Monday, September 26, 2022
Book Review “The Biggest Ideas in the Universe: Space, Time, and Motion” by Sean Carroll
Space, Time, and Motion
By Sean Carroll
Dutton, Sep 20, 2022
The first time I heard Sean Carroll speak was almost 20 years ago in Tucson, Arizona, where he gave a physics colloquium. He had just published his first book, a textbook on General Relativity. His colloquium was basically an introduction to modern cosmology, dark matter, dark energy, and the cosmic microwave background.
It was a splendidly delivered talk; the students loved it. But later I overheard several faculty members remarking they had found it “too simple” and that Sean didn’t seem to be doing much original work. To them, the only good talk was an incomprehensible one. Those remarks, I would later come to realize, are symptomatic of academia: You impress your colleagues by being incomprehensible.
Sean had begun blogging the same year I heard him speak in Tucson, 2004. I would begin blogging not much later, though for unrelated reasons (I originally didn’t intend to write about science), and naturally I kept track of what he was up to.
Since then, it has made me very happy to see Sean making a good career both in research and in science communication, on his own terms. I have met him a few times over the years, read most of his books, and reviewed a few. But I didn’t anticipate he’d pop up on YouTube in 2020, stuck at home during the first COVID lockdowns, like all of us. There he was, green screen as crappy as mine had been a year earlier, promising to cover “The Biggest Ideas in the Universe”, when I had just decided to put more effort into my own YouTube channel.
To my relief it became clear quickly that Sean’s YouTube ambitions were much different from mine. He went for the basics where I prioritized brevity. If my YouTube channel is a buffet, then his is the farmer’s market. And luckily his YouTube appearance remained temporary.
His newest book is the first of three to summarize his YouTube series, focused on dynamical laws, space, and time. It gradually builds up from functions to equations of motions, to concepts like energy, velocity, and momentum, space-time and its geometry, and finishes with black holes in General Relativity. He uses the most essential equations and explains how they work, but you can follow the explanation just by reading the text.
This isn’t your usual popular science book. It doesn’t discuss speculative new ideas, but it’ll give you the background to understand them. It’s a timeless book that I am sure will become a classic, a go-to reference for the interested non-expert who wants to see how the gears of the machinery turn underneath the superficial stories you find in popular science books.
If the three volumes are complete, they’ll presumably cover the classes you’d take for a master’s degree in physics. There aren’t many books like this, which fill the gap between textbooks and popular science books. The only other example that comes to my mind is the “Theoretical Minimum” series by Susskind, Hrabovsky, Friedman, and Cabannes. Sean’s is more focused on the essentials and somewhat lighter in the maths. I have also found Sean’s to be better written.
I’ve always admired Sean for ignoring the unwritten dictum of academia that inaccessibility makes you move valuable, and for his enthusiasm in helping people understand physics, despite the fact that, 20 years ago, most senior academics considered this a waste of time. Today the situation is entirely different. I think Sean was one of the people who changed this attitude.
Saturday, July 23, 2022
Does the Past Still Exist?
One of the biggest mysteries of our existence is also one of the biggest mysteries of physics: time. We experience time as passing, with a special moment that we call “now”. Now you’re watching this video, half an hour ago you were doing something else. Whatever you did, there’s no way to change it. And what you will do in half an hour is up to you. At least that’s how we perceive time.
But what physics tells us about time is very different from our perception. The person who figured this out was none other than Albert Einstein. I know. That guy again. Turns out he kind of knew it all. What did Einstein teach us about the past, the present, and the future? That’s what we’ll talk about today.
The topic we’re talking about today is covered in more detail in my new book
“existential physics” which will be published in August. You find more info
about the book at existentialphysics.com
We think about time as something that works the same for
everyone and every object. If one second passes for me, one second passes for
you, and one second passes for the clouds above. This makes time a universal
parameter. This parameter labels how much time passes and also what we all mean
by “now”.
Hermann Minkowski was the first to notice that this may not be quite right. He
noticed that Maxwell’s equations of electrodynamics make much more sense if one
treats time as a dimension, not as a parameter. Just like a ball doesn’t change
if you rotate one direction of space into another, Maxwell’s equations don’t
change if you rotate one direction of space into time.
So, Minkowski said, we just combine space with time to a 4
dimensional space-time, and then we can rotate space into time just like we can
rotate two directions of space into each other. And that naturally explains why
Maxwell’s equations have the symmetry they do have. It doesn’t have anything to
do with electric and magnetic fields, it comes from the properties of space and
time themselves.
I can’t draw a flower, let alone four dimensions, but I can just about manage
two straight lines, one for time and the other for at least one dimension of
space. This is called a space-time diagram. If you just stand still, then your
motion in such a diagram is a straight vertical line. If you move at a constant
velocity, your motion is a straight line tilted at some angle. So if you change
velocity, you rotate in space-time. The maximal velocity at which you can move
is the speed of light, which by convention is usually drawn at a 45-degree
angle.
In space we can go forward-backward, left right, or up down. In time we can
only go forward, we can’t make a u-turn, and there aren’t any driveways for
awkward three-point turns either. So time is still different from space in some
respect. But now that time is also a dimension, it’s clear that it’s just a
label for coordinates, there’s nothing universal about it. There are many ways
to put labels on a two-dimensional space because you can choose your axes as you
want. The same is the case now in space-time. Once you have made time into a
dimension, the labels on it don’t mean much. So what then is the time that we
talk about? What does it even mean that time is a dimension? Do other
dimensions exist? Supernatural ones? That could explain the strange sounds
you’ve been hearing at night? No. That's a separate problem I'm afraid I can't
help you with.
It was Albert Einstein who understood what this means. If we also want to
understand it, we need four assumptions. The speed of light in vacuum is
finite, it’s always the same, nothing can go faster than the speed of light, and
all observers’ viewpoints are equally valid. This formed the basis of
Einstein’s theory of Special Relativity. Oh, and also, the observers don’t have
to exist. I mean, this is theoretical physics, so we’re talking about
theoretical observers, basically. So, if there could be an observer with a
certain viewpoint then then that viewpoint is equally valid as yours.
Who or what is an observer? Is an ant an observer? A tree? How about a dolphin?
What do you need to observe to deserve being called an observer and what do you
have to observe with? Believe it or not, there’s actually quite some discussion
about this in the scientific literature. We’ll side-step this, erm, interesting
discussion and use the word “observer” the same way that Einstein did, which is
a coordinate system. You see, it’s a coordinate system that a theoretical observer
might use, dolphin or otherwise. Yeah, maybe not exactly what the FBI thinks an
observer is, but then if it was good enough for Einstein, it’ll be good enough
for us. So Einstein’s assumption basically means any coordinate system should
be as good as any other for describing physical reality.
These four assumptions sound rather innocent at first but they have profound
consequences. Let’s start with the first and third: The speed of light is
finite and nothing goes faster than light. You are probably watching this video
on a screen, a phone or laptop. Is the screen there now? Unless you are from
the future watching this video as a hologram in your space house, I'm going to
assume the answer is yes. But a physicist might point out that actually you
don’t know. Because the light that’s emitted from the screen now hasn’t reached
you yet. Also if you are from the future watching this as a hologram, make sure
to look at me from the right. It’s my good side.
Maybe you hold the phone in your hand, but nerve signals are ridiculously slow
compared to light. If you couldn’t see your hand and someone snatched your
phone, it’d take several microseconds for the information that the phone is
gone to even arrive in your brain. So how do you know your phone is there now?
One way to answer this question is to say, well, you don’t know, and really you
don’t know that anything exists now, other than your own thoughts. I think,
therefore I am, as Descartes summed it up. This isn’t wrong – I’ll come back to
this later – but it’s not how normal people use the word “now”. We talk about
things that happen “now” all the time, and we never worry about how long it
takes for light to travel. Why can’t we just agree on some “now” and get on with
it? I mean, think back to that space-time diagram. Clearly this flat line is
“now”, so let’s just agree on this and move on.
Okay, but if this is to be physics rather than just a diagram you have to come
up with an operational procedure to determine what we mean by “now”. You have
to find a way to measure it. Einstein did just that in what he called
Gedankenexperiment, a “thought experiment”.
He said, suppose you place a mirror to your right and one to your left. You and
the mirrors are at fixed distance to each other, so in the space time diagram
it looks like this. You send one photon left and one right, and make sure that
both photons leave you at the same time. Then you wait to see whether the
photons come back at the same time. If they don’t, you adjust your position
until they do.
Now remember Einstein’s
second assumption, the speed of light is always the same. This means if you can
send photons to both mirrors and they come back at the same time, then you must
be exactly in the middle between the mirrors. The final step is then to say
that at exactly half the time it takes for the photons to return, you know they
must be bouncing off the mirror. You could say “now” at the right moment even
though the light from there hasn’t reached you yet. It looks like you’ve found
a way to construct “now”.
But here’s the problem. Suppose you have a friend who flies by at some constant
velocity, maybe in a space-ship. Her name is Alice, she is much cooler than
you, and you have no idea why she's agreed to be friends with you. But here she
is, speeding by in her space-ship left to right. As we saw earlier, in your
space-time diagram, Alice moves on a tilted straight line. She does the exact
same thing as you, places mirrors to both sides, sends photons and waits for
them to come back, and then says when half the time has passed that’s the
moment the photons hit the mirrors.
Except that this clearly isn’t right from your point of view. Because the
mirrors to her right are in the direction of her flight, so the light takes
longer to get there than it does to the mirrors on the left, which move towards
the light. You would say that the photon which goes left clearly hits the mirror
first because the mirror’s coming at it. From your perspective, she just
doesn’t notice because when the photons go back to Alice, the exact opposite
happens. The photon coming from left takes longer to get back, so the net
effect cancels out. What Alice says happens “now” is clearly not what you think
happens “now”.
For Alice on the other hand, you are the one moving relative to her. And she
thinks that her notion of “now” is right and yours is wrong. So who is right?
Probably Alice, you might say. Because she’s much cooler than you. She owns a
spaceship, after all. Maybe. But let’s ask Einstein.
Here is where Einstein’s
forth assumption comes in. The viewpoints of all observers are equally valid.
So you’re both right. Or, to put it differently, the notion of “now” depends on
the observer, it is “observer-dependent” as physicists say. Your “now” is not
the same as my “now”. If you like technical terms, this is also called the
relativity of simultaneity.
These mismatches in what different observers think happens “now” are extremely
tiny in every-day life. They only become noticeable when relative velocities
are close by the speed of light, so we don’t normally notice them. If you and I
talk about who knocked at the door right now, we won’t misunderstand each other.
If we’d zipped around with nearly the speed of light, however, referring to
“now” would get very confusing.
This is pretty mind-bending already, but wait, it gets wilder. Let us have a
look at the space-time diagrams again. Now let us take any two events that are
not causally connected. This just means that if you wanted to send a signal
from one to the other, the signal would have to go faster than light, so
signaling from one to the other isn’t possible. Diagrammatically this means if
you connect the two events the line has an angle less than 45 degrees to the
horizontal.
The previous construction with the mirrors shows that for any two such events there
is always some observer for whom those two events happen at the same time. You
just have to imagine the mirrors fly through the events and the observer flies
through directly in the middle. And then you adjust the velocity until the
photons hit both events at the same time.
Okay, so any two causally disconnected events happen simultaneously for some
observer. Now take any two events that are causally connected. Like eating too
much cheese for dinner and then feeling terrible the morning after. Find some
event that isn’t causally connected to either. Let’s say this event is a
supernova going off in a distant galaxy. There are then always observers for
whom the supernova and your cheese dinner are simultaneous, and there are
observers for whom the supernova and your morning after are simultaneous.
Let’s then put all those together. If you are comfortable with saying that
something, anything, exists “now” which isn’t here, then, according to Einstein’s
fourth assumption, this must be the case for all observers. But if all the
events that you think happen “now” exist and all other observers say the events
that happen at the same time as those events, then all events exist “now”.
Another way to put it is that all times exist in the same way.
This is called the “block universe”. It’s just there. It
doesn’t come into being, it doesn’t change. It just sits there.
If you find that somewhat hard to accept, there is another possibility to consistently
combine a notion of existence with Einstein’s Special Relativity. All that I
just said came from assuming that you are willing to say something exists now
even though you can’t see or experience it in any way. If you are willing to
say that only things exist which are now and here, then you don’t get a block
universe. But maybe that’s even more difficult to accept.
Another option is to simply invent a notion of “existence”
and define it to be a particular slice in space-time for each moment in time.
This is called a “slicing” but unfortunately it has nothing to do with pizza.
If it had any observable consequences, that would contradict the fourth
assumption Einstein made. So it’s in conflict with Special Relativity and since
this theory is experimentally extremely well confirmed, this would almost
certainly mean the idea is in conflict with observation. But if you just want
to define a “now” that doesn’t have observable consequences, you can do that. Though
I’m not sure why you would want to.
Quantum mechanics doesn’t change anything about the block universe because it’s
still compatible with Special Relativity. The measurement update of the
wave-function, which I talked about in this earlier video, happens faster than
the speed of light. If it could be observed, you could use it to define a
notion of simultaneity. But it can’t be observed, so there’s no contradiction.
Some
people have argued that since quantum mechanics is indeterministic, the
future can’t already exist in the block universe, and that therefore there must
also be a special moment of “now” that divides the past from the future. And
maybe that is so. But even if that was the case, the previous argument still
applies to the past. So, yeah, it’s true. For all we currently know, the past exists
the same way as the present.
Friday, November 12, 2021
New book now available for pre-order
In "Existential Physics" each chapter is the answer to a question. I have also integrated interviews with Tim Palmer, David Deutsch, Roger Penrose, and Zeeya Merali, so you don't only get to hear my opinion. I'll show you a table of contents when the page proofs are in. I want to remind you that comments have moved over to my Patreon page.
Wednesday, September 29, 2021
[Guest Post] Brian Keating: How to Think Like a Nobel Prize Winner
When 2017 Nobel Prize winner Barry Barish told me he had suffered from the imposter syndrome, the hair stood up on the back of my neck. I couldn’t believe that one of the most influential figures in my life and career—as a scientist, as a father, and as a human—is mortal. He sometimes feels insecure, just like I do. Every time I’m teaching, in the back of my head, I am thinking, who am I to do this? I always struggled with math, and physics never came naturally to me. I got where I am because of my passion and curiosity, not my SAT scores. Society venerates the genius. Maybe that’s you, but it’s certainly not me.
I’ve always suffered from the imposter syndrome. Discovering that Barish did too, even after winning a Nobel Prize—the highest regard in our field and in society itself—immensely comforted me. If he was insecure about how he compared to Einstein, I wanted to comfort him: Ein- stein was in awe of Isaac Newton, saying Newton “... determined the course of Western thought, research, and practice like no one else before or since.” And compared to whom did Newton feel inadequate? Jesus Christ almighty!
The truth is, the imposter syndrome is just a normal, even healthy, dose of inadequacy. As such, we can never overcome or defeat it, nor should we try to. But we can manage it through understanding and acceptance. Hearing about Barry’s experience allowed me to do exactly that, and I hoped sharing that message would also help others manage better. This was the moment I decided to create this book.
This isn’t a physics book. These pages are not for aspir- ing Nobel Prize winners, mathematicians, or any of my fellow geeks, dweebs, or nerds. In fact, I wrote it specifically for nonscientists—for those who, because of the quotidian demands of everyday life, sometimes lose sight of the biggest-picture topics humans are capable of learning about and contributing to. Most of all, I hope by humanizing science, by showing the craft of science as performed by its master practitioners, you my reader will see common themes emerge that will boost your creativity, stoke your imagination, and most of all, help overcome barriers like the imposter syndrome, thereby unlocking your full potential for out-of-this-universe success.
Though I didn’t write it for physicists, it’s appropriate to consider why the subjects of this book—who are all physicists—are good role models. Physicists are mental Swiss Army knives, or a cerebral SEAL Team Six. We dwell in uncertainty. We exist to solve problems.
We are not the best mathematicians (just ask a real mathematician). We’re not the best engineers. We also aren’t the best writers, speakers, or communicators—but no single group can simultaneously do all of these disparate tasks so well as the physicists I’ve compiled here. That’s what makes them worth listening to and learning from. I sure have.
The individuals in this book have balanced collaboration with competition. All scientists stand on the proverbial shoulders of giants of the past and present. Yet some of the most profound moments of inspiration do breathe magic into the equation of a single individual one unique time. There is a skill to know when to listen and when to talk, for you can’t do both at the same time. These scientists have navigated the challenging waters between focus and diversity, balancing intellectual breadth with depth, which are challenges we all face. Whether you’re a scientist or a salesman, you must “niche down” to solve problems. (Imagine trying to sell every car model made!)
I wrote this book for everyone who struggles to balance the mundane with the sublime—who is attending to the day-to-day hard work and labor of whatever craft they are in while also trying to achieve something greater in their profession or in life. I wanted to deconstruct the mental habits and tactics of some of society’s best and brightest minds in order to share their wisdom with readers—and also to show readers that they’re just like us. They struggle with compromise. They wrestle with perfection. And they aspire always to do something great. We can too.
By studying the habits and tactics of the world’s brightest, you can recognize common themes that apply to your life— even if the subject matter itself is as far removed from your daily life as a black hole is from a quark. Honestly, even though I am a physicist, the work done by most of the subjects in this book is no more similar to my daily work than it is to yours, and yet I learned much from them about issues common between us. These pages include enduring life lessons applicable to anyone eager to acquire new the true keys to success!
HOW IT ALL BEGAN
A theme pops up throughout these interviews regarding the connection between teaching and learning. In the Russian language, the word for “scientist” translates into “one who was taught.” That is an awesome responsibility with many implications. If we were taught, we have an obligation to teach. But the paradox is this: To be a good teacher, you must also be a good student. You must study how people learn in order to teach effectively. And to learn, you must not only study but also teach. In that way, I also have a selfish motivation behind this book: I wanted to share everything I learned from these laureates in order to learn it even more durably. Mostly, however, I see this book as an extension of my duty as an educator. That’s also how the podcast Into the Impossible began.
I’ve always had an insatiable curiosity about learning and education, combined with the recognition that life is short and I want to extract as much wisdom as I can while I can.
As a college professor, I think of teachers as shortcuts in this endeavor. Teachers act as a sort of hack to reduce the amount of time otherwise required to learn something on one’s own, compressing and making the learning process as efficient as possible—but no more so. In other words, there is a value in wrestling with material that cannot be hacked away.
As part of my duty as an educator, I wanted to cultivate a collection of dream faculty comprised of minds I wish I had encountered in my life. The next best thing to having them as my actual teachers is to learn from their interviews in a way that distills their knowledge, philosophy, struggles, tactics, and habits.
I started doing just that at UC San Diego in 2018 and realized I was extremely privileged to have access to some of the greatest minds in human history, ranging from Pulitzer Prize winners and authors to CEOs, artists, and astronauts. As the codirector of the Arthur C. Clarke Center for Human Imagination, I had access to a wide variety of writers, thinkers, and inventors from all walks of life, courtesy of our guest-speaker series. The list of invited speakers is not at all limited to the sciences. The common denominator is conversations about human curi- osity, imagination, and communication from a variety of vantage points.
I realized it would be a missed opportunity if only those people who attended our live events benefited from these world-class intellects. So we supplemented their visit- ing lectures with podcast interviews, during which we explored topics in more detail. I started referring to the podcast as the “university I wish I’d attended where you can wear your pajamas and don’t incur student-loan debt.”
The goal of the podcast is to interview the greatest minds for the greatest number of people. My very first guest was the esteemed physicist Freeman Dyson. I next inter- viewed science-fiction authors, such as Andy Weir and Kim Stanley Robinson; poets and artists, including Herbert Sigüenza and Ray Armentrout; astronauts, such as Jessica Meir and Nicole Stott; and many others. Along the way, I also started to collect a curated subset of interviews with Nobel Prize–winning physicists.
Then in February 2020, my friend Freeman Dyson died. Dyson was the prototype of a truly overlooked Nobel laureate. His contributions to our understanding of the fundamentals of matter and energy cannot be overstated, yet he was bypassed for the Nobel Prize he surely deserved. I was honored to host him for his winter visits to enjoy La Jolla’s sublime weather.
Freeman’s passing lent an incredible sense of urgency to my pursuits, forcing me to acknowledge that most prize- winning physicists are getting on in years. I don’t know how to say this any other way, but I started to feel sick to my stomach, thinking that I might miss an opportunity to talk to some of the most brilliant minds in history who, because of winning the Nobel Prize, have had an outsized influence on society and culture. So in 2020, I started reaching out to them. Most said yes, although sadly, both of the living female Nobel laureate physicists declined to be interviewed. I’m incredibly disappointed not to have female voices in this book, but it’s due to the reality of the situation and not for lack of trying.
A year later, I had this incredible collection of legacy interviews with some of the most celebrated minds on the planet. T.S. Eliot once said, “The Nobel is a ticket to one’s own funeral. No one has ever done anything after he got it.” No one proves that idea more wrong than the physicists in this book. It’s a rarefied group of individuals to learn from—especially when the focus is on life lessons instead of their research. It would be a dereliction of my intellectual duty not to preserve and share them.
HOW TO APPROACH THIS BOOK
These chapters are not transcripts. From the lengthy interviews I conducted with each laureate, I pulled all of the bits exemplifying traits worthy of emulation. Then, after each exchange, I added context or shared how I have been affected by that quote or idea. I have also edited for clarity, since spoken communication doesn’t always translate directly to the page.
All in all, I have done my best to maintain the authenticity of my exchanges with my guests. For example, you’ll notice that my questions don’t always relate to the take-away. Conversations often go in unexpected directions. I could’ve rephrased the questions for this book so they more accurately represented the laureates’ responses, but I didn’t want to misrepresent context. Still, any mistakes accidentally introduced are definitely mine, not theirs.
Each chapter contains a small box briefly explaining the laureate’s Prize-winning work—not because there will be a test at the end, but because it’s interesting context, and further, I know a lot of my readers will want to learn a bit of the fascinating science in these pages, consider- ing the folks from whom you’ll be learning. Perhaps their work will ignite further curiosity in you. If that’s not you, feel free to skip these boxes. If you’re looking for more, I refer you to the laureates’ Nobel lectures at nobelprize.org. There, you will find their knowledge. But here, you will find examples of their wisdom—distilled and compressed into concentrated, actionable form.
Each interview ends with a handful of lightning-round questions designed to investigate more deeply, to provide you with insight into what these laureates are like as human beings. Often these questions reoccur.
Further, you’ll find several recurrent themes from interview to interview, including the power of curiosity, the importance of listening to your critics, and why it’s paramount to pursue goals that are “useless.” I truly hope you’ll enjoy going out of this Universe and the benefits it will accrue to your life and career!
Buy your copy of Think Like A Nobel Prize Winner here!
Thursday, May 27, 2021
The Climate Book You Didn’t Know You Need
Lawrence Krauss
Post Hill Press (March 2021)
In the past years, media coverage of climate change has noticeably shifted. Many outlets have begun referring to it as “climate crisis” or “climate emergency”, a mostly symbolic move, in my eyes, because those who trust that their readers will tolerate this nomenclature are those whose readers don’t need to be reminded of the graveness of the situation. Even more marked has been the move to no longer mention climate change skeptics and, moreover, to proudly declare the intention to no longer acknowledge even the existence of the skeptics’ claims.
As a scientist who has worked in science communication for more than a decade, I am of two minds about this. On the one hand, I perfectly understand the futility of repeating the same facts to people who are unwilling or unable to comprehend them – it’s the reason I don’t respond when someone emails me their home-brewed theory of everything. On the other hand, it’s what most science communication comes down to: patiently rephrasing the same thing over and over again. That science writers – who dedicate their life to communicating research – refuse to explain that very research, strikes me as an odd development.
This makes me suspect something else is going on. Declaring the science settled relieves news contributors of the burden of actually having to understand said science. It’s temptingly convenient and cheap, both literally and figuratively. Think about the last dozen or so news reports on climate change you’ve read. Earliest cherry blossom bloom in Japan, ice still melting in Antarctica, Greta Thunberg doesn’t want to travel to Glasgow in November. Did one of those actually explain how scientists know that climate change is man-made? I suspect not. Are you sure you understand it? Would you be comfortable explaining it to a climate change skeptic?
If not, then Lawrence Krauss’ new book “The Physics of Climate Change” is for you. It’s a well-curated collection of facts and data with explanations that are just about technical enough to understand the science without getting bogged down in details. The book covers historical and contemporary records of carbon dioxide levels and temperature, greenhouse gases and how their atmospheric concentrations change the energy balance, how we can tell one cause of climate change from another, and impacts we have seen and can expect to see, from sea level rise to tipping points.
To me, learning some climate science has been a series of realizations that it’s more difficult than it looks at first sight. Remember, for example, the explanation for the greenhouse effect we all learned in school? Carbon dioxide in the atmosphere lets incoming sunlight through, but prevents infrared light from escaping into space, hence raising the temperature. Alas, a climate change skeptic might point out, the absorption of infrared light is saturated at carbon dioxide levels well below the current ones. So, burning fossil fuels can’t possible make any difference, right?
No, wrong. But explaining just why is not so simple...
In a nutshell, the problem with the greenhouse analogy is that Earth isn’t a greenhouse. It isn’t surrounded by a surface that traps light, but rather by an atmosphere whose temperature and density falls gradually with altitude. The reason that increasing carbon dioxide concentrations continue to affect the heat balance of our planet is that they move the average altitude from which infrared light can escape upwards. But in the relevant region of the atmosphere (the troposphere) higher altitude means lower temperature. Hence, the increasing carbon dioxide level makes it more difficult for Earth to lose heat. The atmosphere must therefore warm to get back into an energy balance with the sun. If that explanation was too short, Krauss goes through the details in one of the chapters of his book.
There are a number of other stumbling points that took me some time to wrap my head around. Isn’t water vapor a much more potent greenhouse gas? How can we possibly tell whether global temperatures rise because of us or because of other, natural, causes, for example changes in the sun? Have climate models ever correctly predicted anything, and if so what? And in any case, what’s the problem with a temperature increase that’s hard to even read off the old-fashioned liquid thermometer pinned to our patio wall? I believe these are all obvious questions that everybody has at some point, and Krauss does a great job answering them.
I welcome this book because I have found it hard to come by a didactic introduction to climate science that doesn’t raise more question than it answers. Yes, there are websites which answer skeptics’ claims, but more often than not they offer little more than reference lists. Well intended, I concur, but not terribly illuminating. I took Michael Mann’s online course Climate Change: The Science and Global Impact, which provides a good overview. But I know enough physics to know that Mann’s course doesn’t say much about the physics. And, yes, I suppose I could take a more sophisticated course, but there are only so many hours in a day. I am sure the problem is familiar to you.
So, at least for me, Krauss book fills a gap in the literature. To begin with, at under 200 pages in generous font size, it’s a short book. I have also found it a pleasure to read for Krauss neither trivializes the situation nor pushes conclusions in the reader’s face. It becomes clear from his writing that he is concerned, but his main mission is to inform, not to preach.
I welcome Krauss’ book for another reason. As a physicist myself, I have been somewhat embarrassed by the numerous physicists who have put forward very – I am looking for a polite word here – shall we say, iconoclastic, ideas about climate change. I have also noticed this personally in several occasions, that physicists have rather strong yet uninformed opinion about what climate models are good for. I am therefore happy that a physicist as well-known as Krauss counteracts the impression that physicists believe they know everything better. He 100% sticks with the established science and doesn’t put forward own speculations.
There are some topics though I wish Krauss would have said more about. One particularly glaring omission is the uncertainty in climate trend projections due to the lacking understanding of cloud formation. Indeed, Krauss says little about the shortcomings of current climate models aside from acknowledging that tipping points are difficult to predict, and nothing about the difficulties of quantifying the uncertainty. This is unfortunate, for it’s another issue that irks me when I read about climate change in newspapers or magazines. Every model has shortcomings, and when those shortcomings aren’t openly put on the table I begin to wonder if something’s being swept under the rug. You see, I’m chronically skeptical myself. Maybe it’s something to do with being a physicist after all.
I for one certainly wish there was more science in the news coverage of climate change. Yes, there are social science studies showing that facts do little to change opinions. But many people, I believe, genuinely don’t know what to think because without at least a little background knowledge it isn’t all that easy to identify mistakes in the arguments of climate change deniers. Krauss’ book is a good starting point to get that background knowledge.
Friday, June 05, 2020
Physicists still lost in math
In Lost in Math, I explain why I have become very worried about what is happening in the foundations of physics. What is happening, you ask? Well, nothing. We have not made progress for 40 years. The problems we are trying to solve today are the same problems we were trying to solve half a century ago.
This worries me because if we do not make progress understanding nature on the most fundamental level, then scientific progress will eventually be reduced to working out details of applications of what we already know. This means that overall societal progress depends crucially on progress in the foundations of physics, more so than on any other discipline.
I know that a lot of scientists in other disciplines find that tremendously offensive. But if they object all I have to do is remind them that without breakthroughs in the foundations of physics there would be no transistors, no microchips, no hard disks, no computers, no wifi, no internet. There would be no artificial intelligence, no lasers, no magnetic resonance imaging, no electron microscopes, no digital cameras. Computer science would not exist. Modern medicine would not exist either because the imaging methods and tools for data analysis would never have been invented. In brief, without the work that physicists did 100 years ago, modern civilization as we know it today would not exist.
I find it somewhat perplexing that so few people seem to realize how big of a problem it is that progress in the foundations of physics has stalled. Part of the reason, I think, is that physicists in the foundations themselves have been talking so much rubbish that people have come to believe foundational work is just philosophical speculation and has lost any relevance for technological progress.
Indeed, I am afraid, most of my colleagues now believe that themselves. It’s wrong, needless to say. A better understand of the theories that we currently use to make all these fancy devices, will almost certainly lead to practical applications. Maybe not in 5 years or 10 years, but more in 100 or 500 years. But eventually, it will.
So, my book Lost in Math is an examination of what has gone wrong. As the subtitle says, the problem is that physicists rely on unscientific methods to develop new theories. These methods are variations of arguments from mathematical beauty, though many physicists are not aware that this is what they are doing.
This problem has been particularly apparent when it comes to the belief that the Large Hadron Collider (LHC) should see new fundamental particles besides the Higgs boson. The reason so many physicists believed this, is that if it had happened, if the LHC would have found other new particles, then the theories would have been much more beautiful. I explained in my book why this argument is unscientific and why therefore, we have no reason to think the LHC should see anything new besides the Higgs. And indeed that’s exactly what happened.
Since the publication of my book, it has slowly sunken in with particle physicists that they were indeed wrong and that their methods did not work. They have largely given up using this particular argument from beauty that led to those wrong LHC predictions. That’s good, of course, but it does not really solve the problem, because they have not analyzed how it could happen that they collectively – and we are talking here about thousands of people – believed in something that was obviously unscientific.
So this is where we stand today. The recognition that something is going wrong in the foundations of physics is spreading. But physicists still have not done anything to fix the problem.
How can we even fix the problem? Well, I explain this in my book. The key is to have a look at what has historically worked. Where have breakthroughs come from in the foundations of physics? Historically a lot of breakthroughs were driven by experimental discoveries. But the simple things have been done and new experiments now are so costly and take such a long time to build, that coincidental discoveries have become incredibly unlikely. You do not just tinker around with a 27 kilometer particle collider.
This means we have to look at the other type of breakthrough, where a theoretical prediction turned out to be correct. Think of Einstein and Dirac and of Higgs and the others who predicted the Higgs boson. What did these correct predictions have in common?
They have in common that they were based on theoretical advances which resolved an inconsistency in the then existing theories. What I mean by inconsistency here is an internal logical disagreement. Therefore, the conclusion I draw from looking at the history of physics is that we should stop trying to make our theories prettier, and instead focus on solving the real problems with these theories.
Some of the inconsistencies in the current theories are the missing quantization of gravity, the measurement problem in quantum mechanics, some aspects of dark energy and dark matter, and some issues with quantum field theories.
I don’t think physicists have really understood what I told them, or maybe they don’t want to understand it. Most of them claim there is no problem, which is patently ridiculous, because everyone who follows popular science news knows that they have been producing loads of nonsense predictions for decades and nothing ever panned out. Clearly, something is going wrong there.
But what I have found very encouraging is the reaction of young physicists to the book, students and postdocs. They don’t want to repeat the mistakes of the past, and they are frequently asking for practical advice. Which I am happy to give, to the extent that I can. The young people give me hope that things will change, eventually, though it might take some time.
“Lost in Math” contains several interviews with key people in the field, Frank Wilczek, Steven Weinberg, Gian Francesco Giudice, who was head of the CERN theory division at the time, Garrett Lisi. George Ellis. Chad Orzel. So you will not only get to hear my opinion, but also that of others. If you haven’t had a chance to read the hardcover, the paperback edition has just appeared, so check it out!
Thursday, April 30, 2020
Book Review: “The Dream Universe” by David Lindley
By David Lindley
Doubleday (March 17, 2020)
Let me be honest: I expected to dislike this book. For one because it looked like a remake of Lindley’s 1993 book The End of Physics which I already disliked. Also, physics didn’t end. Worse still, if you read the description of his new book, you can easily mistake it for a description of my book Lost in Math. On the website of Lindley’s publisher you find, for example, that The Dream Universe is about “how theoretical physics is returning to its unscientific roots” and that physicists have come to believe
“As we investigate realms further and further from what we can see and what we can test, we must look to elegant, aesthetically pleasing equations to develop our conception of what reality is. As a result, much of theoretical physics today is something more akin to the philosophy of Plato than the science to which the physicists are heirs.”However, after reading Lindley’s book, I changed my mind. It is a good book and while I think that Lindley in the end draws the wrong conclusions, it is well worth the read. Let me explain.
First of all, The Dream Universe is dramatically better than The End of Physics. The latter struck me as a superficial and, ultimately, pointless attack on some trends in contemporary physics just because the author had other ideas for what physicists should do. There really wasn’t much to learn from the book. The Dream Universe is instead a historical analysis of the changing role of mathematics in the foundations of physics and the growing divide between theory and experiment in the field. In his new book, Lindley makes a well-reasoned case that something is going badly wrong.
Lindley’s book of course has some overlap with mine. Both discuss the problem that arguments from mathematical beauty have become widely accepted among physicists even though they are unscientific. But while I wrote a book about current events with only a short dip into history, and told this story as someone who works in the field, Lindley provides the perspective of an outsider, albeit one who is knowledgeable both about physics and the history of science.
As Lindley tells the reader in the preface, he started a research career in physics, but then left to become a science writer. The End of Physics was his first book after this career change. He then became interested in the history of science and wrote several historical books. Now he has taken on the foundations of physics again with a somewhat more detached view.
The Dream Universe begins with some rather general chapters about the scientific method and about how scientists use mathematics. You find there the story of Galileo, Copernicus, and the epicycles, as well reflections on the conflict-loaded relation between science and the church. Lindley then moves on to the invention of calculus, the development of electrodynamics, and the increasing abstraction of physics, all the way up to string theory and the idea that the universe is a quantum computer. He lists some successes of this abstraction – notably Dirac’s prediction of anti-matter – before showing where this trend has led us: To superstrings, multiverses, lots of empty blather, and a complete lack of progress in the field.
Lindley is a skilled writer and the book is a pleasure to read. He explains even the most esoteric physics concepts eloquently and without wasting the reader’s time. Overall, he maintains a good balance between science, history, and the lessons of both. Lindley also doesn’t leave you guessing about his own opinion. In several places he says very clearly what he thinks about other historians’, scientists’, or philosophers’ arguments which I find so much more valuable than pages of polite tip-toeing that you have to dissect with an electron microscope to figure out what’s really being said.
The reader also learns that Lindley’s personal mode of understanding is visualization rather than abstraction. Lindley, for example, expresses at some point his frustration with a professor who explained (entirely correctly, if you ask me) that “a tensor is an object that transforms as a tensor” with a transformation law that the professor presumably previously defined. Lindley reacts: “Here is how I would explain a tensor. Think of a cube of jellylike material.” It follows two paragraphs about jelly that I personally find entirely unenlightening. Goes to show, I guess, that different people prefer different modes of explanation.
In the end, Lindley puts the blame for the lack of progress in the foundations of physics on mathematical abstraction, a problem he considers insurmountable. “The unanswerable difficulty, as I hope has become clear by now, is that researchers in fundamental physics are exploring a world, or worlds, hopelessly removed from our experience… What defines those unknowable worlds is perfect order, mathematical rigor, even aesthetic elegance.”
He then classifies “fundamental physics today as a kind of philosophy” and explains it is now “less about a strictly rational understanding of the universe and more about finding a scenario that we deem intellectually respectable.” He sees no way out of this situation because “Observation, experiment, and fact-finding are no longer able to guide [researchers in fundamental physics], so they must set their path by other means, and they have decided that pure rationality and mathematical reasoning, along with a refined aesthetic sense, will do the job.”
I am sympathetic to Lindley’s take on the current status of research in the foundations of physics, but I think the conclusion that there is no way forward is not supported by his argument. The problem in modern physics is not the abundance of mathematical abstraction per se, but that physicists have forgotten mathematical abstraction is a means to an end, not an end unto itself. They may have lost sight of the goal, alright, but that doesn’t mean the goal has ceased to exist.
It is also simply wrong that there are no experiments that could guide physicists in the foundations of physics, and I say this as someone who has spent the past 20 years thinking about this very problem. It’s just that physicists are wasting time publishing papers about beautiful theories that have no relevance for nature instead of analyzing what is going wrong in their discipline and how to make progress.
In summary, Lindley’s book is not so much a competition to Lost in Math as a complement. If you want to understand what is going wrong in the foundations of physics, The Dream Universe is an excellent and timely introduction.
Disclaimer: Free review copy.
Book Review: “A Philosophical Approach To MOND” by David Merritt
By David Merritt
Cambridge University Press (April 30, 2020)
Don’t get put off by the title of the book! Really it should have been called “A Scientific Approach To MOND,” and I am so glad someone wrote it. MOND, to remind you, stands for Modified Newtonian Dynamics, which is the competing hypothesis to dark matter. Dark matter explains a whole bunch of astrophysical observations by positing a new type of matter that makes itself noticeable only through its gravitational pull. MOND instead postulates that the laws of gravity change on galactic scales.
The vast majority of astrophysicists today think erroneously that dark matter has better support in observational evidence, but Merritt cleans up with this myth. Let me emphasize that Merritt is not originally a philosopher by training. He worked for decades in astrophysics before his interest turned to the philosophy of science in recent years. His book is not a verbose pamphlet, as – excuse me – philosophical treatises tend to be, but it’s an in-depth scientific analysis.
What makes Merritt’s book special is that he evaluates the evidence, both for MOND and the standard model of cosmology, according to the most widely accepted criteria put forward by Popper, Zahar, Musgrave, and Carrier. The physicists among you need not despair: Merritt’s book has an excellent (and blissfully short) introduction into the philosophy of science that contains everything you need to know to follow along.
The book is extremely well structured. Merritt first analyses MOND as a phenomenological idea, largely formulated in words, then MOND in the non-relativistic case, then relativistic completions, and then the hybrid theory of dark matter and modified gravity that can be interpreted as a type of superfluid dark matter. In each step, Merritt examines how the theory fares with respect to confirmed predictions and corroboration, which he summarizes in handy tables.
Along the way he cleans up with quite a number of mistakes that you encounter all over the published literature. Yes, this is hugely troubling, and it should indeed trouble you. There is for example the idea that MOND cannot explain the CMB power spectrum when indeed it made a correct prediction for the second peak, whereas dark matter did not. In fact, astrophysicists had to twiddle with the dark matter idea after the measurement to accommodate the new data. Another wrong but wide-spread conviction is that modified gravity has somehow been ruled out by observation on galaxy clusters.
Having said that, Merritt clearly points out that MOND (or its relativistic generalizations) has certain problems, notably the third peak of the CMB is a headache.
The most interesting part of the book, though, is that Merritt demonstrates by many quotations that astrophysicists who prefer dark matter are confusing the predictive power of a theory with the ability of the theory to accommodate new evidence.
I have found this book tremendously useful, though I want to warn you that this is clearly not a popular science book. The book is full with technical detail. However, I believe that the biggest part of it should be understandable for anyone who has an interest in the topic. There are some parts which will be incomprehensible if you don’t at least have an undergrad degree in physics, eg when Merritt goes on about the Lagrangian formulation of the relativistic completions. But I don’t think that these parts are really essential to understand Merritt’s argument.
But. Of course I have a “but”!
I think that Merritt does not pay enough attention to the problem that MOND, because it is non-relativistic, is incompatible with an extremely well-confirmed theory – General Relativity –, and that we have to date no relativistic completion that does not run into other problems with evidence. This means that MOND, simply put, does not live up to the current scientific standard in the field.
Let me be clear that this does not mean that MOND – as an approximation – is wrong. But I believe the lack of a controlled limit to recover General Relativity is the major reason why so many physicists presently reject MOND. I find it somewhat unfair to simply disregard the scientific standard. The standard is there for a reason, and that reason itself is based on evidence, namely: Certain types of theories have proved successful. MOND is not that type of theory, and no one has yet managed to improve it. It only reproduces General Relativity in the cases where we have precision tests by postulating that it does so, not because there is an actual derivation that demonstrates this is consistently possible. This is an extremely non-trivial problem.
This problem is solved by the hybrid version that can be interpreted as superfluid dark matter. In Merritt’s evaluation this option receives mediocre grades. But of course this is because he does not appreciate the need to remove the tension between MOND and general relativity to begin with. Superfluid dark matter does this.
In summary, I think that everyone who has a research interest in astrophysics and cosmology will benefit from reading this book. And I think that physics would much benefit from a similar analysis of inflation and other hypotheses for the early universe, quantum gravity, theories of everything and grand unification, and quantum foundations.
Disclaimer: Free review copy
Tuesday, September 10, 2019
Book Review: “Something Deeply Hidden” by Sean Carroll
Sean Carroll
Dutton, September 10, 2019
Of all the weird ideas that quantum mechanics has to offer, the existence of parallel universes is the weirdest. But with his new book, Sean Carroll wants to convince you that it isn’t weird at all. Instead, he argues, if we only take quantum mechanics seriously enough, then “many worlds” are the logical consequence.
Most remarkably, the many worlds interpretation implies that in every instance you split into many separate you’s, all of which go on to live their own lives. It takes something to convince yourself that this is reality, but if you want to be convinced, Carroll’s book is a good starting point.
“Something Deeply Hidden” is an enjoyable and easy-to-follow introduction to quantum mechanics that will answer your most pressing questions about many worlds, such as how worlds split, what happens with energy conservation, or whether you should worry about the moral standards of all your copies.
The book is also notable for what it does not contain. Carroll avoids going through all the different interpretations of quantum mechanics in detail, and only provides short summaries. Instead, the second half of the book is dedicated to his own recent work, which is about constructing space from quantum entanglement. I do find this a promising line of research and he presents it well.
I was somewhat perplexed that Carroll does not mention what I think are the two biggest objections to the many world’s interpretation, but I will write about this in a separate post.
Like Carroll’s previous books, this one is engaging, well-written, and clearly argued. I can unhesitatingly recommend it to anyone who is interested in the foundations of physics.
[Disclaimer: Free review copy]
Saturday, August 10, 2019
Book Review: “The Secret Life of Science” by Jeremy Baumberg
Jeremy Baumberg
Princeton University Press (16 Mar. 2018)
The most remarkable thing about science is that most scientists have no idea how it works. With his 2018 book “The Secret Life of Science,” Jeremy Baumberg aims to change this.
The book is thoroughly researched and well-organized. In the first chapter, Baumberg starts with explaining what science is. He goes about this pragmatically and without getting lost in irrelevant philosophical discussions. In this chapter, he also introduces the terms “simplifier science” and “constructor science” to replace “basic” and “applied” research.
Baumberg suggests to think of science as an ecosystem with multiple species and flows of nutrients that need to be balanced, which is an analogy that he comes back to throughout the book. This first chapter is followed by a brief chapter about the motivations to do science and its societal relevance.
In the next chapters, Baumberg then focuses on various aspects of a scientist’s work-life and explains how these are organized in praxis: Scientific publishing, information sharing in the community (conferences and so on), science communication (PR, science journalism), funding, and hiring. In this, Baumberg make an effort to distinguish between research in academia and in business, and in many cases he also points out national differences.
The book finishes with a chapter about the future of science and Baumberg’s own suggestions for improvement. Except for the very last chapter, the author does not draw attention to existing problems with the current organization of science, though these will be obvious to most readers.
Baumberg is a physicist by training and, according to the book flap, works in nanotechnology and photonics. As most physicists who do not work in particle physics, he is well aware that particle physics is in deep trouble. He writes:
““Knowing the mind of god” and “The theory of everything” are brands currently attached to particle physics. Yet they have become less powerful with time, attracting an air of liability, perhaps reaching that of a “toxic brand.” That the science involved now finds it hard to shake off precisely this layer of values attached to them shows how sticky they are.”The book contains a lot of concrete information for example about salaries and grant success rates. I have generally found Baumberg’s analysis to be spot on, for example when he writes “Science spending seems to rise until it becomes noticed and then stops.” Or
“Because this competition [for research grants] is so well defined as a clear race for money it can become the raison d’etre for scientists’ existence, rather than just what is needed to develop resources to actually do science.”On counting citations, he likewise remarks aptly:
“[The h-index rewards] wide collaborators rather than lone specialists, rewards fields that cite more, and rewards those who always stay at the trendy edge of all research.”Unfortunately I have to add that the book is not particularly engagingly written. Some of the chapters could have been shorter, Baumberg overuses the metaphor of the ecosystem, and the figures are not helpful. To give you an idea why I say this, I challenge you to make sense of this illustration:
In summary, Baumberg’s is a useful book though it’s somewhat tedious to read. Nevertheless, I think everyone who wants to understand how science works in reality should read it. It’s time we get over the idea that science somehow magically self-corrects. Science is the way we organize knowledge discovery, and its success depends on us paying attention to how it is organized.
Wednesday, June 26, 2019
Win a free copy of "Lost in Maths" in French
The only entry requirement is that you must be willing to send me a mailing address. Comments submitted by email or left on other platforms do not count because I cannot compare time-stamps.
Update: The books are gone.
Sunday, June 16, 2019
Book review: “Einstein’s Unfinished Revolution” by Lee Smolin
By Lee Smolin
Penguin Press (April 9, 2019)
Popular science books cover a spectrum from exposition to speculation. Some writers, like Chad Orzel or Anil Ananthaswamy, stay safely on the side of established science. Others, like Philip Ball in his recent book, keep their opinions to the closing chapter. I would place Max Tegmark’s “Mathematical Universe” and Lee Smolin’s “Trouble With Physics” somewhere in the middle. Then, on the extreme end of speculation, we have authors like Roger Penrose and David Deutsch who use books to put forward ideas in the first place. “Einstein’s Unfinished Revolution” lies on the speculative end of this spectrum.
Lee is very upfront about the purpose of his writing. He is dissatisfied with the current formulation of quantum mechanics. It sacrifices realism, and he thinks this is too much to give up. In the past decades, he has therefore developed his own approach to quantum mechanics, the “ensemble interpretation”. His new book lays out how this ensemble interpretation works and what its benefits are.
Before getting to this, Lee introduces the features of quantum theories (superpositions, entanglement, uncertainty, measurement postulate, etc) and discusses the advantages and disadvantages of the major interpretations of quantum mechanics (Copenhagen, many worlds, pilot wave, collapse models). He deserves applause for also mentioning the Montevideo interpretation and superdeterminism, though clearly he doesn’t like either. I have found his evaluation of these approaches overall balanced and fair.
In the later chapters, Lee comes to his own ideas about quantum mechanics and how these tie together with his other work on quantum gravity. I have not been able to follow all his arguments here, especially not on the matter of non-locality.
Unfortunately, Lee doesn’t discuss his ensemble interpretation half as critically the other approaches. From reading his book you may get away with the impression he has solved all problems. Let me therefore briefly mention the most obvious shortcomings of his approach. (a) To quantify the similarity of two systems you need to define a resolution. (b) This will violate Lorentz-invariance which means it’s hard to make compatible with standard model physics. (c) You better not ask about virtual particles. (d) If a system gets its laws from precedents, where do the first laws come from? Lee tells me that these issues have been discussed in the papers he lists on his website.
As all of Lee’s previous books, this one is well-written and engaging, and if you liked Lee’s earlier books you will probably like this one too. The book has the occasional paragraph that I think will be over many reader’s head, but most of it should be understandable with little or no prior knowledge. I have found this book particularly valuable for spelling out the author’s philosophical stance. You may not agree with Lee, but at least you know where he is coming from.
This book is recommendable for anyone who is dissatisfied with the current formulation of quantum mechanics, or who wants to understand why others are dissatisfied with it. It also serves well as a quick introduction to current research in the foundations of quantum mechanics.
[Disclaimer: free review copy.]
Wednesday, June 12, 2019
Guest Post: A conversation with Lee Smolin about his new book "Einstein’s Unfinished Revolution"
TH: You make some engaging and bold claims in your new book, Einstein’s Unfinished Revolution, continuing a line of argument that you’ve been making over the course of the last couple of decades and a number of books. In your latest book, you argue essentially that we need to start from scratch in the foundations of physics, and this means coming up with new first principles as our starting point for re-building. Why do you think we need to start from first principles and then build a new system? What has brought us to this crisis point?
LS: The claim that there is a crisis, which I first made in my book, Life of the Cosmos (1997), comes from the fact that it has been decades since a new theoretical hypothesis was put forward that was later confirmed by experiment. In particle physics, the last such advance was the standard model in the early 1970s; in cosmology, inflation in the early 1980s. Nor has there been a completely successful approach to quantum gravity or the problem of completing quantum mechanics.
I propose finding new fundamental principles that go deeper than the principles of general relativity and quantum mechanics. In some recent papers and the book, I make specific proposals for new principles.
TH: You have done substantial work yourself in quantum gravity (loop quantum gravity, in particular) and quantum theory (suggesting your own interpretation called the “real ensemble interpretation”), and yet in this new book you seem to be suggesting that you and everyone else in foundations of physics needs to return to the starting point and rebuild. Are you in a way repudiating your own work or simply acknowledging that no one, including you, has been able to come up with a compelling approach to quantum gravity or other outstanding foundations of physics problems?
LS: There are a handful of approaches to quantum gravity that I would call partly successful. These each achieve a number of successes, which suggest that they could plausibly be at least part of the story of how nature reconciles quantum physics with space, time and gravity. It is possible, for example that these partly successful approaches model different regimes or phases of quantum gravity phenomena. These partly successful approaches include loop quantum gravity, string theory, causal dynamical triangulations, causal sets, asymptotic safety. But I do not believe that any approach to date, including these, is fully successful. Each has stumbling blocks that after many years remain unsolved.
TH: You part ways with a number of other physicists in recent years who have railed against philosophy and philosophers of physics as being largely unhelpful for actual physics. You argue instead that philosophers have a lot to contribute to the foundations of physics problems that are your focus. Have you found philosophy helpful in pursuing your physics for most of your career or is this a more recent finding in your own work? Which philosophers, in particular, do you think can be helpful in this area of physics?
LS: I would first of all suggest we revive the old idea of a natural philosopher, which is a working scientist who is inspired and guided by the tradition of philosophy. An education and immersion in the philosophical tradition gives them access to the storehouse of ideas, positions and arguments that have been developed over the centuries to address the deepest questions, such as the nature of space and time.
Physicists who are natural philosophers have the advantage of being able to situate their work, and its successes and failures, within the long tradition of thought about the basic questions.
Most of the key figures who transformed physics through its history have been natural philosophers: Galileo, Newton, Leibniz, Descartes, Maxwell, Mach, Einstein, Bohr, Heisenberg, etc. In more recent years, David Finkelstein is an excellent example of a theoretical physicist who made important advances, such as being the first to untangle the geometry of a black hole, and recognize the concept of an event horizon, who was strongly influenced by the philosophical tradition. Like a number of us, he identified as a follower of Leibniz, who introduced the concepts of relational space and time.
The abstract of Finkelstein’s key 1958 paper on what were soon to be called black holes explicitly mentions the principle of sufficient reason, which is the central principle of Leibniz’s philosophy. None of the important developments of general relativity in the 1960s and 1970s, such as those by Penrose, Hawking, Newmann, Bondi, etc., would have been possible without that groundbreaking paper by Finkelstein.
I asked Finkelstein once why it was important to know philosophy to do physics, and he replied, “If you want to win the long jump, it helps to back up and get a running start.”’
In other fields, we can recognize people like Richard Dawkins, Daniel Dennett, Lynn Margulis, Steve Gould, Carl Sagan, etc. as natural philosophers. They write books that argue the central issues in evolutionary theory, with the hope of changing each other’s minds. But we the lay public are able to read over their shoulders, and so have front row seats to the debates.
There are also working now a number of excellent philosophers of physics, who contribute in important ways to the progress of physics. One example of these is a group, centred originally at Oxford, of philosophers who have been doing the leading work on attempting to make sense of the Many Worlds formulation of quantum mechanics. This work involves extremely subtle issues such as the meaning of probability. These thinkers include Simon Saunders, David Wallace, Wayne Mhyrvold; and there are equally good philosophers who are skeptical of this work, such as David Albert and Tim Maudlin.
It used to be the case, half a century ago, that philosophers, such as Hilary Putnam, who opined about physics, felt qualified to do so with a bare knowledge of the principles of special relativity and single particle quantum mechanics. In that atmosphere my teacher Abner Shimony, who had two Ph.D’s – one in physics and one in philosophy – stood out, as did a few others who could talk in detail about quantum field theory and renormalization, such as Paul Feyerabend. Now the professional standard among philosophers of physics requires a mastery of Ph.D level physics, as well as the ability to write and argue with the rigour that philosophy demands. Indeed, a number of the people I just mentioned have Ph.D’s in physics.
TH: One of your suggested hypotheses, the next step you take after stating your first principles, is an acknowledgment that time is fundamental, real and irreversible, effectively goring one of the sacred cows of modern physics. You made your case for this approach in your book Time Reborn and I'm curious if you've seen a softening over the last few years in terms of physicists and philosophers beginning to be more open to the idea that the passage of time is truly fundamental? Also, why wouldn't this hypothesis be instead a first principle, if time is indeed fundamental?
LS: In my experience, there have always been physicists and philosophers open to these ideas, even if there is no consensus among those who have carefully thought the issues through.
When I thought carefully about how to state a candidate set of basic principles, it became clear that it was useful to separate principles from hypotheses about nature. Principles such as sufficient reason and the identity of the indiscernible can be realized in formulations of physics in which time is either fundamental or secondary and emergent. Hence those principles are prior to the choice of a fundamental or emergent time. So I think it clarifies the logic of the situation to call the latter choice a hypothesis rather than a principle.
TH: How does viewing time as irreversible and fundamental mesh with your principle of background independence? Doesn’t a preferred spacetime foliation, which would provide an irreversible and fundamental time, provide a background?
LS: Background independence is an aspect of the two principles of Leibniz I just referred to: 1) sufficient reason (PSR) and 2) the identity of the indiscernible (PII). Hence it is deeper than the choice of whether time is fundamental or emergent. Indeed, there are theories which rest on both hypotheses about time (fundamental or emergent). Julian Barbour, for example, is a relationalist who develops background-independent theories in which time is emergent. I am also a relationalist, but I make background-independent models of physics in which time and its passage are fundamental.
Viewing time as fundamental and irreversible doesn’t necessarily imply a preferred foliation; by the latter you mean a foliation of a pre-existing spacetime, specified kinematically in advance of the dynamical evolution. In our energetic causal set models there does arise a notion of the present, but this is determined dynamically by the evolution of the model and so is consistent with what we mean by background independence.
The point is that the solutions to background-independent theories can have preferred frames, so long as they are generated by solving the dynamics. This is, for example, the case with cosmological solutions to general relativity.
TH: You and many other physicists have focused for many years on finding a theory of quantum gravity, effectively unifying quantum mechanics and general relativity. In describing your preferred approach to achieving a theory of quantum gravity worthy of the name you describe why you think quantum mechanics is incomplete and why general relativity is in some key ways likely wrong. Let’s look first at quantum mechanics, which you describe as “wrong” and “incomplete.” Why is the Copenhagen (still perhaps the most popular version of quantum theory) school of quantum mechanics wrong and incomplete?
LS: Copenhagen is incomplete because it is based on an arbitrarily chosen division of the world into a classical realm and a quantum realm. This reflects our practice as experimenters, and corresponds to nothing in nature. This means it is an operational approach which conflicts with the expectations that physics should offer a complete description of individual phenomena, with no reference to our existence, knowledge or measurements.
TH: Your objections just stated (what’s known generally as the “measurement problem”) seem to me, even as an obvious non-expert in this area, to be fairly apparent and accurate objections to Copenhagen. If that’s the case, why is Copenhagen still with us today? Why was it ever considered a serious theory?
LS: I don’t think there are many proponents of the Copenhagen view among people working in quantum foundations, or who have otherwise thought about the issues carefully. I don’t think there are many enthusiastic followers of Bohr left alive.
Meanwhile, what most physicists who are not specialists in quantum foundations practice and teach is a very pragmatic, operational set of rules, which suffices because it closely parallels the practice of actual experimenters. They can get on with the physics without having to take a stand on realism.
What Bohr had in mind was a much more radical rejection of realism and its replacement by a view of the world in which nature and us co-create phenomena. My sense is that most living physicists haven’t read Bohr’s actual writings. There are of course some exceptions, like Chris Fuch’s QBism, which is, to the extent that I understand it, an even more radical view. Even if I disagree, I very much admire Chris for the clarity of his thinking and his insistence on taking his view to its logical conclusions. But, in the end, as a realist who sees the necessity of completing quantum mechanics by the discovery of new physics, the intellectual contortions of anti-realists are, however elegant, no help for my projects.
TH: Could this be a good example of why philosophical training could actually be helpful for physicists?
LS: I would agree, in some cases it could be helpful for some physicists to study philosophy, especially if they are interested in discovering deeper foundational laws. But I would never say anyone should study philosophy, because it can be very challenging reading, and if someone is not inclined to think “philosophically” they are unlikely to get much from the effort. But I would say that if someone is receptive to the care and depth of the writing, it can open doors to new ideas and to a highly critical style of thinking, which could greatly aid someone’s research.
The point I would like to make here is rather different. As I discussed in my earlier books, there are different periods in the development of science during which different kinds of problems present themselves. These require different strategies, different educations and perhaps even different styles of research to move forward.
There are pragmatic periods where the laws needed to understand a wide range of phenomena are in place and the opportunities of greatly advancing our understanding of diverse physical phenomena dominate. These kinds of periods require a more pragmatic approach, which ignores whatever foundational issues may be present (and indeed, there are always foundational issues lurking in the background), and focuses on developing better tools to work out the implications of the laws as they stand.
Then there are (to follow Kuhn) revolutionary periods in science, when the foundations are in question and the priority is to discover and express new laws.
The kinds of people and the kinds of education needed to succeed are different in these two kinds of periods. Pragmatic times require pragmatic scientists, and philosophy is unlikely to be important. But foundational periods require foundational people, many of whom will, as in past foundational periods, find inspiration from philosophy. Of course, what I just said is an oversimplification. At all times, science needs a diverse mix of research styles. We always need pragmatic people who are very good at the technical side of science. And we always need at least a few foundational thinkers. But the optimal balance is different in different periods.
The early part of the 20th Century, through around 1930, was a foundational period. That was followed by a pragmatic period during which the foundational issues were ignored and many applications of the quantum mechanics were developed.
Since the late 1970s, physics has been again in a foundational period, facing deep questions in elementary particle physics, cosmology, quantum foundations and quantum gravity. The pragmatic methods which got us to that point no longer suffice; during such a period we need more foundational thinkers and we need to pay more attention to them.
TH: Turning to general relativity, you also don’t mince your words and you describe the notion of reversible time, thought to be at the core of general relativity, as “wrong.” What does general relativity look like with irreversible and fundamental time?
LS: We posed exactly this question: can we invent an extension of general relativity in which time evolution is asymmetric under a transformation that reverses a measure of time. We found two ways to do this.
TH: You touched on consciousness as a physical phenomenon and a necessary ingredient in our physics in your book, Time Reborn (as have many other physicists over the last century, of course). You spend less time on consciousness in your new book — stating “Let us tiptoe past the hard question of consciousness to simpler questions” — but I’m curious if you’ve considered including as a first principle the notion that consciousness is a fundamental aspect of nature (or not) in your ruminations on these deep topics?
LS: I am thinking slowly about the problems of qualia and consciousness, in the rough direction set out in the epilogue of Time Reborn. But I haven’t yet come to conclusions worth publishing. An early draft of Einstein’s Unfinished Revolution had an epilogue entirely devoted to these questions, but I decided it was premature to publish; it also would have distracted attention from the central themes of that book.
TH: David Bohm, one of the physicists you discuss with respect to alternative versions of quantum theory, delved deeply into philosophy and spirituality in relation to his work in physics, as you discuss briefly in your new book. Do you find Bohm’s more philosophical notions such as the Implicate Order (the metaphysical ground of being in which the “explicate” manifest world that we know in our normal every day life is enfolded, and thus “implicate”) helpful for physics?
LS: I am afraid I’ve not understood what Bohm was aiming for in his book on the implicate order, or his dialogues with Krishnamurti, but it is also true that I haven’t tried very hard. I think one can admire greatly the practical and psychological knowledge of Buddhism and related traditions, while remaining skeptical of their more metaphysical teachings.
TH: Bohm’s Implicate Order has much in common with physical notions such as the (nonluminiferous) ether, which has been revived in today’s physics by some heavyweights such as Nobel Prize winner Frank Wilczek (The Lightness of Being: Mass, Ether, and the Unification of Forces) as another term for the set of space-filling fields that underlie our reality. Do you take the idea of reviving some notion of the ether as a physical/metaphysical background at all seriously in your work?
LS: The important part of the idea of the ether was that it is a smooth, fundamental, physical substance, which had the property that vibrations and stresses within it reproduced the phenomena described by Maxwell’s field theory of electromagnetism. It was also important that there was a preferred frame of reference associated with being at rest with respect to this substance.
We no longer believe any part of this. The picture we now have is that any such substance is made of a large collection of atoms. Therefore the properties of any substance are emergent and derivative. I don’t think Frank Wilczek disagrees with this, I suspect he is just being metaphorical.
TH: He doesn’t seem to be metaphorical, writing in a 1999 article:“Quite undeservedly, the ether has acquired a bad name. There is a myth, repeated in many popular presentations and textbooks, that Albert Einstein swept it into the dustbin of history. The real story is more complicated and interesting. I argue here that the truth is more nearly the opposite: Einstein first purified, and then enthroned, the ether concept. As the 20th century has progressed, its role in fundamental physics has only expanded. At present, renamed and thinly disguised, it dominates the accepted laws of physics. And yet, there is serious reason to suspect it may not be the last word.” In his 2008 book mentioned above, he reframes the set of accepted physical fields as “the Grid” (which is “the primary world-stuff”) or ether. Sounds like you don’t find this re-framing very compelling?
LS: What is true is that quantum field theory (QFT) treats all propagating particles and fields as excitations of a (usually unique) vacuum state. This is analogized to the ether, but in my opinion it’s a bad analogy. One big difference is that the vacuum of a QFT is invariant under all the symmetries of nature, whereas the ether breaks many of them by defining a preferred state of at rest.
TH: You consider Bohm’s alternative quantum theory in some depth, and say that “it makes complete sense,” but after further discussion you consider it inadequate because it is generally considered to be incompatible with special relativity, among other problems.
LS: This is not the main reason I don’t think pilot wave theory describes nature.
Pilot wave theory is based on two equations. One, which is the same as in ordinary QM-the Schrödinger equation, propagates the wave-function, while the second-the guidance equation, guides the “particles.” The first can be made compatible with special relativity, while the second cannot. But when one adds an assumption about probabilities, the averages of the guided particles follow the waves and so agree with both ordinary QM and special relativity. In this way you can say that pilot wave theory is “weakly compatible” with special relativity, in the sense that, while there is a preferred sense of rest, it can’t be measured.
TH: If one considers time to be fundamental and irreversible, isn’t there a relativistic version of Bohmian mechanics readily available by adopting some version of Lorentzian or neo-Lorentzian relativity (which are background-dependent)?
LS: Maybe — you are describing research to be done.
TH: Last, how optimistic are you that your view, that today’s physics needs some really fundamental re-thinking, will catch on with the majority of today’s physicists in the next decade or so?
LS: I’m not but I wouldn’t expect any such call for a reconsideration of the basic principles would be popular until it has results which make it hard to avoid thinking about.