
(a)
Section 1:
To find: The sample proportion on the usage of cell phone while in a store.
(a)
Section 1:

Answer to Problem 17E
Solution: The sample proportion of the usage of cell phone while in a store is
Explanation of Solution
Given: A Pew Internet poll surveyed 1003 adults. 462 responded that they used their cell phone while in the store within the last 30 days to make call.
Explanation:
Calculation: The formula for sample proportion is defined as:
Here,
Substitute
Therefore, the sample proportion
Section 2:
To find: The standard error
Section 2:

Answer to Problem 17E
Solution: The standard error
Explanation of Solution
Calculation: The formula for standard error
The sample proportion
Therefore, the standard error is obtained as 0.0157.
Section 3:
To find: The margin of error for 95% confidence level.
Section 3:

Answer to Problem 17E
Solution: The margin of error for 95% confidence level is
Explanation of Solution
Calculation: The formula for margin of error m is defined as:
Here,
The standard error is obtained as
So, the margin of error is obtained as:
Therefore, the margin of error is obtained as 0.0308.
(b)
To explain: Whether the guidelines to use the large-sample confidence interval for population proportion are satisfied.
(b)

Answer to Problem 17E
Solution: Yes, the guidelines are satisfied to use the large-sample confidence interval for the population proportion.
Explanation of Solution
In the provided problem of cell phone survey, the number of successes is defined as the number of respondents who used their cell phone while in the store within the last 30 days to make call So, the number of successes is 462.
The number of failures is obtained as,
The obtained number of successes and failures shows that they are more than 10.
Therefore, the guidelines to use the large-sample confidence interval are satisfied for a population proportion.
(c)
To find: The 95% large-sample confidence interval for the population proportion.
(c)

Answer to Problem 17E
Solution: The 95% large-sample confidence interval is
Explanation of Solution
Calculation: The formula for large-sample confidence interval for population proportion p is defined as:
Here,
The sample proportion
Substitute the values of margin of error and sample proportion in the formula for confidence interval. Therefore, the large-sample confidence interval is obtained as:
Therefore, the large-sample confidence interval for the population proportion is obtained as
(d)
To explain: A short statement on the meaning of the obtained confidence interval.
(d)

Answer to Problem 17E
Solution: The obtained confidence interval shows that it is 95% confident that between 43.02% an 49.18% of cell phone owners used their cell phone while in a store within last 30 days to make call to any friend or family member for advice on their purchase.
Explanation of Solution
This shows that there is 95% confidence that the percentage of people who used their cell phone while in a store within the last 30 days to make call to any friend or family member for advice on their purchase will lie between 43.02% and 49.18%.
Want to see more full solutions like this?
Chapter 8 Solutions
Introduction to the Practice of Statistics
- Don’t solve questionarrow_forwardDon’t solve questionsarrow_forwardFred needs to choose a password for a certain website. Assume that he will choose an 8-character password, and that the legal characters are the lowercase letters a, b, c, ..., z, the uppercase letters A, B, C, ..., Z, and the numbers 0, 1, . . ., 9. (a) How many possibilities are there if he is required to have at least one lowercase letter in his password? (b) How many possibilities are there if he is required to have at least one lowercase letter and at least one uppercase letter in his password? (c) How many possibilities are there if he is required to have at least one lowercase letter, at least one uppercase letter, and at least one number in his password?arrow_forward
- a =1500, b=1700 what is percentage of a is barrow_forwardA 12-inch bar that is clamped at both ends is to be subjected to an increasing amount of stress until it snaps. Let Y = the distance from the left end at which the break occurs. Suppose Y has the following pdf. f(y) = { (a) Compute the cdf of Y. F(y) = 0 0 y -옴) 0 ≤ y ≤ 12 1- 12 y 12 Graph the cdf of Y. F(y) 1.0 0.8 0.6 0.4 0.2 y 2 6 8 10 12 F(y) F(y) F(y) 1.01 1.0ㅏ 1.0 0.8 0.6 0.4 0.2 0.8 0.8 0.6 0.4 ཨཱུ སྦེ 0.6 0.4 0.2 2 4 6 8 10 12 (b) Compute P(Y ≤ 5), P(Y > 6), and P(5 ≤ y ≤ 6). (Round your answers to three decimal places.) P(Y ≤ 5) = P(Y > 6) = P(5 ≤ y ≤ 6) = (c) Compute E(Y), E(y²), and V(Y). E(Y) = in E(Y2) v(x) = in 2 2 2 4 6 8 10 12 y 2 4 6 8 10 12arrow_forwardA restaurant serves three fixed-price dinners costing $12, $15, and $20. For a randomly selected couple dining at this restaurant, let X = the cost of the man's dinner and Y = the cost of the woman's dinner. The joint pmf of X and Y is given in the following table. p(x, y) 15 y 12 20 12 0.05 0.10 0.35 x 15 0.00 0.20 0.10 20 0.05 0.05 0.10 (a) Compute the marginal pmf of X. x 12 Px(x) Compute the marginal pmf of Y. y Pyly) 12 15 20 15 20 (b) What is the probability that the man's and the woman's dinner cost at most $15 each? (c) Are X and Y independent? Justify your answer. X and Y are independent because P(x, y) = Px(x) · Py(y). X and Y are not independent because P(x, y) =Px(x) · Pyly). X and Y are not independent because P(x, y) * Px(x) · Py(y). X and Y are independent because P(x, y) * Px(x) · Py(y). (d) What is the expected total cost, in dollars, of the dinner for the two people? $ (e) Suppose that when a couple opens fortune cookies at the conclusion of the meal, they find the…arrow_forward
- Let X = the time between two successive arrivals at the drive-up window of a local bank. If X has an exponential distribution with λ = 1, (which is identical to a standard gamma distribution with α = 1), compute the following. (If necessary, round your answer to three decimal places.) (a) the expected time between two successive arrivals (b) the standard deviation of the time between successive arrivals (c) P(X ≤ 1) (d) P(2 ≤ X ≤ 4) You may need to use the appropriate table in the Appendix of Tablesarrow_forwardIn each case, determine the value of the constant c that makes the probability statement correct. (Round your answers to two decimal places.) USE SALT (a) (c) 0.9842 (b) P(0 ≤ Z ≤ c) = 0.3051 (c) P(CZ) = 0.1335 You may need to use the appropriate table in the Appendix of Tables to answer this question.arrow_forwardSarrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





