Showing posts with label Entomological Society of America. Show all posts
Showing posts with label Entomological Society of America. Show all posts

Wednesday, November 27, 2019

Society meeting highlights risks of ignoring science

We ignore science, including the study of insects, at our own peril.  This was an underlying message in session after session of the 2019 Annual Conference of the Entomological Society of America.

This year's ESA conference, just a few minutes' walk from the iconic St. Louis Arch, was my first business visit to the the city where I spent most of my growing up years. Out for a jog on the first day of the meeting I remembered as a kid watching workers fit last shiny aluminum triangle into place at the top of the Arch shortly after my family arrived. I admit I felt a little old when I realized the Arch turned 55 this year.

Glorious flies

As glorious as technology can appear to the human eye, I was quickly reminded that insects are just as cool, and have been around a lot longer than any arch.  The plenary session speaker was Janet McAlister, British author of the book The Secret Life of Flies.  With a generous dash of humor, McAlister breezed through story after story of amazing flies.  One in ten living species on the planet is a fly, she said, with 17 million individual flies for every living human. Flies are also beautiful when you get close enough.

We can thank the fruit fly, Drosophila melanogaster, a pest of kitchens and hospitals around the country, for its contributions to our modern understanding of genetics and the genes associated with diseases like Alzheimer's and Parkinson's.

Flies are important pollinators too. A type of biting midge is also the sole pollinator of Theobroma cacao, our plant source for chocolate. No flies?  No more chocolate.

And as McAlister pointed out, at times even crime fighters depend on flies.  The first murder solved with the assistance of insects was the strange case of  Dr. Buck Ruxton in England in 1935. Ruxton was convicted of murdering his wife and servant after the fly maggots found in his victims' decaying bodies were used to estimate the approximate time of the murder.  And as any fan of television's CSI shows will tell you, flies are used for the same purpose today. For some fantastic images of flies, check out Gil Wizen's photography page (featured in many of McAlister's slides).

The coming Insect Apocalypse?

It's not too often that I see reference made to the Bible in a scientific paper, much less a meeting; but this year's buzz-phrase for many attendees was "insect apocalypse."  One of the better attended symposia was devoted to Insect Decline in the Anthropocene (the Anthropocene is a scientific term for the man-dominated biological/geological era we are in today).  While I missed several talks in this session while darting between papers, the central message was clear.  Something is happening to insect populations around the world, and it's not good.

Among concerns of attendees are declines in many kinds of
wild bees, sometimes referred to as a "Beepocalypse"
Hans deKroon, from Radboud University in the Netherlands reported on the results of a 27 year study of insect densities in 63 German nature preserves.  Using the same sampling method and places for sampling in relatively unchanged parklands between 1989 and 2016, the researchers documented a 76% decline in the total weight of insects (biomass) caught in traps over this time.  The surprising thing was that declines were seen across all sites with all kinds of insects--not just a few.  The authors attribute some of the decline to land fragmentation (sites were often close to agricultural land), but also possibly pesticides and climate change.

David Wagner, University of Connecticut, reported a similar 70% decline in moths of pristine New England forests.  The decline, he said, averages 1-2% per year and is across a large region.  The only explanation is some kind of broad external cause(s). Beyond increasing global temperatures, possible causes for loss of moths and butterflies include nitrification, light pollution, exotic insects, and car strikes.

So what are the consequences of such large declines in insect biomass?  I mean shouldn't we be rejoicing in fewer insects if this means fewer pests?  Absolutely not. In addition to entomologists, all sorts of biologists and nature lovers should be concerned by these numbers. Insects are keystone (ecologically very important) species in many environments.  They help decompose dead organic matter, keep potentially invasive plants under control, and feed fish and birds and many, many other types of wildlife. Indeed, one especially depressing study in the Science journal this year reports a 29% decline in bird numbers in the U.S. since 1970 (click here to see the paper in full). While the reasons for bird decline are complex, losing an important food source is not good for birds or bird lovers.

Tim Showalter, Louisiana State University, cautioned attendees to take care in drawing hasty conclusions, and in careless interpretation of apocalyptic data.  In a cautionary paper, he noted that a 2018 paper on supposed food chain collapse and a 60% decline in insect populations due to climate change in a Puerto Rican rain-forest garnered attention in the press, but was ultimately based on faulty data.  A change in positioning of temperature stations, misinterpretation of different survey databases, and impacts of multiple hurricanes led the authors to erroneous conclusions.  The food chain is NOT collapsing in Luquillo, Puerto Rico, he said. A rebuttal to the paper is now posted on the journal website.

Showalter's paper illustrates the imperfection, yet self-correcting nature of science.  It also illustrates how easy it can be for interpreters of science to cherry-pick data to reinforce a given point of view. We all need to be critical readers of science; however, this doesn't mean we can't trust scientists.  Certainly the majority view of entomologists is that something alarming is happening to many kinds of insects in many locations around the world. We should not ignore this issue or the scientists raising fair warning.

Learning from History

Rocky Mountain locust, Melanoplus
spretus, ca. 1870s, Minnesota. 
As I get older, history gets more interesting.  The ESA is fortunate to have among its membership a significant number of scientists with an interest in the historical roots of entomology. For example, I learned from Jeffrey Lockwood, University of Wyoming, that the first recorded time our government called on science to solve a political problem involved entomology. Between 1874 and 1877 the Rocky Mountain locust caused staggering crop damage in Kansas, Nebraska, Minnesota and Missouri. While inventors and hucksters of the day promoted a variety of solutions for locusts, little was really known about the biology and life cycles of these insects. For example, many farmers believed that locusts were so diabolically destructive because they were led by kings and queens (not true).

In 1876 a new governmental group known as the Entomological Commission was authorized by Congress to study the problem. The team quickly recognized that the key to the locust's destruction lay in identifying its true identity, its breeding grounds and the conditions that led to outbreaks (sounds a lot like an IPM program).  Also a collection of natural enemies was identified. While this information would have ultimately been useful in developing long-term control measures, Rocky Mountain locust swarms were already in decline by 1877--something for which the entomologists were happy to take credit. It turns out that by the 1880s the swarms all but ceased, likely because of the loss of the great buffalo herds which, by reducing food in the permanent breeding range, and pulverizing the soil with their hooves, would trigger the buildup of migratory locust swarms.

Entomologists were pragmatists in the locust wars, arguing against those who ascribed the swarms as evidence of God's judgement due to a general lack of morality and repentance.  Rather than promoting a day of prayer, however, entomologists insisted that farmers would be better served by looking to science to discover the causes and solutions to the plagues.  Today the Rocky Mountain locust is extinct, following the path of all organisms that cannot adapt to a changing environment.

Insects and Health

Like it or not insects are important factors in human health. Insects and indoor health was the theme of one session I attended.  Respected researcher Felicia Rabito, Tulane University, pointed out that asthma remains relatively poorly understood, despite its public health significance. One in 12 children in the U.S. suffer from asthma, a chronic inflammatory disease of the airways. In her studies 73% of homes have elevated levels of one or more environmental triggers of asthma (e.g., smoke, pet dander, particulate air pollution, and pest derived allergens).  Cockroach allergens remain one of the strongest promoters and triggers, and appear to cause four times the hospitalization rate of other allergens. Her research with a relatively small sample size showed that even a single IPM intervention (bait only) could have significant positive health outcomes for kids living in treated homes. Their team plans to redo the study with a larger (300 household) sample size.

A co-researcher with Rabito, and one of the most original and thought-provoking urban entomologists today, Coby Schal, North Carolina State University, gave an interesting talk on reducing cockroach allergens simply through cockroaches baiting.  He argued that the comprehensive IPM approach, such as advocated by the National Institute of Allergy and Infectious Disease, starting with improving sanitation, use of non-chemical tactics, biological control and (perhaps) chemical control may be too slow and expensive in most cockroach infested homes (think public housing).  His data suggests that IPM and health specialists should lead with cockroach baiting because it is the fastest and least expensive way to reduce indoor allergens. It remains alarming to me the number of pest control companies that still rely primarily on sprays to control German cockroaches, when baits have time and again been shown more effective in controlling cockroaches and improving public health.

Bed bugs remain a topic of interest in these meetings, though not to the level of 5-10 years ago.  Jonathan Sheele gave two papers on bed bugs from a doctor's perspective. In the Ohio Emergency Room where he previously worked, he noted that when bed bugs were found on a patient, that room would be out of use for cleaning and pest control an average of 20 hours. This would happen every 2-3 days on average. His hospital spent $30,000 annually on IPM costs associated with infested patients. Patients with bed bugs were more likely to suffer anemia, Staphylococcus infection, and use an inhaler than patients without bed bugs. In a separate paper, Sheele reflected on the potential for a future pill that people could take to kill bed bugs. In lab studies, both spinosad and fluralaner (Bravecta®) provided excellent control of bed bugs; however neither drug is yet approved for use on humans.  Abamectin is another antiparasitic agent that does have human approval, however tests on its effectiveness in humans against bed bugs have not been conducted. Such an innovation could be a big boon, especially for low income families suffering from bed bugs.

Stephane Perron, National Institute of Public Health in Quebec, Canada, looked at bed bugs in public health and reported that bed bug infestations often result in prolonged stress for patients. Some of the mental health impacts of bed bugs include fear, sense of lack of control, physical discomfort, sleep deprivation, financial stress, property loss, stress over preparing a home for treatment, conflicts with neighbors, the stigma associated with bed bugs, fear of insecticides, and exacerbation of prior mental health issues.  On the flip side, a recent study she conducted showed that anxiety and depression could decline when bed bugs were successfully controlled--a real benefit pest management companies can take pride in.

Zach DeVries, University of Kentucky, noted that the bed bug's status as only "a nuisance" is coming to an end. Again, public health professionals, decision makers and politicians need to take cockroaches, bed bugs, mosquitoes and other urban pests seriously.

Odds and Ends

Again I felt a little old during this meeting when I realized how different students are today. Grad students at the meeting are more diverse and more attuned to social media than ever before. As such they represent many of your younger pest control customers.

Striving to keep up, I attended a session on using social media.  I found myself in a group fellow laggards who did not understand some of the basics of the Twitter platform.  While I do use Twitter (@mikemerchant), I realized I still didn't understand some of the basics of the app and Twitter platform.  I learned how to better use hashtags, and that I need to follow more people if I want to expand my personal Twitterverse (I have a difficult-enough time with the regular Universe) #oldfashioned, #luddite, #booklover.  I reflected that if we fail to learn from these young professionals we risk ending up like the Rocky Mountain locust.

Joe DeMark, Corteva AgriScience, gave a paper on a new termiticide caulk formulation in the works. The caulk provides another above-ground option for treating termite tubes.  It could, I envision, replace the somewhat clunky (though effective) AG bait stations.  Caulk has an advantage of being flexible enough to inject into infested trees, or placed directly on an exposed termite foraging tube.  It has the same active ingredient as Sentricon, noviflumuron and is applied with a regular caulk gun.  In studies conducted in New Orleans against Formosan termites, tree infestations were consistently eliminated in about 2.5 months.  Control of termites in homes was accomplished in 30-90 days.  If it should ever become a product, DeMark does not expect it to be commercially available until after 2020.

The Asian longhorn tick is now present in 11 states since its discovery in 2017.  A first human bite was recorded this year, which was significant because of its ability in other countries to carry disease to both livestock and humans.  In a talk by Ryan Smith, Iowa State University, I learned that a 2019 study showed that the tick could pick up Lyme disease from an infected mouse (bad). But the same study showed it could not maintain the disease through molting. This is good news, because it means this tick is unlikely to transmit Lyme disease in the wild.  Nevertheless, there are other diseases of concern and the increasing number of exotic pests being introduced into the U.S. continues to threaten both ecological and human health

Lastly, the ACE Associate Certified Entomologist program hosted by the ESA continues to grow. As of this writing there are 1251 active ACEs.  ESA estimates that there will be 1,272 ACEs by the end of year (lots of new applicants currently), representing 13.5% growth since December last year. The ACE program is unique in that it is the only individual-oriented certification program. It can provide potential customers with assurance that your company has qualified staff, and allows you to attend meetings like the St. Louis conference at discounted rates.

If you think you're interested in becoming an ACE, check out the ESA Certification Corporation website.  And consider attending one of the upcoming Texas prep classes in Dallas or in College Station.  The class is an excellent way to either begin studying, or as a last-minute confidence builder before taking the test.

Each of us has a unique role to play in service to our society. But we only do our jobs well when we commit ourselves to lifelong learning. As is clear from these meetings, knowledge is expanding rapidly.  I hope each of you keep following the science behind the pest control profession (as you already are by reading to the end of this post) and continue to avoid the perils of unfounded opinion.

Science is the father of knowledge, but opinion breeds ignorance. Hippocrates






Wednesday, January 3, 2018

ACE Prep Class offered next week

Students taking their exams after the 2012
ACE Prep class at Texas A&M. 
I often get asked how best to study for the ACE exam, and if a class is ever offered. One of the places to get ACE training each year is the Texas A&M University Urban Pest Management Conference. If you're not familiar, this is the biggest CEU opportunity offered by the A&M entomology department, and (we think) one of the best training opportunities for PMPs in the state.

As of this morning enough students have signed up for this class to make it a go, and there is room for more.  If you are interested in participating, just go to the A&M Conference website and sign up.  You will be registering for the whole conference that runs from January 10-12.

ACE training runs all day on Wednesday, Jan 10, beginning at 10:15 am.  We will cover as much of the ACE exam material as we can in one day.  On Wednesday, we will offer an opportunity to take the ACE exam for anyone who is ready to take it.

Not enough notice?  I plan to offer the prep class as an IPM Experience House event at our Texas A&M AgriLife Center in Dallas twice in 2018 (dates to be determined). If you are interested, drop me an email--or even better, join our mailing list at the IPM Experience House website. This will get you notified of all IPM House activities coming up in 2018 if you join the list.

Monday, November 20, 2017

Entomologists Ignite in Denver: Part II.

In the first of my two posts about the annual conference of the Entomological Society of America (ESA), I covered some of the non-urban entomology sessions.  In today's post, I'll review some things that are a little more relevant to the business of pest control.


Technology and urban pests

While sitting through some papers at ESA that went way over my head, it occurred to me that entomology has changed a lot since I went to school. One of the biggest changes is in technology. Today's technology is much more sophisticated, and enables us to study insects in ways we could only dream of a few years ago. For example, our ability to amplify minute amounts of DNA from an insect's stomach lets us know what kind of bacteria live there, or what the insect's last meal was. Amazing.

Wooden stake with Formosan termites. Unlike drywood termites,
which get their nitrogen from the air, subterranean termites
appear to get their nitrogen from ingesting soil. 
In one sense, this growing sophistication is a good thing.  It means that researchers now have better tools to understand the basic biology of insects.  On the other hand, there appears to be a trend in many universities to shy away from practical applied research and focus more on shiny new techniques and tools. In hallway conversations with industry reps, I'm told it's easy for hiring companies to find a young entomologist who knows her way around a genetics lab, but increasingly hard to find one who knows their way around a cockroach-infested apartment or a PMP's tool box.

One of my favorite student papers, with a balance of good basic science and applied biology, was also one of the shortest.  Aaron Mullins, University of Florida, explained in his three minute (!) paper that biologists have long known that drywood termites get much of the nitrogen (N) they need from the air (N is an essential element for protein building and reproduction). This makes sense because drywood termites live entirely in relatively low N-containing wood. Mullins wondered if the same was true for subterranean termites. He found that Formosan termites housed in organic (N) rich soil grew their colonies 10X as fast as similar colonies living in clean sand. He concluded from this and other evidence that subterranean termites get their N from the soil rather than air.  I'm not sure of the long-term impacts of this new discovery, but it will likely affect how we rear termites in the lab for experiments.

Jose Pietri with Apex Bait Technologies gave an interesting paper with potentially big implications. Testing the hypothesis that symbiotic gut microbes might play a role in cockroach resistance to insecticides, Pietri and colleague Dangshang Liang fed insecticide-resistant cockroaches a bait mixed with an antibiotic, doxycycline. They found a significant  increase in mortality from the bait with doxycycline compared to bait without the antibiotic. When the antibiotic bait was fed to insecticide-susceptible strains, however, it was no more effective than the bait without antibiotic. If confirmed, this might prolong the usefulness of some insecticide active ingredients for resistant cockroaches.

Ed Vargo, of Texas A&M University, reported that tawny crazy ant, Nylanderia fulva, infested five new Texas counties in 2017, bringing the current total to 39. He found that ants from different crazy ant colonies were not aggressive to one another, and he used sophisticated genetic tools to discover that there were no significant genetic differences among nests in a site or between states. These data suggest that TCA has extended colonies that might range over many miles.  This diffuse nest structure, similar to Argentine ant, at least partly explains why TCA is so difficult to control.

Bed bugs

Are even entomologists getting weary of bed bugs? Maybe. Bed bugs were the subject of 31 papers and posters this year, down from last year's 46 (and a record 56 papers in 2011).  Most of this year's talks were given during a symposium called Advances in the Biology and Management of Modern Bed Bugs. The session featured authors of a new book of the same name to come out in 2018.  If you dig scholarly work on bed bugs, this might be a nice addition to your library--if you can afford it (listed at $200, not unusual for academic books). According to the publisher, it will be the first comprehensive academic review of bed bugs since 1966. NPMA attendees will recognize the names of many U.S. authors like Rick Cooper, Changlu Wang, Dini Miller, and Jim Fredericks.  And there will be a number of international authors as well.

I'm saving up for my copy, but the title got me wondering, "What's a modern bed bug?" So I asked Dini Miller, of Virginia Tech and one of the editors of the book.  She replied that "these are not your grandmother's bed bugs." These are the "incredibly resistant" bed bugs that have made their comeback over the past 20 years. Modern bed bugs have thicker cuticles to resist insecticide penetration, tougher nerves, and better enzymes to detoxify these insecticides. Given that the tropical and the common species of bed bug both have developed these characters, the book theorizes that malaria control programs in Africa, where both species live together and are regularly exposed to DDT and pyrethroids, may have been the breeding ground for these new "super bugs."  Anyway, there is obviously a need for an updated book on on bed bugs.

Research Highlights

Today's bed bugs are more difficult to kill with insecticides. All
the more reason to use a variety of control tactics.
The Highlights of Urban Entomology session is one of my favorites for catching up on papers I may not have had time to read this year. This year's presenter was Chow-Yang Lee, Professor at the Universiti Sains Malaysia, and soon to be with the University of California at Riverside. He and colleagues recently reviewed the literature and found that resistance to chlorfenapyr (Phantom) is "brewing" among modern bed bug populations. Also, bed bugs tested recently from Cincinnati and Michigan show moderate to high resistance to neonicotinoids used in products like Temprid and Transport, Mikron and Tandem. If you had hope that baits might be the answer, a study by Yvonne Matos and coauthors found that secondary kill of bed bugs is much lower than for cockroaches. Even if a suitable way to bait for bed bugs was found, current evidence suggests that baits would likely not be as effective as cockroach baits.

Finding better formulations is a productive field for improving pest control. Vander Meer and Milne reported improved control of fire ants with a waterproof formulation of Distance fire ant bait. Made from dried distillers' grain with solubles and shrimp shells, it outperformed standard corn grit baits. This formulation will likely be more effective as a control for red imported fire ant and little fire ants, especially in wetter locales.

Literature reviews are papers that synthesize lots of scattered research into something that makes sense of the topic. A good literature review is invaluable, especially if you're not an expert. So, I was glad to learn of a new (and free via this link) literature review on fleas, recently completed by the venerable urban entomologist, Mike Rust. Rust looked at some of the more recent advancements in flea borne diseases, new control products, and resistance to insecticides. Contrary to what you might hear from pet owners, there is little evidence that fleas have developed resistance to the very powerful on-animal treatments like fipronil, imidacloprid or lufenuron. On the other hand, pyrethroid resistance by fleas is becoming more widespread. While on-animal treatments solve most problems, pyrethroid resistance poses a dilemma for PMPs needing to treat flea infestations that arise from non-pets, such as feral animals (in a crawl space, say, or in backyards). Not many non-pyrethroid broadcast spray alternatives are available for this task.

Certification

Lastly, I had the opportunity to attend a committee meeting on the ACE (Associate Certified Entomologist) program. This is a program for anyone in pest control who wishes to identify themselves as a certified entomologist. Since last year, Willet Hossfeld has taken over administrative duties for the Certification program.  He reported that there are currently 1025 active ACEs nationwide, with 267 in the application process. If you ever have a question about the certification application, he's the one to contact.

The main topic of discussion by the support committee this year concerned the difficulty of the certification exam (40% pass rate on first try), and how that has discouraged many highly qualified folks from taking it. Several at the meeting noted how useful the study guide that I and Richard Levine co-authored a few years ago, has been.  But there still seems to be a need for group prep classes to better prepare ACE candidates for the exam.  The committee took steps to begin updating the practice exam for those preparing for the test, and discussed how to make more prep classes available.  A prep class PowerPoint set has long been available to anyone who wants to conduct a prep class. This PowerPoint set will be revised and updated in 2018.  Any BCE or ACE who wants to sponsor a prep class, should contact Willet at ESA and he can tell you how it's done and how to get a copy of the prep materials.

You're Invited

Pest management professionals also attend these national meetings. If you haven't yet attended, I encourage you to give it a try (the next two meetings are in Vancouver BC in 2018, and St. Louis MO in 2019). The meeting is a great time to make new friends and professional contacts; and while it's not all pest management oriented, there are always good urban entomology sessions featuring cutting edge research. If you decide to attend, don't be shy--introduce yourself to speakers and others in hallways. Consider attending the Certification Board meetings; visitors are welcome. And bring a few extra bucks for a t-shirt or pet tarantula. Your coworkers will look at you strangely, and you'll know what it's like to call yourself an entomologist.

Entomologists Ignite in Denver: Part I.

One of the hottest exhibits at ESA was the BioQuip booth.
At what other meeting could you see people lined up to
buy pinned insects or live tarantulas and scorpions?
Ignite. Inspire. Innovate. Three motivational words greeted entomologists swarming to the 2017 annual conference of the Entomological Society of America (ESA) in Denver, Colorado. Between November 5th and 8th, the mile high city welcomed 3,700 insect scientists to present over 1,000 scientific papers and 800 poster displays.

It's hard to describe the typical entomologist you see at these meetings. Some are old, many are young (some very young). Some are geeky, some cool. Some seem more comfortable working in a quiet museum surrounded by dried insects, and some happiest with beer in hand and at the center of a crowd. But all share an unusual enthusiasm for insects. After all, at what other meeting can you find long lines waiting to purchase live scorpions, pet tarantulas, pinned insects, insect t-shirts, and insect jewelry?

There is something for nearly everyone at these meetings. To that end, this year I determined to sample a variety of papers and meetings and speakers. My schedule started off with a Lunch and Learn event entitled "How to talk to a Nine-year-old about climate change (And other tough subjects)." Hosts for this session were employees of the Butterfly Pavilion, an "invertebrate museum" located 15 minutes from downtown Denver.

The Butterfly Pavilion uses an informal education approach, which means "a wise, respectful and spontaneous [learning] process... through conversation, exploration and enlargement of experience." In other words, informal education is learning outside a formal classroom.

Instead of lecturing with graphs and statistics to teach about climate change, Butterfly Pavilion staff show people live corals and follow up with questions: Did you know coral is a living animal? And even though coral reefs make up a tiny portion of the ocean floor they provide food shelter and breeding grounds to more than a quarter of all ocean life?

This approach is fruitful because we humans will only protect the things we love. By creating a connection with, and love for, corals (or insects), kids are open to caring about these organisms. All of a sudden scientific data showing that pollution, climate change, and disease are killing off many corals, becomes important. Using events like "Bugs and Beer" and "Tarantulas and Tequila" the museum also reaches out to adults to raise pollinator awareness and understanding of other environmental issues affecting the invertebrate tree of life.

Hemp

Industrial hemp is an outdoor crop grown for fiber
and the medicinal compound cannabidiol. Suggested
benefits of cannibidiol are controversial, but include
pain relief for multiple sclerosis, reduction of
certain epileptic seizures, and addiction
treatment. Photo by ShareAlike, Wikipedia
Since we were in Colorado, I wanted to check out the "buzz" over the symposium "Industrial Hemp and Entomology." Even with recreational marijuana now legal in Colorado and seven other states, it's still illegal federally. Hence, the EPA will not register pesticides for the purpose of protecting this plant. This is a big problem because lots of insects, I learned, like to eat marijuana (have you heard of the cannabis aphid?).  Given that a single marijuana plant can be valued at $700 or more, and two plants can be worth as much as an acre of corn, it should come as no surprise that growers will use insecticides (legal or illegal) to protect their plants. And without labeled insecticides that have been tasted for safety, purchasers of legal marijuana literally don't know what they're smoking...

In an interesting twist, the 2014 Farm Bill gave authority to state legislatures to decide how to regulate "industrial hemp," a variety of Cannabis sativa, the same plant species as marijuana, but without the buzz.  However, to be classified as industrial hemp the plant must contain less than 0.3% THC (marijuana's psychoactive ingredient).  Industrial hemp has been illegal in the U.S. since 1937; but as a result of the Farm Bill, many states have or are considering making outdoor culture of industrial hemp legal, as it is in Colorado.  The bill also allowed Colorado State University to develop guidelines for research and extension activities for the low THC crop. Hence now we have the first extension website on insect management in hemp. Check it out.

The Environment

Even though entomologists are, by and large, a happy group, we worry. We worry about the environment and the effects of climate change and pollution and invasive species and lots of things. One of the big concerns circulating the paper sessions this year was new data suggesting an international, general decline in the numbers of insects. Now people (perhaps many of your customers) might say, "I don't see a problem here." But think about it. Without insects there would be few birds, no frogs and toads, no trout to fish, and no "lot of things." You get the picture. Insects help hold the world together.

David Wagner, from the University of Connecticut, is a well-respected moth expert. He presented his own data, and data from Britain, Iceland, and Germany that seem to indicate a slow, but alarming decline in many insects over the past 60 years. In one German study, the overall weight of collected flying insects in parks went down 80% since 1989. In Britain, 54% of studied butterflies have declined in the past 10 years. No one really knows what this is doing to the health of the planet, but the consensus is that it's not good.

Other environmental papers focused on pollinator insects, especially bees. Because they pollinate crops and native plants alike, honey bees and the 4,000+ species of native bees in North America provide irreplaceable services to our ecosystem. Yet many species appear to be in decline. Katie Lamke, of the University of Nebraska reported on her work with the USGS to manage a pollinator library, a collection of information about what plants different pollinator bees are found on. This information can be used to help farmers and gardeners know how to select plants to help these important insects.

In tomorrow's post I'll cover some of the ESA sessions that relate more directly to urban pest control.







Saturday, November 19, 2016

Gleanings from ICE 2016

After an unintentional break in blogging due to a month of travel, I'm finally caught up enough to sit down with my notes and remember what it was all about.

If you can imagine thousands of entomologists swarming a convention center like fire ants on Cheetos, that's what it was like at the 25th International Congress of Entomology (ICE) held in Orlando, FL.  Held every three years, and rotating to a different nation every time, the ICE is the largest gathering of professional insect experts in the world--and this one may have been the biggest ever.  This year there were over 6,600 registrants from 102 countries, giving 5,396 presentations.

This was my first ICE, and it was overwhelming. It seemed like I spent half my week just sorting through the program to know which sessions and posters I should attend.  So probably like everyone who attends the ICE, I came away feeling like I had a unique, though very limited, perspective on the meeting.

One of the more enjoyable aspects of the Congress was meeting insect geeks from around the world. Some were bench scientists (who work in the laboratory), others worked in the field (including one enthusiastic fellow I met from Germany who brought his own dung on a field trip to trap Florida dung beetles--and it worked!).  There were first time visitors to the U.S., and many young and enthusiastic students. I met scientists from Finland, Vietnam, Australia, Kenya, and Iraq. But in the research sessions we were all just entomologists, despite different dress, language or customs.

So here are some highlights of my notes from the many hours of sitting in sessions and looking at PowerPoint slides:
  • German cockroach resistance to baits was the subject of a paper by NC State University researcher Jules Silverman. When comparing a susceptible German cockroach strain versus a field strain from Puerto Rico, his team found resistance to fipronil (15-20X), indoxacarb (15,000X) and even hydramethynon (350X). This was the first time hydramethylnon physiological resistance (as opposed to avoidance) has been found. Even with this resistance, in the lab they still saw complete control of cockroaches with gel baits.  But control was not as good in field trials where cockroaches had access to other foods.  My take home message was that we must be careful in our use of cockroach baits, and use them in combination with sanitation, sprays and other control tactics if we want to preserve them for coming years.
  • Paula Stigler Granados from the UT School of Public Health reported on the status of Chagas disease in the U.S.  Dr. Granados leads a task force studying the best way to protect human health from this important, disease transmitted by kissing bugs.  Doctors tend to downplay the risk of Chagas disease and rarely test for the disease.  Blood banks only test for Chagas if a person is a first time donor; hence some are concerned about the possibility of our U.S. blood supply becoming contaminated with the Chagas disease parasite. It's estimated that as many as 98-99% of cases in the U.S. remain undiagnosed.
          Educational awareness among doctors and patients will be a focus of the Texas Chagas task force, along with better screening, diagnosis and treatment.  Chagas is a chronic and ultimately fatal disease.  In previous years it was considered untreatable; but with a new drug therapy it now can be treated in earlier stages. Getting the drug to people who need it is still a challenge, however.
  • In related papers Dr. Gabe Hamer from Texas A&M reported on the results of a citizen science effort to study kissing bugs. From 2013 to 2015, they collected 2,812 bugs from 98 different Texas counties. The most common species detected was Triatoma gerstaeckeri, with 63% of those collected infected with the Chagas disease pathogen.  Another study by Rodion Gorchakov from the Baylor College of Medicine in Houston showed that humans are the most common host for kissing bugs collected by citizen scientists in Texas with human blood found in 66% of bugs.  So why not more Chagas disease in Texas and other parts of the U.S.?  The current theory is that gerstaeckeri and our other native kissing bug species are not very good at transmitting the disease during biting--something to be thankful for.
  • A couple of the more interesting and fun talks I attended were on insects and Japanese art and culture.  Some of you may know Dr. Nan Yao Su, developer of the Sentricon system concept at the University of Florida.  Turns out he is interested in insect influences on Japanese culture.  
  • Gunter Miller, from Hebrew University in Jerusalem, Israel, spoke on the process of developing effective attractive toxic sugar baits (ATSBs) for mosquito control.  Based on the fact that both male and female mosquitoes feed on natural sugar sources (like nectar, honeydew), ATSBs must be competitive with these natural sources, so the process of developing these baits is more complicated than just mixing sugar with a pesticide and spraying it on plants.  Their lab developed a "mosquito sangria" mixture (includes beer and Sangria) that will remain attractive to mosquitoes for more than a month after spraying.  Their technology is being used in the Terminix All Clear Mosquito Bait Spray.  This approach to mosquito control has attracted a lot of attention because of its potential to control some Aedes mosquitoes (vectors of Zika, and the most common daytime biters), and because of its need for less insecticide that might be harmful to beneficial insects.  
  • Joel Coats from Iowa State University has been studying alternatives to PBO, the most commonly used synergist for pyrethrins and other pyrethroid insecticides.  He found that many of the plant extracts he tested synergized permethrin as well or better than PBO, and many worked faster than PBO.  Apparently PBO was developed early as a standard synergist for the industry, and few people have taken the time to look at alternatives over the past 50 years. Having an organic synergist could be a real market boost to pyrethrins sprays, most of which cannot be sold as organic because of the synthetic PBO needed to make it effective.
  • According to MacKenzie Kjeldgaard of Texas A&M University, who analyzed ant gut contents with sophisticated DNA techniques, the fire ant's top food source was crickets, but also included springtails, caterpillars, flies and spiders.  
  • Freder Medina introduced a new BASF termiticide injection system using Termidor H.E.  The new application system uses 4000 psi pressure to inject the insecticide into the ground, eliminating the need for drenching.  The system will come with a base unit and mobile app to communicate with BASF.  You should be hearing more about this in 2017.
  • Last, I had a pleasant surprise in the commercial exhibits when I discovered a new book just published by Stephen Doggett, University of Sydney, Australia.  Stephen is a well known bed bug researcher, but had the genius to put out a handy photographic guide to bed bug infestations for, well, just about anyone.  It has dozens of excellent photos, tells where and how to spot bed bugs and what to do if you find bed bugs in your home. This should be a useful resource to share with pest control customers, and as a training tool for employees.  Self published, and not widely available, but you can get it at BioQuip books for about $7.
Of course there was much much more information at ICE this year, some of which I may incorporate in future posts.  But it's Saturday and time to get on to other activities. I hope some of this has been interesting and helpful.

Friday, September 4, 2015

New Study Guide for ACE Exam

A little over a year ago, the Entomological Society of America (ESA) asked if I would be interested in helping assemble a study guide for PMPs preparing to take the Associate Certified Entomologist (ACE) exam.  The idea for a formal study guide had been kicked around for several years because of the frequent requests by PMPs for help knowing how to prepare for the test.  I think at that time we all envisioned a brief outline of some of the key points one would have to study to successfully pass the ACE exam.  After discussions with my future co-author, the energetic and highly competent Richard Levine, we began to wonder what we had gotten ourselves into.  It turns out that there is a lot of stuff to know if you are going to be an ACE.  As a result, the book kept growing to its final size of over 200 pages.

This week ESA began accepting orders for the new study guide. IPM for the Urban Professional: A Study Guide for the Associate Certified Entomologist is available at an introductory price of $69 for ACEs or ESA members through the ESA website. Cost for ACE applicants is $49 with the introductory price.

If you are already a BCE or ACE and would like to put on a prep class for employees or fellow PMPs in your area ESA is offering a deal.  You get a free copy of the book with a purchase of 10 or more study guides for your prep class. I know this sounds a little like a late night TV ad, but WHILE SUPPLIES LAST early orders will receive a free copy of the Handbook of Household and Structural Pests, edited by Roger Gold and Susan Jones. I value this book on my shelf not just because of the detailed pest information, but also because of the useful cross references it provides for deeper study.

We knew from the beginning that the ACE study guide was no substitute for a good field guide like Smith and Whitman's NPMA Field Guide to Structural Pests.  And it doesn't carry the detail and documentation you find in the Mallis Handbook of Pest Control.  But I think we did a pretty good job of reviewing key concepts of IPM and the science of entomology, and how they apply to pest control. After having read most of the handbooks for PMPs, I think this one covers some new ground and provides just enough detail to help you face the ACE exam with confidence.

The study guide went to press yesterday, and will be officially available at PestWorld 2015 in Nashville.






Thursday, December 6, 2012

Entomology in Knoxville: Bed bugs, Ants and Others

Bed bugs remained one of the most frequent subjects of
new research reports at the annual ESA meetings.
Continuing my earlier report on goings on at the Entomological Society of America's annual conference...

Total release foggers

In addition to health-related papers, urban entomology sessions covered many practical aspects of pest control. North Carolina State's Coby Schal, one of the top guns in urban entomology, reported on the first field study of total release foggers (bug bombs) for cockroach control. You may have heard of a parallel study done this year by Susan Jones at Ohio State University. She conducted a set of laboratory experiments with total release foggers (TRFs) against bed bugs, the results of which she recently spoke about on PCT's multimedia website.  She found that field collected strains of bed bugs were essentially immune to three common over-the-counter pyrethroid TRFs, and that even highly pesticide susceptible lab strains were largely able to survive when give basic cover as simple as a piece of paper.

Schal pointed out that TRFs are frequently misused by the public, causing four to eight home explosions per year in New York City alone. His lab looked at the impact of two TRFs on both naturally occurring cockroach populations and on "sentinel" cockroaches (lab reared cockroaches contained in open, escape-proof containers) placed in multiple locations in the treated apartments.  While the foggers did kill the pesticide-susceptible, lab-reared cockroaches, they provided little to no control of wild cockroaches (with 200-fold resistance to pyrethroids). In some treated apartments wild cockroach populations actually increased during the test. It will be interesting to see if the U.S. reevaluates registrations for TRFs in the next few years given the safety issues and dismal data coming out of university labs around the country concerning their use.

Bed bug repellents?

Conventional wisdom suggests that there are no repellents that can be sprayed on the skin to prevent bed bugs from taking a blood meal. However Changlu Wang, of Rutgers University, says "not so fast". He looked at the problem from a different angle, pointing out that there are two possible uses for repellents. Besides the traditional use of repellents applied to the skin to keep insects from biting, repellents may also be used off-host to keep bed bugs from climbing onto beds, suitcases, or other inanimate objects.  

Wang and colleagues looked at this second use. They chose several repellents including DEET, permethrin, picaridin, isolongifolenone, and other potential repellents. Although several products showed repellency, DEET was the overall winner. At 10% and 25% concentration, bed bugs were repelled from Climbup Interceptors (guarding a table with a CO2 lure) for 9 hours and 2 weeks, respectively.  While the practical use of repellents in the real world needs more experimentation, this is useful information.  DEET could conceivably be used as a repellent on some shoes (it does dissolve some plastics, so user beware) or booties to reduce the risk of hitchhiking bed bugs being picked up by technicians (or researchers!).  I expect that eventually bed bug control will be supplemented by the use of repellents as a quarantine tool or for "push-pull" tactics to get bed bugs to go where we want them to go (say, to treated harborages).  Wang cautioned that bed bug behavior may be different around a host where attraction to a live host may overcome the repellent effects he saw.

Standardized bed bug testing

One of the biggest applied bed bug research challenges today is how to standardize insecticide testing. It is common knowledge that results for nearly any insecticide can be fairly easily manipulated by selecting the right strains and using protocols that show more or less bed bug mortality. The challenge is to find protocols that are more or less predictive of a product's performance in the field. Mark Feldlaufer, with the U.S. Department of Agriculture/ARS, reported on progress being made to verify fair, standardized testing methods. This research will support the EPA in its efforts to develop standardized test protocols.

He noted that there are currently 318 insecticide formulations registered for bed bug control, 90% of which include pyrethroid insecticides. He noted that not all pyrethroids are equal, and cited as an example transfluthrin (currently unregistered in the U.S.). Transfluthrin has a high vapor pressure, which most PMP realize is likely to provide better control in difficult to reach areas like voids and crevices.  He also noted that a new combination product (metofluthrin plus clothianidin) is in the insecticide pipeline for bed bugs.

Among the USDA findings were that male and female bed bugs are approximately equal in insecticide susceptibility. This finding could allow researchers to use only one sex in tests (avoiding mortality problems with  traumatic insemination by males on females) rather than the 50/50 ratio currently recommended. Also, test results did not significantly change after seven days, suggesting that tests could be terminated after this time.

How to classify and handle insecticide exposed bed bugs is an issue for anyone who has conducted bed bug trials. USDA classified insecticide-exposed bed bugs as alive (A), dead (D), or morbid/moribund (M/M).  The latter group consisted of bed bugs that were not completely dead, but did not behave normally or respond normally to probing. They found that if placed on untreated surfaces after exposure, between 7 and 77% of the moribund bed bugs recovered compared to 100% mortality of M/M bed bugs left on treated surfaces. This information should be useful in helping EPA decide how to require M/M to be handled. It is fascinating, and alarming, how slight differences in the way test subjects are handled and classified can dramatically influence test results.

Other interesting reports

  • Susan Jones (Ohio State) reported positive results controlling bed bugs with a new neem formulation (CIRKIL), which, PCT magazine reports, will be available in the U.S. this fall.
  • Joe DeMark (Dow AgroScience) reported on field testing of a new Recruit AG above ground bait station for termites. This product will carry 254 grams (one pound) of bait matrix per station. Of nine sites on which it was tested, all termite colonies were determined to be eliminated within four months.
  • Mike Rust (University of California, Riverside) reported on studies with the Turkestan cockroach, a species spreading throughout the southwestern states (CA to TX). They found that the Turkestan cockroach is better adapted to dry situations than the oriental cockroach, especially at higher temperatures, and may be expected to displace Oriental cockroaches in hot, dry situations.
  • Karen Vail (University of Tennessee) tested insecticides on odorous house ant.  She found fipronil provided slightly superior control to Talstar, and she observed 2-4 weeks control with the new Arilon insecticide (indoxacarb).  She also found that sprays applied with backpack sprayers targeting ant trails and structural guidelines (gutters, ledges, etc.) were as effective in controlling ants as high-volume power sprays.
  • Dini Miller (Virginia Tech) reported that a 2011 National Apartment Association survey found bed bugs as the number one concern among apartment owners (beating out concerns over property taxes). Besides control expenses, additional costs due to bed bugs include carpet wraps (to contain bed bugs on infested carpets during removal), need for heavier duty paint (to better cover fecal spots on walls), delays in rental payments, increased evictions, more abuse from residents, and loss of reputation in the community. Twenty states now have laws addressing responsibility for treatment costs for bed bugs.
  • In a study reported in the May 2012 issue of Infection Control and Hospital Epidemiology, researchers from Nebraska tested the effectiveness of chlorine dioxide gas as a fumigant for bed bugs. You may remember chlorine dioxide as the gas used in US governmental facilities after the 2001 anthrax attacks. It proved to penetrate cracks and crevices well and kill bed bugs effectively. Chlorine dioxide is used in hospitals for germ control and might find a niche use for battling bed bug infestations in medical settings.
  • Margie Lehnert, Clemson University, described a simple but (I thought) ingenious technique for studying bed bug population dynamics. She used nylon stockings inside a HEPA vacuum hose attachment to collect small bed bug aggregations in infested apartments. Once an aggregation is sucked up, the stocking can be removed and tied off and returned to the lab for counting. In this way Lehnert has developed a powerful tool to study population patterns and, perhaps, better infer reasons for bed bug dispersal away from beds. 
  • Chris Keefer, Texas A&M University, presented some of the first data I've seen on the invasive, and difficult to control, dark rover ant. This ant is thought to have entered the U.S. from Argentina in Louisiana in 1978. It is now common through most of the southern states.  Keefer, after some difficulty,  has figured out how to colonize these ants in the lab. Using his lab ants he was able to compare the effectiveness of three baits: Terro PCO gel (98% control), Advance Ant Gel (88% control) and Advance Granular Bait (large granules) (58.81% control). The best residual insecticide treatments he found during an outdoor field trial were Demand CS and Temprid, which gave 84% and 82% control, respectively. This confirms what I've heard some PMPs say about effective treatments for these ants.
Of course much more went on in Knoxville than I can report (curse those concurrent sessions!). If I've done no more than convey how exhausting it is to sit for 50 paper sessions (my count), I've given you a taste of what it's like to be there.  Next year's meetings are scheduled to be in Austin, TX, so I encourage some of my Texas colleagues to consider attending. This year the ESA planned a special event for PMPs, including an ACE prep class. Stay tuned for PMP programs for 2013.

Monday, November 24, 2008

Report from Reno

Five days and 27 pages of hand-scribbled notes later and I've returned from another Entomological Society of America annual conference. As usual, the meeting was an exhausting marathon of meetings and posters and mixers, sweetened by renewed personal contacts and much new and useful information about entomology and pest control.

Some of the sessions were probably topics only an entomologist would find fascinating, like measurements of insect diversity on Arizona mountaintops, how mosquitoes locate their hosts, or the history of DDT (which cost only $.18/ lb after WWII and even the famous Winston Churchill called "the miraculous powder"!). Nevertheless, there was much information that would be of great practical interest to a gathering of PMPs. Just a few valuable new insights and reports included:

  • An update was given on colony collapse disorder (CCD) of honey bees by Diana Cox Fisher, a researcher from Pennsylvania State University, who believes that a combination of stresses and new, or re-emerging, diseases (not pesticides) is probably responsible for the current crisis in bee deaths--at least in the U.S. Currently the best correlation with CCD seems to be a disease known as Israeli Acute Paralytic Virus, although the jury is still out on this one. She noted at the end of her presentation that one out of every three bites of food that we eat is thanks to pollinators like the honey bee.
  • Several interesting papers were presented on bed bugs. Mike Potter, of the University of KY, noted in his talk on the history of bed bugs, that within 5 years of the introduction of DDT, researcher John Osmun of Purdue University reported that it became nearly impossible for researchers to locate bed bug infestations to study. Tim McCoy, of Virginia Cooperative Extension, noted the importance and effectiveness of dusts as a tool in bed bug control. Tempo dust, Drione, and Tri-die dusts gave the fastest kill of all products (45 minutes to 6 hrs). Boric acid dust was the slowest, requiring over 18 days to kill. Dini Miller of Virginia Tech concluded that hydroprene was a useful additive to conventional sprays for bed bugs (especially resistant populations), though the effects of hydroprene are subtle and may not become evident until the second or third generation.
  • One of the most interesting bed bug talks was given by Changlu Wang of Purdue Climbup insect interceptor uses a rough outer surface to trap bedbugs in the smooth-sided inner 'moats'University. He compared spray-based and dust-based IPM programs for bed bugs. The liquid spray tested was chlorfenapyr, and the dust-based program used diatomaceous earth and an innovative bed bug interceptor device placed under bed posts to trap the varmits when they try to climb up, or down from the bed. The clever traps are being sold by Susan McKnight Inc. under the trade name Climbup™ Insect Interceptor. Both spray and dust-based programs worked well in Wang's tests. The traps caught more bed bugs than were observed by the inspectors in all apartments. Another interesting observation was that 94% of the trapped bed bugs were in the outer bowl, indicating that they were off the bed. This shows the importance of treating off-bed locations when controlling bed bugs. These devices might be especially useful for clients with low budgets and a high motivation to help with the elimination program. Of course the effectiveness of the bowls depends on eliminating contact of the bed and bedding with the floor and walls.
  • Tom Greene of the IPM Institute (organization running the Green Shield™ certification program for pest control businesses) reported results of a University of Florida study that showed that properly installed doorsweeps can reduce pest complaints in schools by up to 65%. He made an observation that I believe applies not just to school IPM programs, but to all professional IPM: "The question is not 'do you do IPM?', but 'how much IPM do you do?'" Most PMPs say they do IPM, but there is generally much room for improvement of the quality and depth of IPM done by professionals.