
Payroll Class
Write a Payroll class that uses the following arrays as fields:
- employeeId. An array of seven integers to hold employee identification numbers. The array should be initialized with the following numbers: 5658845 4520125 7895122 8777541 8451277 1302850 7580489
- hours. An array of seven integers to hold the number of hours worked by each employee
- payRate. An array of seven doubles to hold each employee’s hourly pay rate
- wages. An array of seven doubles to hold each employee’s gross wages
The class should relate the data in each array through the subscripts. For example, the number in element 0 of the hours array should be the number of hours worked by the employee whose identification number is stored in element 0 of the employeeId array. That same employee’s pay rate should be stored in element 0 of the payRate array.
In addition to the appropriate accessor and mutator methods, the class should have a method that accepts an employee’s identification number as an argument and returns the gross pay for that employee.
Demonstrate the class in a complete program that displays each employee number and asks the user to enter that employee’s hours and pay rate. It should then display each employee’s identification number and gross wages.
Input Validation; Do not accept negative values for hours or numbers less than 6.00 for pay rate.

Trending nowThis is a popular solution!

Chapter 7 Solutions
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Additional Engineering Textbook Solutions
Problem Solving with C++ (10th Edition)
Starting Out with C++ from Control Structures to Objects (9th Edition)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Database Concepts (8th Edition)
Introduction To Programming Using Visual Basic (11th Edition)
- (Dynamic Programming.) Recall the problem presented in Assign- ment 3 where given a list L of n ordered integers you're tasked with removing m of them such that the distance between the closest two remaining integers is maxi- mized. See Assignment 1 for further clarification and examples. As it turns out there is no (known) greedy algorithm to solve this problem. However, there is a dynamic programming solution. Devise a dynamic programming solution which determines the maximum distance between the closest two points after removing m numbers. Note, it doesn't need to return the resulting list itself. Hint 1: Your sub-problems should be of the form S(i, j), where S(i, j) returns the maximum distance of the closest two numbers when only considering removing j of the first i numbers in L. As an example if L [3, 4, 6, 8, 9, 12, 13, 15], then S(4, 1) = 2, since the closest two values of L' = [3,4,6,8] are 6 and 8 after removing 4 (note, 8-6 = = 2). = Hint 2: For the sub-problem S(i, j),…arrow_forward(Dynamic Programming.) A group of friends is visiting a number of attractions located along a highway, starting at kilometre 0, placed at distances ɑ1 < A2 < ···arrow_forward(Greedy Algorithms) Describe an efficient algorithm that, given a set {x1, x2, . . ., xn} of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.arrow_forward
- What does the value of the top variable indicate in this ArrayStack implementation? What will happen if we call pop on this stack? What value will be returned, and what changes will occur in the array and the top variable? 3. If we push the value "echo" onto the stack, where will it be stored in the array, and what will be the new value of top? 4. Explain why index 0 contains the string "alpha" even though top is currently 3. 5. What would the state of the stack look like (values in the array and value of top) after two consecutive pop 0 operations?arrow_forwardPlease solve and show all work. Suppose there are four routers between a source and a destination hosts. Ignoring fragmentation, an IP datagram sent from source to destination will travel over how many interfaces? How many forwarding tables will be indexed to move the datagram from the source to the destination?arrow_forwardPlease solve and show all work. When a large datagram is fragmented into multiple smaller datagrams, where are these smaller datagrams reassembled into a single large datagram?arrow_forward
- Please solve and show all steps. True or false? Consider congestion control in TCP. When the timer expires at the sender, the value of ssthresh is set to one-half of the last congestion window.arrow_forwardPlease solve and show all work. What are the purposes of the SNMP GetRequest and SetRequest messages?arrow_forwardPlease solve and show all steps. Three types of switching fabrics are discussed in our course. List and briefly describe each type. Which, if any, can send multiple packets across the fabric in parallel?arrow_forward
- Please solve and show steps. List the four broad classes of services that a transport protocol can provide. For each of the service classes, indicate if either UDP or TCP (or both) provides such a service.arrow_forwardPlease solve and show all work. What is the advantage of web caches, and how does it work?arrow_forwardPlease solve and show steps. Consider a DASH system for which there are N video versions (at N different rates and qualities) and N audio versions (at N different rates and qualities). Suppose we want to allow the player to choose at any time any of the N video versions and any of the N audio versions. If we create files so that the audio is mixed in with its matched-rate video and the server sends only one media stream at a given time, how many files will the server need to store (each with a different URL)? If the server instead sends the audio and video streams separately and has the client synchronize the streams, how many files will the server need to store?arrow_forward
- Microsoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage Learning
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrEBK JAVA PROGRAMMINGComputer ScienceISBN:9781305480537Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENT




