
Explain the difference between a point estimate of a parameter and a confidence-

Explain the difference between the point estimate and the confidence interval estimate of a parameter.
Explanation of Solution
Confidence Interval:
The confidence interval is the interval estimate of the population parameter. It is the range where the population parameter value will lie in between.
The form of the confidence interval is as follows:
The 95% confidence level means 95% of all the possible sample values within the confidence interval will have the population parameter value and 5% of the sample values within the confidence interval will not have the population parameter.
Point estimate:
Any statistic can be a point estimate which gives the estimated value for the parameter in the population. These estimated values are single values, which come from a set of sample data as an estimator for the population.
Difference:
The point estimate represents the single estimated value for the parameter. If the sample differs, which is for the repeated samples, the point estimate will differ and the estimated value will contradict.
Point estimate does not deal with the accuracy for the statistic to be the parameter.
Whereas a confidence interval gives the interval estimate, therefore, for the repeated samples, the estimate of the parameter will lie in the particular interval for the corresponding confidence level. Mainly, it deals with the accuracy by representing the particular confidence level.
Want to see more full solutions like this?
Chapter 8 Solutions
Introductory Statistics (10th Edition)
- Don’t solve questionarrow_forwardDon’t solve questionsarrow_forwardFred needs to choose a password for a certain website. Assume that he will choose an 8-character password, and that the legal characters are the lowercase letters a, b, c, ..., z, the uppercase letters A, B, C, ..., Z, and the numbers 0, 1, . . ., 9. (a) How many possibilities are there if he is required to have at least one lowercase letter in his password? (b) How many possibilities are there if he is required to have at least one lowercase letter and at least one uppercase letter in his password? (c) How many possibilities are there if he is required to have at least one lowercase letter, at least one uppercase letter, and at least one number in his password?arrow_forward
- a =1500, b=1700 what is percentage of a is barrow_forwardA 12-inch bar that is clamped at both ends is to be subjected to an increasing amount of stress until it snaps. Let Y = the distance from the left end at which the break occurs. Suppose Y has the following pdf. f(y) = { (a) Compute the cdf of Y. F(y) = 0 0 y -옴) 0 ≤ y ≤ 12 1- 12 y 12 Graph the cdf of Y. F(y) 1.0 0.8 0.6 0.4 0.2 y 2 6 8 10 12 F(y) F(y) F(y) 1.01 1.0ㅏ 1.0 0.8 0.6 0.4 0.2 0.8 0.8 0.6 0.4 ཨཱུ སྦེ 0.6 0.4 0.2 2 4 6 8 10 12 (b) Compute P(Y ≤ 5), P(Y > 6), and P(5 ≤ y ≤ 6). (Round your answers to three decimal places.) P(Y ≤ 5) = P(Y > 6) = P(5 ≤ y ≤ 6) = (c) Compute E(Y), E(y²), and V(Y). E(Y) = in E(Y2) v(x) = in 2 2 2 4 6 8 10 12 y 2 4 6 8 10 12arrow_forwardA restaurant serves three fixed-price dinners costing $12, $15, and $20. For a randomly selected couple dining at this restaurant, let X = the cost of the man's dinner and Y = the cost of the woman's dinner. The joint pmf of X and Y is given in the following table. p(x, y) 15 y 12 20 12 0.05 0.10 0.35 x 15 0.00 0.20 0.10 20 0.05 0.05 0.10 (a) Compute the marginal pmf of X. x 12 Px(x) Compute the marginal pmf of Y. y Pyly) 12 15 20 15 20 (b) What is the probability that the man's and the woman's dinner cost at most $15 each? (c) Are X and Y independent? Justify your answer. X and Y are independent because P(x, y) = Px(x) · Py(y). X and Y are not independent because P(x, y) =Px(x) · Pyly). X and Y are not independent because P(x, y) * Px(x) · Py(y). X and Y are independent because P(x, y) * Px(x) · Py(y). (d) What is the expected total cost, in dollars, of the dinner for the two people? $ (e) Suppose that when a couple opens fortune cookies at the conclusion of the meal, they find the…arrow_forward
- Let X = the time between two successive arrivals at the drive-up window of a local bank. If X has an exponential distribution with λ = 1, (which is identical to a standard gamma distribution with α = 1), compute the following. (If necessary, round your answer to three decimal places.) (a) the expected time between two successive arrivals (b) the standard deviation of the time between successive arrivals (c) P(X ≤ 1) (d) P(2 ≤ X ≤ 4) You may need to use the appropriate table in the Appendix of Tablesarrow_forwardIn each case, determine the value of the constant c that makes the probability statement correct. (Round your answers to two decimal places.) USE SALT (a) (c) 0.9842 (b) P(0 ≤ Z ≤ c) = 0.3051 (c) P(CZ) = 0.1335 You may need to use the appropriate table in the Appendix of Tables to answer this question.arrow_forwardSarrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt

