and two lesser known magnetic anomalies with accompanying bright albedo patches on the Nearside seemed to lack any identified basins at their opposing antipodes on the Farside, they claimed, was also exceptional.

As the recorded readings measured from the Lunar Prospector magnetometer were gradually corrected, properly matched with time, the pressures of sunlight, etc., over many years following the end of that mission in 1999, researchers began discovering, or confirming, the existence of swirls after first deciphering the location of smaller, though sometimes intense, magnetic fields.

Ironically, the most intense magnetic field detected by any of the Apollo surface expeditions, that of Apollo 16, was measured only 80 km northwest of possibly the most intense crustal magnetism on the Moon, together with the amorphous small brighter surface material of the Descartes Formation. John Young and Charlie Duke walked on the northwestern edge of this feature when sampling the Cinco craters on “Stone Mountain,” overlooking South Ray crater, in April 1972.

The Lunar Prospector magnetometer survey of the Moon made for an improvement on earlier maps, but the mission was not comprehensive. Its advantage, at the time, was an unprecedented low orbit, an orbital altitude gradually lowering more and more as the vehicle approached its demise. The data had an inherent high degree of accuracy because of improvements in electronics and hardened electronics since the Apollo era, and a value-added accuracy due to the patience and hard work of investigators properly pegging the to geography and time, in filtering out the noise long after Lunar Prospector was gone.

Much of what is now known about the lunar magnetic anomaly on the Descartes highland hugging the northern edge of ancient Descartes crater, was teased from its measurements taken through three late mission orbits, when Lunar Prospector orbited some 32 km first over the east, and in the next orbit passing directly over Descartes, and last over the west.

Hood and Richmond, authors of this latest study, published their examination of the Lunar Prospector encounter with Descartes in 2003, determining the intensity of the very local magnetic field sufficient to refract the solar wind, dubbing it a “mini-magnetosphere.”

At nearly the same time, similarly strong local magnetic anomalies, though slightly less intense and localized, were shown embedded on the Farside at Gerasimovich, and perhaps elsewhere.

Some were quick to speculate, if a crustal magnetism centered on the Descartes formation were strong enough to refract the solar wind, perhaps such protection prevented the dusty surface of the bright “swirl” on the southern half of “Stone Mountain” from becoming “optically mature.”

The authors were quick to point out in their introductory paper even such an obviously intense local magnetic field offered no protections from heavier cosmic radiation. The depth of the cavity in the solar wind formed by Descartes magnetic anomaly was insufficient to stop highly energetic, and heavy, nucleons traveling – unlike the particles of a solar wind – close to the speed of light. They estimated such a purpose would require a magnetic field 2,000 km across just to begin deflecting highly energetic cosmic rays away from the surface within the fields. Naturally, such a field would have no effect on the patient and steady rain of micro-meteorites adding to the surface maturity.

Ignoring, for the moment, most magnetic anomalies with their attendant swirls are not sufficiently intense to carve out a transitory cavity in the solar wind, the authors demonstrated the most astonishingly enduring, and intense magnetic field ever detected near the lunar surface was no protection from space weathering.

By all rights, the surfaces within their influence should be darkening at or close to the same rate as the lunar surface elsewhere.

Enter Kaguya, Chandrayaan, LRO…

Toppography.

For decades the nature and the origin or the swirl patterns stirred very minor controversy, in planetary science communities. Those who insisted lunar swirls originated from comet encounters

Early in the Space Age investigators concluded our Moon, unlike Earth,

One place suggested as a possible location for samples of the SPA basin is northeast of Plato, where, between that famous crater and the long northern edge of Mare Frigoris, probability points toward the possible existence of a debris pile, the antipodes of the South Pole-Aitken basin.

In this latest study, Hood, Richmond and Spudis add granularity to our understanding the relationship between basin forming impacts and how they modify the landscape at the most remote points possible, as far away from Ground Zero as anyone can get, and remain on the Moon.

Anyone can meditate on Mare Imbrium, for example, and see how energetic the pressure wave, racing away from the center of the impact, scoured out mountains and channels and hurled away and dumped unimaginable masses of melt and solid debris many hundreds of kilometers away. The scar has not been erased, and a significant amount of debris must have been ejected at escape velocity. Much of that material eventually returned or settled elsewhere in the Solar System.

On February 15, 2013, as many in the far-flung world’s astronomy community were preparing to observe an exceptionally close fly-by of asteroid 2012 DA14, out of the glare of the pre-dawn over Central Asia a 7,000 ton, 15 meter-wide rock encountered Earth’s atmosphere at a relative speed of 18 km per second. Immediately flaring bright, it quickly exploded 20 km overhead. The event produced a shockwave into the atmosphere over Chelyabinsk that immediately imparted ten times the energy of the fission bomb exploded over Hiroshima in 1945. The sound of that smaller asteroid’s explosion traveled around the entire planet several times before seismic stations of the world could detect it no longer.

The pressure wave from the Chelyabinsk Event propagated in every direction away from the explosion until all points on the wave converged west-southwest of South America, where the far South Pacific borders the Great Southern Ocean encircling Antarctica. The momentum of the wave through the atmosphere carried past this convergence point, the Antipode of the Chelyabinsk Event, and continued racing away until a second convergence occurred many hours later, back over Russia, where the energy continued on toward the antipode a second time, and so on, like ripples in a pond – only the pond, in this case, was a planet, and its shoreline a single point on the opposite side of the world.


Related Posts:
Bubble, Bubble – Swirl and Trouble (July 19, 2012)
Boulder 668 at Descartes C (July 16, 2012)
LROC: The Swirls of Mare Ingenii (June 22, 2012)
Remnant magnetism hints at once-active lunar core (January 27, 2012)
Grand lunar swirls yielding to LRO Mini-RF (October 4, 2010)
Another look at Reiner Gamma (June 30, 2010)
LOLA: Goddard (June 26, 2010)
Depths of Mare Ingenii (June 16, 2010)
LROC: Ingenii Swirls at Constellation Region of Interest (May 26, 2010)
Local topography and Reiner Gamma (May 22, 2010)
Lunar swirl phenomena from LRO (May 17, 2010)
The still-mysterious Descartes formation (May 11, 2010)
Dust transport and its importance in the origin of lunar swirls (February 21, 2010)
The Heart of Reiner Gamma (November 17, 2009)
Moon’s mini-magnetospheres are old news (November 16, 2009)
MIT claim of solving ‘lunar mystery’ unfounded (January 15, 2009)

Thursday, January 29, 2015

B. Ray Hawke, lunar geologist

Dr. B. Ray Hawke on the rim of Kilauea Caldera, Hawai'i Volcanoes National Park, 1984 [Paul Spudis].
Paul D. Spudis
Daily Planet
Smithsonian Air & Space


I was saddened this weekend by the not totally unexpected news that lunar scientist and good friend B. Ray Hawke of the University of Hawaii has passed away.  Colleague and collaborator, I knew B. Ray as long as almost anyone in the business.  We were graduate students together, early co-workers and good friends.

Bernard Ray Hawke hailed from Upton, Kentucky, about 60 miles north of my birthplace, Bowling Green, Kentucky. We first met in 1976 as graduate students at Brown University. A returning Vietnam veteran who’d served as an Airborne Ranger, B. Ray was a kindred spirit who helped me deal with the cultural shock as an Arizona State University student who’d exchanged the grand vistas of my adopted Arizona for the claustrophobic confines of Ivy League New England.  We became good friends, spending hours at his preferred office – the local coffee shop (the IHOP, which advertised a “bottomless” coffee pot, a descriptor that B. Ray took literally).

During our graduate years, we took to using ironically the honorific “Doctor” when speaking to each other (we were all pre-doctoral candidates), not only between ourselves but also when in the presence of others, a private joke that we continued throughout the years.  This led to some amusing situations later, as our students expressed confusion when I would refer to B. Ray – a colleague but also a long-time personal friend – with the formal title of “Dr. Hawke” and he would address me as “Dr. Spudis.”

B. Ray’s scientific work focused very specifically on the Moon.  As a Masters student at the University of Kentucky, he analyzed lunar regolith chemistry and used something called a “mixing model” to determine its geological affinities.  In this technique, the composition of a soil is determined and that composition is modeled as a mixture of known components.  Although seemingly an academic exercise, this approach could be a very powerful technique to decipher the geological history of the Apollo landing sites.  Later, B. Ray and I would apply this same technique to chemical data returned by the orbiting Apollo spacecraft, giving us our first look at regional and global compositions.  Combined with information about the geological setting of regions covered from orbit (such as the basin ejecta), such study would help us reconstruct the composition and makeup of the crust of the Moon.

B. Ray’s early work dealt with integrating lunar sample information with images and geological mapping, my own field of specialization.  He and I spent many hours discussing some of the problems of this effort, and also the issue of overcoming considerable community skepticism about the approach.  We worked to convince our colleagues that the future of lunar science lay in the melding of the broad disciplines of sample science and remote sensing – taking results from the study of samples, using it to inform the interpretation of remote sensing data, and then concocting a geological model that explains and encompasses all known facts.  Although this approach is now a recognized way to conduct lunar science, careful reading of the early literature will show that most early post-Apollo work was highly sequestered by discipline, with little cross-fertilization of results and insights.

Because B. Ray and I found ourselves working on many of the same scientific problems after graduate school, we formed a partnership that lasted 40 years.  One of our earliest efforts was an attempt to use impact basins as large-scale probes of the lunar crust.  An early paper (1984) on the Orientale basin was the first to discover that massive blocks of pure anorthosite, an indigenous rock composed almost completely of plagioclase feldspar, make up the inner ring of that basin.  In addition, we measured the composition of material thrown out from Orientale using chemical maps based on data from the orbiting Apollo spacecraft.  These results indicated that the Orientale basin excavated only the upper portions of the lunar crust; new data from subsequent missions have confirmed these early results.

The study of telescopic spectra, involving very precise measurements of color at high resolution of very small spots on the Moon, became B. Ray’s specialty.  These spectra would be taken of many carefully selected geological targets, a great improvement over the previous approach of targeting mostly by geographic region.  He spent many hours at Hawaii’s Mauna Kea Observatory, diligently working to make certain that data for the correct spot on the Moon was being acquired.  His spectra were collected to address many scientific problems, including basin rings, dark halo craters, lunar “red spots” (spectrally anomalous regions), impact melt deposits and the ejecta of large craters and basins.  B. Ray brought to these studies his extensive background in image analysis and interpretation.  He had made geological maps of portions of the Moon, which for the first time could be interpreted in terms of mineral and chemical content.  These studies are critical to our understanding of the complex and protracted geological evolution of the lunar crust.

During his 35 year association with the University of Hawaii, B. Ray mentored and befriended many students and visiting scientists. I made an extended stay at UH early in 1980, and worked closely with B. Ray on using spectral interpretation to map the Apollo 16 landing site. B. Ray’s work habits were unorthodox to say the least, almost 180 degrees out of phase with normal working hours (I had to adjust to starting work at 9:00 pm and working until after breakfast). But for all that, I never saw anyone work so long and so hard when there was a problem to be solved. B. Ray was a great collaborator who very carefully reviewed each word in a paper, assuring that many errors and mistakes were corrected long before submittal. I could always count on a detailed and insightful review from him, even for papers for which he was not an author.

As he passes into the annals of history, the world of lunar science is a bit poorer without B. Ray Hawke. He was a productive scientist, a hard worker, a tireless advocate for lunar activities and a good and faithful friend. His legacy leaves us with a new way of looking at the Moon – an integrated approach involving studies of samples, remote sensing data, and images. His contributions to lunar science include work on impact melts, Apollo 14 site geology, dark halo craters and the extent of ancient volcanism, lunar non-mare volcanism (KREEP and red spots), and geochemical anomalies of the lunar crust – an extensive and impressive amount of work.

Thank you and rest easy, Dr. Hawke.

Published a short time ago at Smithsonian Air & Space, Daily Planet - Dr. Spudis is a senior staff scientist at the Lunar and Planetary Institute. The opinions expressed are those of the author but are better informed than average.

Tuesday, December 30, 2014

The mystery of lunar layers

Close-up of Silver Spur (bottom) shows linear “bedding” coincident with topography, suggesting it is real. Its stratigraphic significance is still unknown. From panorama of photographs taken during the initial "Stand-Up" EVA, a 360° survey of the Hadley Rille Delta Apollo 15 landing site from the top hatch of the lunar module Falcon just after midnight (UT), July 31, 1971. Dave Scott's panorama included the layered component atop Mons Hadley Delta, whose slopes 5 km east he and Jim Irwin would later sample and explore [NASA/JSC].
Paul D. Spudis
The Daily Planet
Smithsonian Air & Space

In northern Arizona, a spectacular region of exposed, layered rocks over 6,000 feet thick was carved by the Colorado River. Aptly called the Grand Canyon, it represents over a billion years of Earth’s history. Geologists are able to study the history of past ages in exquisite detail by reading the historical record found in that well-known natural landform. No matter the planet, geologists are always searching for layered rocks. The study of rock layers (stratigraphy, from strata, meaning rock layers) allows scientists to reconstruct the geological history of a region and over time, an entire planet.

The nature of the Moon does not lend itself well to the display of rock layers, yet considerable effort has been expended searching for outcrops. Most layered rocks on the Earth are created from water-laid or wind-blown sediments, and neither of those processes occurs on the Moon. Still, the lunar surface has been built up piecemeal by the sequential deposition of blankets of ejecta—the ground-up rock thrown out radially from the center of impact craters and basins during formation. The overlap relationship of these ejecta deposits allows scientists to reconstruct the history of the Moon, i.e., younger impact craters overlie older ones. This simple methodology has allowed us to decipher the stratigraphy of the Moon.

Exposed layering in an outcrop from the rim of the west wall of Rima Hadley (Hadley Rille). A newly inter-laced Apollo 15 image from a panorama of 500 mm black and white photographs at a range of 1400 meters away, on the opposite rim, at Science Station 9a. Dave Scott, August 2, 1971. Features in this view were successfully compared with LROC NAC observations of the area from low lunar orbit [NASA/JSC].
Parallel bedrock outcrops 50 km southwest of the Apollo 15 landing site, from LRO in orbit 38 years later. (From "Layers near Apollo 15 landing site,") The orbital view shows distinct outcrops occurring at different topographic levels within the rille, strongly suggesting the presence of rock layers. The image of the western rille wall by Dave Scott (above) clearly shows a layered outcrop, about 15 meters thick. Several lines of evidence suggest these lavas are the oldest in the region, about 3.84 billion years old. LROC NAC observation M113941548LE, LRO orbit 1925, November 27, 2009; incidence 59.35° at 50 cm resolution, from 46.04 km over 24.65°N, 2.42°E [NASA/GSFC/Arizona State University].
Given that geologic history, one might expect that some evidence of rock layering was found in the abundant data returned from the Moon, but such evidence is limited and ambiguous. One of the most startling finds during the Apollo missions was a breathtaking view of Mt. Hadley, a lunar mountain north of the Apollo 15 landing site. Astronauts Dave Scott and Jim Irwin were startled to see evenly spaced, sub-horizontal lines in the mountain, similar in appearance to fine-scale layering present in some terrestrial strata. It looked as though the mountain was a single, gigantic crustal block, uplifted and overturned by the impact that created the nearby Imbrium basin. The layering described by the astronauts greatly intrigued the mission scientists, who were unable to clearly see it in real time in the TV pictures sent to Earth.

When the crew returned to Earth, images taken on the surface dramatically showed this layering (above, below). But this presented scientists with a puzzle. Because large impacts are highly energetic, chaotic events, how could they generate evenly spaced, regular layering? Some team members began to suspect that something else was going on. Ed Wolfe and Red Bailey of the U.S. Geological Survey made scale models of the mountain and dusted it with cement powder. They then photographed it under low, oblique illumination, similar to the lighting conditions of the landing site during the mission. Surprisingly, fine-scale linear features were evident in the laboratory “mountain” (above, right), suggesting that the “layering” seen by the astronauts on the Moon may have been an illusion, caused by the low-angle illumination of a particulate, granular surface.

Stratified outcrops steadily shed house-sized boulders from the central peak of Hausen crater (163.24km; 65.111°S, 271.509°E) the formation of which may have excavated among the Moon deeper vertical columns (29 km), in part because of its location on the rim of South Pole-Aitken impact basin. The deepest materials brought to the surface here might include examples of the Moon's mantle, the original material between the Moon's crust and core; time capsules of the Moon's history before the formation of Hadley and the nearside basins. LROC NAC Commissioning observation M105100555LR, orbit 643, August 16, 2009; incidence 72.47° at 48 cm resolution, from 41.38 km over 64.94°S, 271.84°E [NASA/GSFC/Arizona State University].
Full-width mosaic from LROC NAC M105100555LR shows a roughly 1100 meter deep drop from the heights of Hausen's central peak to an intermediate slope of talus in a field of view 2.5 km across [NASA/GSFC/Arizona State University].
Other layered deposits at the Apollo 15 site were less amenable to explanation as an artifact of lighting. A ridge southeast of the landing site named Silver Spur displayed a set of topographic “benches” associated with its apparent layering (below). On Earth, the formation of a bench indicates differential erosion, with hard rocks making up the cliff-forming units and softer rocks being expressed as more gently sloping units. However, such an erosive pattern on the airless, waterless Moon is difficult to envision. To this day, we do not have a good explanation for the origin of Silver Spur. As an example of layering in the highlands, it remains problematical.

Clear and unequivocal layering was observed in the walls of Hadley Rille, a lava channel located near the landing site. In this case, it is easier to accept that we are looking at real layering—the rille cuts into a series of lava flows that cover the landing site (below). Lava flows make up layered deposits on Earth and there is no reason to assume that they wouldn’t do likewise on the Moon. In fact, the layering observed in the walls of Hadley Rille could be significant for another reason, one that may hold great scientific promise for future explorers.

The morphology of the "Aratus CA" collapse pit (24.55°N, 11.78°E) in Mare Serenitatis is unclear, but portions of its southwest rim include layered outcrop, perhaps including a long history of an early intermediate pre-Imbrium period and successive clues to the nature and timing of the catastrophes in our star system's early history called "the Grand Bombardment. 1.74 meter-wide field of view from LROC NAC Commissioning phase observations M104447576LR, LRO orbit 552, August 9, 2009; incidence 57.87° at 1.45 meters resolution, from 145.46 km over 25.15°N, 11.17°E [NASA/GSFC/Arizona State University].
A roughly 11 km-wide field of view from LROC NAC M104447576LR shows the outcrop in context with the larger Aratus CA feature in west central Mare Serenitatis, formed at early period and laid bare by relatively recent events that overburdened the Serenitatis interior [NASA/GSFC/Arizona State University].
After a lava flow is extruded on the Moon, it remains exposed to space. There, over millions of years, the impact bombardment of micrometeorites grinds the once solid lava into a powdery soil called regolith. Because the Moon has no atmosphere, this exposed soil layer contains a record of information about the Sun (gases called the solar wind implant atoms of hydrogen and other light elements in the dust grains) and the galaxy (from high-energy cosmic rays). When a layer is formed and then exposed to space for hundreds of millions of years and subsequently buried (like a time capsule) by another, younger lava flow, that earlier ancient regolith would contain information about the Sun and galaxy not as it is now, but as it was billions of years ago. The idea of an ancient, buried regolith (called a “paleo-regolith”) captured scientists’ imaginations—such a deposit would hold information from an interval of known position and duration in the past (determined by isotopically dating the lavas above and below the ancient regolith).

It appears that such an ancient, buried regolith exists in the walls of Hadley Rille. The lowest layers consist of ancient, relatively aluminous lavas called KREEP basalts. From the dating of Apollo 15 samples, we know that these rocks formed 3.84 billion years ago. Over this layered unit is a covered interval about 10-20 meters thick (a friable, slope-forming unit, like regolith). Above this slope-former are two massive rock layers, a thick massive unit and a thin, finely layered unit. These upper two units probably consist of mare basalt lavas of the two types found at the Apollo 15 site, both of which date to around 3.3 billion years. Thus, the regolith lying between these lava flows may hold the record of more than 500 million years of solar and galactic history, an interval from the distant early portion of Solar System evolution.

The now-notable original oblique view of the Tranquillitatis pit crater (8.34°N, 33.22°E), revealing, layer by layer the invaluable history of an area in the universe occupied by Earth. LROC NAC observation M144395745LE, LRO orbit 6413, November 14, 2010; spacecraft and camera slewed 50.46° from orbital nadir, incidence 47.91° at 81 cm resolution, from 44.23 km over 8.75°N, 35.02°E  [NASA/GSFC/Arizona State University].
In addition to the history of the Sun, this paleo-regolith would also contain fragments of impact-melted rocks and glasses from a distinct, bounded interval of lunar history. Such a sample would allow us to assess whether the impact flux on the Moon in this time period was comparable to or different from the current rate. Such information is relevant to understanding the impact history of the Earth, a factor that we know from lunar science to strongly influence the rate of evolutionary change. Astronauts descending into the rille could sample all of these units in turn, allowing scientists to reconstruct this ancient history in detail. In this sense, Hadley Rille would be analogous to Earth’s Grand Canyon—a slice into the deep time history of the Moon.

New high-resolution images of the Moon from NASA’s Lunar Reconnaissance Orbiter show that layered deposits, such as those seen in Hadley Rille, are common in the walls of rilles and impact craters occurring in the maria, where layered lava flows are expected. Finding layering in the highlands is more problematic, although some large ejecta blocks appear to consist of layered rocks, quarried out of the crust during impact. We seek such rock layering on the Moon for the same reasons that geologists look for them on the Earth—as time capsules to be carefully opened and read, giving us new insights into the complex history of the Moon.

Originally published as his Smithsonian Air & Space Daily Planet column, Dr. Spudis is a senior staff scientist at the Lunar and Planetary Institute. The opinions expressed are those of the author but are better informed than average.

Related Posts:

Tuesday, March 25, 2014

Young Crater Walls (at the Schrödinger Antipode)

Northern rim of an unnamed young crater near 80°N, 278.9°E, north of Catena Sylvester, on the far north nearside and nested within crustal magnetism that may be related to the Moon's youngest impact basin (Schrödinger) on the direct opposite side of the Moon. 1243 meter-wide field of view, sampled from LROC Narrow Angle Camera observation M125130801R, LRO orbit 3574, April 5, 2010; 78.42° incidence, 1.09 meters resolution from 53 km [NASA/GSFC/Arizona State University].].
Hiroyuki Sato
LROC News System

After the unimaginably violent processes of excavation and ejecta emplacement, impact craters gradually change their shapes with time by various processes, such as the isostatic rebound, mass wasting, subsequent impacts, and space weathering.

Today's Featured Image highlights such a post-impact degradation process.

Full-width mosaic of the LROC NAC observation from orbit 3574. The full-sized (4581 x 6319) original can be viewed HERE. Though the high-angle of illumination at this high latitude favors outlines of topography over intrinsic brightness and color,  relatively darker and lighter materials radiate over great distances, aiding studies of how younger materials interact with anomalous local magnetism [NASA/GSFC/Arizona State University].
The lower half of this image (relatively high reflectance) is the crater wall, downslope is to the bottom. The bottom-left dark area is the shadow of southern crater rim. Upper half of the image with a low reflectance surface is the crater rim and the rim slope out of the cavity, mostly covered with impact melt. The low reflectance area at the image center just above the steep wall has multiple horizontal cracks showing where the hardened impact melt has cracked as the steep walls slowly fail and slide into the crater bit-by-bit. These slope failures continuously refresh the crater walls, removing the melt coatings and exposing subsurface materials.

Context image of the unnamed crater and the surrounding area in LROC WAC monochrome mosaic (100 m/pix). Image center is 79.97°N, 278.87°E; image width is about 66 km. The NAC footprint and the location of the opening image are illustrated [NASA/GSFC/Arizona State University].
Most of the fresh craters that we observe have suffered these slides, leaving the commonly observed rootless melt flow features on the rim slopes. Just after the impact occurred, much of the crater interior was covered by impact melt, but these rock veneers are quickly removed from steep slopes leaving fresh outcrops of the target (regolith and, in the case of mare, bedrock).

Arrow marks the young crater highlighted in the LROC Featured Image, released March 25, 2014, west of Poncelet C. The white circle is an approximate reflection of the parameters of the Schrödinger impact basin, the Moon's youngest, centered on a point on the diametrically opposite (antipodal) side of the Moon from the center of Schrödinger, in the far south. Grey lines outline nodes of anomalous crustal magnetism teased from Lunar Prospector (1998-99) data. Noted planetary scientists Lon Hood and Paul Spudis use the excavation caused by the smaller impact to aid in determining how local topography may have been disrupted, as they have suggested, by the force of the Schrödinger basin-forming impact. One challenge will be to determine how much the comparatively weak crustal magnetism interacts with migrating dust and fresh impact debris to create albedo swirl features [NASA/GSFC/Arizona State University]. 
Explore the resurfaced fresh crater walls in full NAC frame yourself, HERE.

Related Posts:
The Moon's antipodal magnetism mystery
Lunar swirl phenomena from LRO
Slope failure near Aratus crater
Sinuous Cracks
Slope Resurfacing
Stratified Ejecta Blocks
Dark Impact Melt Sheet
Thin Dark Layer

Friday, March 21, 2014

The promise of astronomy on the Moon

The Apollo 16 Ultraviolet Telescope. Charlie Duke on the starboard side of by Apollo 16 lunar module ladder, at the end of the first of three EVAs in the nearside southern highlands. AS16-114-18439 and 40, by John Young, April 21, 1972  [NASA/JSC].
Paul D. Spudis
The Once and Future Moon
Smithsonian Air & Space

Imagine that you are an astronomer. You want to gaze at the universe in crystal clarity. Yet you look at the heavens through a murky, partly opaque sky; you must deal with light pollution and the dynamic, wildly unstable platform of the Earth’s surface. It’s frustrating – you dream of the great views you know you could get from space. That’s the ticket! Plus, locating a stable, rock-solid base in space (where you could build extremely sensitive instruments) would be a huge bonus.

For years, the Moon was seen as the ideal place to build and operate sensitive telescopes. Its low gravity permits the building of giant telescopes with enormous seeing power. The stable, seismically quiet base of the lunar surface would allow for the operation of multiple telescopes in unison – arrays, effectively creating one giant telescope with an enormous aperture (a technique called interferometry). The cold, dark sky as seen from space – unimpeded by clouds, air or other meteorological phenomena – affords superb viewing conditions (as twenty years of fantastic Hubble Space Telescope images have documented). So with such considerations, one might conclude that conducting astronomy from the lunar surface would be one of the prime activities desired by the astronomical community. Right?

Well, not quite. Back in 1984, efforts to build a community of supporters for a base on the Moon included many astronomers who supported such efforts on the basis of the considerations listed above. Throughout the early days of the return to the Moon movement, astronomers such as Harlan Smith of the University of Texas and many others campaigned tirelessly for recognition of the value of lunar-based astronomy. These studies culminated in the seemingly outrageous idea for a telescope using a spinning disk of liquid with a reflective surface, lining the interior of one of the millions of bowl-shaped craters on the Moon. Such an instrument would extend for kilometers, making a gigantic “eye” to look at the universe. One might think such an idea is crazy, but liquid mirror telescopes already have been constructed on Earth.

Interestingly enough, the launch and success of the Hubble Space Telescope resulted in the loss of support for lunar astronomy. The biggest advantage of space-based astronomy is views of a dark, clear sky. Such views are available in free space just as easily as they are on the Moon. Moreover, the big advantage of a stable platform on the lunar surface for observations is partly negated by technical developments that permit the assembly of free-flying platforms in space. Such developments might mean that a short wavelength interferometer could be built and operated without the need to go into the (small) gravity well of the Moon. These and other technical innovations led to a general loss of support within the community for astronomical science on the lunar surface.

Image of the southern sky in the far UV, taken by the first astronomical telescope on the Moon, Apollo 16 mission, April, 1972 [NASA].
One might be forgiven for suspecting that a long-standing antipathy against human spaceflight might have had something to do with the attitude of many astronomers. They might possibly have feared that the advent of a new human spaceflight endeavor would divert funds from their lengthy wish list of robotic missions and automated observatories. However, the idea that the Moon is somehow useful to astronomers still holds an attraction.

Recent work has focused on the value of using the Moon’s unique environment to observe some parts of the electromagnetic spectrum that we cannot access from Earth or even near-Earth space. Very long wavelength emissions (meter- and multiple-meter-scales) cannot be seen from the Earth’s surface because the layer of charged particles surrounding the Earth in space (the ionosphere) blocks such radiation. Even in orbit, interference from the ionosphere prohibits observations because of this “noise.” However, the far side of the Moon is permanently shielded from Earth’s radio noise by over 3,600 km of solid rock. From such a truly unique vantage point, we will be able to listen to the whisper of radio noise generated in the aftermath of the origin of the universe.

The Chang’E 3 lander carries a small telescope designed to look at the other end of the spectrum, the far ultraviolet (as the name implies, wavelengths shorter than visible light). The Chang’E telescope is producing data and although of small aperture, it can observe the sky at these wavelengths. Apollo 16 emplaced a UV telescope on the Moon back in 1972 and took ultraviolet photographs of the sky from the lunar surface, including the Earth and images of the southern sky (which includes two satellite galaxies to our own Milky Way galaxy – the Magellanic Clouds). These instruments documented the possible value of such observations from the surface of the Moon.

Other astronomers have looked in detail at how one might begin to utilize the unique environment of the far side to map the earliest stages of the history of the universe. One concept sends a teleoperated rover to the far side with a dual purpose. We could collect samples from the floor of the biggest, oldest basin on the Moon (South Pole-Aitken basin, an impact feature over 2,500 km in diameter) to test ideas about the early cratering history of the Earth-Moon system.  While we’re there, we could also lay out an antenna array designed to map the sky’s low frequency radio emissions.

HDTV still of Tsiolkovskiy crater from Japan's lunar orbiter Kaguya (SELENE-1). The Naval Research Laboratory, MIT and others are refining work on a possible radio telescope array deployed on the floor of the conspicuous farside crater to utilize the radio quiet of the lunar farside to probe the Cosmic Dark Age [JAXA/NHK/SELENE].
The far side L-2 mission concept involves humans stationed 60,000 km above the Moon to operate the rovers and deploy the antennas. These antennas are quite simple. They consist of dipoles (i.e., linear wires) several tens of meters in length, all connected to a receiver capable of listening to those low frequency bands minus the static and noise of the terrestrial RF environment. Over the course of a year, as the Moon orbits the Earth (and both orbit the Sun), nearly the entire sky could be mapped from this robotically emplaced astronomical instrument.

Despite some starts and stops, the promise of conducting astronomy from the Moon continues to draw the attention of imaginative scientists. Using one of the forthcoming commercial lunar landers, a group of private enthusiasts plan to deploy a small telescope on the surface. When we some day stand on the Moon, we will not only look down to study the complex history preserved there, but we will also look outward, into an endless universe, just as many science fiction authors envisioned.

Dr. Paul D. Spudis is a senior staff scientist at the Lunar and Planetary Institute in Houston. This column was originally published by Smithsonian Air & Space, and his website can be found at www.spudislunarresources.com. The opinions he expressed here are his own, and these are better informed than most.

Related:
ILOA to study deep space from Chang'e-3 (September 11, 2012)
Remote-operated lunar deep space telescope concept demonstration (July 26, 2012)
Farside offers radio-quiet to probe cosmic Dark Age (July 2, 2012)
The Moon as a platform for Astrophysics (April 24, 2012)
MIT to lead development of new radio telescope
array on lunar farside
 (February 19, 2008)
Naval Research Laboratory to design Farside DALI (March 11, 2008)
What better view? (March 26, 2008)
New model of lunar motion from Apollo LLRR (December 27, 2008)
MacDonald LLR defunded by NSF (June 21, 2009)
The continued importance of lunar laser ranging (August 3, 2009)
Laser Ranging and the LRO (August 12, 2009)
A Fundamental Point on the Moon (April 13, 2010)

Wednesday, February 12, 2014

The lunar forensic files

View of the Moon at gamma-ray wavelengths, as imaged by the Compton Gamma Ray Observatory satellite.  These gamma rays are induced by the collision of cosmic rays with the lunar surface, the same process recently found able to synthesize organic molecules in lunar polar ice deposits [Dave Thompson (NASA/GSFC) et al., EGRET, Compton Observatory].
Paul Spudis
The Once and Future Moon
Smithsonian Air & Space

A recent study indicates that water ice and simple molecules of carbon and nitrogen might form the seed material for more complex substances, some of which might ultimately be involved in the origin of life.  The work from the University of Hawaii took measurements of the levels of cosmic radiation from the Lunar Reconnaissance Orbiter (LRO) and applied it to a composition similar to that observed by the impacting LCROSS probe at the south pole of the Moon.  

As you may recall, this probe found both water vapor and ice particles ejected by the impact in one of the permanently dark regions near the pole; it also observed additional compounds, including methane, ammonia and some other simple organic molecules.  These substances are present in cometary ices and thus, it was thought that their presence could indicate a cometary origin for the Moon’s polar ice.

The new work does not negate that interpretation, but adds complexity to the puzzle by showing that it may be possible to manufacture some of the more complex organic molecules from the simple substances found in cosmic ice, whether deposited from the nuclei of impacting comets or made in place within the cold traps of the lunar poles.  Once again, we find that the polar regions of the Moon are even more interesting scientifically than we had thought.

The generation of new and more complex organic compounds must be a surficial process since material buried at levels deeper than a couple of meters is shielded from even the most energetic cosmic rays.  For this reason, the material observed during the LCROSS impact is likely of cometary origin because most of the ejecta created by that impact comes from depths of a few meters.  While material in the lunar surface is overturned by impact gardening, such overturn is extremely slow (rates of overturn below about 1 meter depth occur on timescales of greater than 1 billion years, the same timescale on which this radiation-induced production occurs).

The generation of complex organic molecules is an important topic of research for the origin of life.  Most scientific strategies focus on the search for extraterrestrial life in more Earth-like environments, such as a previously warmer and wetter Mars or in the hypothesized deep oceans of Europa.  A few studies have focused on the physical processes of organic chemistry, specifically the generation of complex molecules in space, within small bodies such as cometary nuclei and on primitive planetary surfaces, such as the polar deposits of the Moon and Mercury.  Findings to date show that complex organic substances are generated in a variety of environments and under a variety of energetic conditions.

Because they date from early in Solar System history and contain the materials needed for living systems (water and organic matter), comets have long been thought to be the seedbeds of life.  Comets are remnants of the original solar nebula, the cloud of debris out of which our Solar System formed.  At a certain position and beyond in the nebula, water is stable in solid form (the so-called “frost line”); in our Solar System, the frost line is between the orbits of Jupiter and Mars.  Water in nebular material inside this line vaporized and was dissipated by the solar wind, some blown outward and some disassociated by ultraviolet radiation.  But water outside of the frost line can condense into ice particles, which then may be accreted into planetary objects.  The smallest and most water-rich of these objects are the comets, most of which originate far beyond the frost line in the most distant regions of our Solar System (the so-called “Oort cloud”).  Larger icy objects in the outer Solar System include the satellites of the Jovian planets, which are predominantly made of water ice with minor amounts of admixed rocky material.  The inner (terrestrial) planets such as Earth and Mars are made mostly of rocky material but contain minor amounts of water, a consequence of their incorporation of cometary material during assembly and subsequent impact bombardment.

This last process operates on the Moon as well.  Because the Moon represents a stable, unchanging environment over billions of years, it accumulates the evidence and detritus of the impact history of that era.  Most of the volatile component of this impacting debris is lost from the Moon, but any of it that becomes trapped in the cold, dark areas near the poles remains there forever.  The poles of the Moon are thus a natural laboratory for the study of one of the early processes in Solar System history – the creation of complex organic substances from the more primitive and simple elements and compounds.  In this sense, the pre-biotic organic chemistry of the lifeless and barren Moon serves the cause of the study of life’s processes and origin.

As we continue to study the Moon, we find that it offers much more than one might suspect at first glance.  The Moon’s early history reveals the secrets of planetary assembly, impact bombardment, global melting and differentiation into core, mantle and crust.  Its middle history tells us about the thermal evolution of planets, as internal heat spawned the volcanism that resurfaced part of the Moon and operates on all of the terrestrial planets.  The continued impact history recorded in the Moon’s surface layer documents a phase of Earth history missing from our terrestrial geological record, including the possibility of episodic waves of impacts that are at least partly responsible for extinctions of life recorded in the fossil record.  This same surficial layer also records the history and output of our Sun, the provider of energy to the planets and the principal driver of climate change on Earth.  The interconnections between the various branches of lunar science with the other sciences grow more evident and more significant over time.

This new research makes the recently renewed interest in the value of the Moon and new lunar missions more comprehensible.  Far from being a mere echo of some previous space glory, a return to the Moon to undertake new scientific studies, new exploration and to develop a wholly new set of technologies impacts all of space science and exploration in many different and unexpected ways.  Insights into the origins of life can come from detailed examination of lunar polar volatiles.  These same materials can also enable travel to more distant destinations and open up Earth-Moon space to economic development.  In both cases, lunar return will enable and facilitate our understanding and movement into space.

As my colleague David Lawrence of APL put it, “One of the take-homes is, go back to the moon and look.  Dig up samples, see what’s there.”  Sound advice.

Related:
Crites, Lucey & Lawrence
Icarus, Vol. 226, No. 2, Nov.–Dec. 2013, pg. 1192–1200

The Moon's metallic water (February 27, 2011)

Committee on the Evaluation of Radiation Shielding for Space Exploration
National Research Council