Question
Book Icon
Chapter 7, Problem 15P
To determine

Calculate the average pressure at the bottom of the women’s high-heeled dress shoe and a women’s athletic walking shoe.

Expert Solution & Answer
Check Mark

Answer to Problem 15P

The average pressure at the bottom of the women’s high-heeled dress shoe is 2.17psi_.

The average pressure at the bottom of the women’s athletic walking shoe is 1.67psi_.

Explanation of Solution

Given information:

Weight of the women is W=120lb

Calculation:

The weight of the women is carried by both shoes. Hence, the weight (Force) acting on each shoe is as follows:

F=W2=1202=60lb

Sketch the profile of high-heeled dress shoe in inches as shown in Figure 1.

LMS Integrated for MindTap Engineering, 2 terms (12 months) Printed Access Card for Moavni's Engineering Fundamentals: An Introduction to Engineering, 5th, Chapter 7, Problem 15P , additional homework tip  1

Refer to Figure 1.

The profile of contact area is divided into two equal parts and each part is divided into 8 trapezoids of equal heights.

Consider the area of top portion as A1 and the bottom portion as A2.

Apply trapezoidal rule as shown below.

A=h[12y0+y1+y2++yn2+yn1+12yn] (1)

Calculate the area of top portion (A1) using Equation (1) as shown below.

A1=1×[12(0)+1.12+1.37+1.25+1.75+2.12+2.12+2+1.87+12(0)]=13.6in.2

Calculate the area of bottom portion (A2) using Equation (1) as shown below.

A2=1×[12(0)+1.5+1.62+1.75+2.12+2.12+2+1.62+1.25+12(0)]=13.9814in.2

Calculate the total area of high-heeled dress shoe as shown below.

A=A1+A2

Substitute 13.6in.2 for A1 and 14in.2 for A2.

A=13.6+14=27.6in.2

Calculate the average pressure at the bottom of high-heeled dress shoe as shown below.

Pressure=Force(F)Area(A) (2)

Substitute 60lb for F and 27.6in.2 for A in Equation (2).

Pressure=6027.6=2.17psi

Hence, the average pressure at the bottom of the women’s high-heeled dress shoe is 2.17psi_.

Sketch the profile of athletic walking shoe in inches as shown in Figure 2.

LMS Integrated for MindTap Engineering, 2 terms (12 months) Printed Access Card for Moavni's Engineering Fundamentals: An Introduction to Engineering, 5th, Chapter 7, Problem 15P , additional homework tip  2

Refer to Figure 2.

The profile of contact area is divided into two equal parts and each part is divided into 12 trapezoids of equal heights.

Consider the area of top portion as A1 and the bottom portion as A2.

Calculate the area of top portion (A1) using Equation (1) as shown below.

A1=1×[12(0)+1.12+1.37+1.25+1+0.87+1.12+1.75+2.12+2.12+2+1.87+12(0)]=16.5616.6in.2

Calculate the area of bottom portion (A2) using Equation (1) as shown below.

A2=1×[12(0)+1.5+1.62+1.75+1.62+1.75+2+2.12+2.12+2+1.62+1.25+12(0)]=19.3519.4in.2

Calculate the total area of athletic walking shoe as shown below.

A=A1+A2

Substitute 16.6in.2 for A1 and 19.4in.2 for A2.

A=16.6+19.4=36in.2

Calculate the average pressure at the bottom of athletic walking shoe as shown below.

Substitute 60lb for F and 36in.2 for A in Equation (2).

Pressure=6036=1.67psi

Therefore, the average pressure at the bottom of the women’s athletic walking shoe is 1.67psi_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The structures in the following problems are single-story, one-bay assemblies representing one common lateral force- resisting systems used in buildings: Moment-Resisting Frames (MRFS). Each frame is fix-connected at its base. Your tasks are as follows: 1. 2. Solve for the support reactions (vertical, lateral, and moment) under the applied lateral load. Determine member end forces (axial, shear, and moment) for all relevant structural members.
The structures in the following problems are single-story, one-bay assemblies representing one common lateral force- resisting systems used in buildings: Moment-Resisting Frames (MRFs). Each frame is fix-connected at its base. Your tasks are as follows: Solve for the support reactions (vertical, lateral, and moment) under the applied lateral load. Determine member end forces (axial, shear, and moment) for all relevant structural members. 1. 2. 3. Draw internal force diagrams (bending moment) for the required elements. 4. Determine the lateral deflection of joint B Be sure to clearly label your diagrams and show all work leading to your solutions. You must use the slope deflection equations to solve the problem, otherwise it will take forever. Use dimensions referenced to elements' centerlines. You shall neglect axial and shear induced deformations.
What are some relative code requirements specific to a roof system components?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,