
Concept explainers
Convert the strength of selected materials from MPa to ksi.

Answer to Problem 35P
The conversion for the strength of selected materials given in accompanying table from MPa to ksi as follows:
Material | Ultimate strength (MPa) | Ultimate strength (ksi) |
Aluminum alloys | ||
Concrete (compression) |
|
|
Stee1 | ||
Machine | ||
Spring | ||
Stainless | ||
Tool | ||
Structural Steel | ||
Titanium alloys | ||
Wood (Bending) | ||
Douglas fir | ||
Oak | ||
Southern pine |
Explanation of Solution
Given data:
Refer to Problem 6.35 in textbook for the accompanying table.
Formula used:
Convert N to lbf,
Convert meter to foot,
Convert foot to inches,
Calculation:
Rearrange the equation (1) for conversion of unit as follows,
Case 1:
For Aluminum alloys:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Aluminum alloys:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
Case 2:
For Concrete (compression):
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Concrete (compression):
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
Case 3:
For Steel-Machine:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Machine:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Spring:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Spring:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Stainless:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Stainless:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Tool:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Structural Steel:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Structural Steel:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Titanium alloys:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Titanium alloys:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
Case 4:
For Wood (Bending)-Douglas fir:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Wood (Bending)-Douglas fir:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Wood (Bending)-Oak:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Wood (Bending)-Oak:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Wood (Bending)-Southern pine:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Wood (Bending)-Southern pine;
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
Thus, the conversion for the strength of selected materials from MPa to ksi is tabulated in Table 1.
Table 1
Material | Ultimate strength (MPa) | Ultimate strength (ksi) |
Aluminum alloys | ||
Concrete (compression) |
|
|
Stee1 | ||
Machine | ||
Spring | ||
Stainless | ||
Tool | ||
Structural Steel | ||
Titanium alloys | ||
Wood (Bending) | ||
Douglas fir | ||
Oak | ||
Southern pine |
Conclusion:
Hence, the conversion for the strength of selected materials from MPa to ksi has been explained.
Want to see more full solutions like this?
Chapter 6 Solutions
LMS Integrated for MindTap Engineering, 2 terms (12 months) Printed Access Card for Moavni's Engineering Fundamentals: An Introduction to Engineering, 5th
- You are viewing Attempt 1/Continue Work * Incorrect The 123-kg industrial door with mass center at G is being positioned for repair by insertion of the 8° wedge under corner B. Horizontal movement is prevented by the small ledge at corner A. If the coefficients of static friction at both the top and bottom wedge surfaces are 0.65, determine the force P required to lift the door at B. Assume a = 1.4 m, b = 1.2 m, a = 8° A Answer: P = 1144.28 N Barrow_forwardHow can new sustainable materials change dead load calculations in future designs in earthquake-prone areas?arrow_forwardGiven the truss with loading shown. Note that the roller connection at Joint D is in atrack so that it cannot move in the x-direction, but it can roll in the y-direction.Solve the truss with the virtual load you would use if you are going to solve for the verticaldeflection at Joint E using the method of virtual work.Note: Just solve the truss. You DO NOT need to find the vertical deflection at Joint E.arrow_forward
- Question (1): (18 Marks) Gaza City has a total population of 650,000 inhabitant, where 75% of the population is connected to wastewater collection system. The water consumption per capita is 100 L/day. Currently, the collected flow treated partially by aerated lagoon system. The municipality intend to change the treatment system to a completely mixed activated sludge system to be used for organic matter removal only to fulfill the Palestinian standards for reuse (Soluble BOD 30 mg/l). The given data from the municipality laboratory and assumptions: ⚫ The influent soluble Biological Oxygen demand = 500 mg/l. Biomass yield (Y) = 0.5 mg VSS/mg BOD removed • Endogenous decay rate constant (Ka) = 0.05d¹ • • The concentration of biomass (X) = 3000 mg MLVSS The concentration of recycled biomass (X) = 10000 mg MLVSS/L Growth rate (d) 2.5 1.25 100 For the completely mixed activated sludge system find the following: a) The average flow to the treatment plant. b) The mean cell residence time. c)…arrow_forwardQuestion (3): (20 Marks) You have been assigned to design a secondary wastewater treatment component based on a tricking filter technique. The flow rate is 3500 m³/day, the raw wastewater has a BOD5 of 600 mg/l. This wastewater is primarily treated with an efficiency of 35%. • Assume suitable design criteria to obtain a BOD effluent of 15 mg/l. Design the secondary clarifier • Perform all the necessary cheeks on your design.arrow_forwardQuestion (3): (20 Marks) You have been assigned to design a secondary wastewater treatment component based on a tricking filter technique. The flow rate is 3500 m³/day, the raw wastewater has a BOD5 of 600 mg/l. This wastewater is primarily treated with an efficiency of 35%. • Assume suitable design criteria to obtain a BOD effluent of 15 mg/l. Design the secondary clarifier • Perform all the necessary cheeks on your design.arrow_forward
- Data:Total budget = $25,000BCWS = $ 8,333BCWP = $ 6,400ACWP = $ 7,800Project duration = 40 daysData date: 10 days Perform the following analyses of the project based on the data given above.a. Cost Variance b. Schedule Variancearrow_forwardPlease explain why large initial separations on the EV S-Curve between the lines for ACWPand BCWP with BCWP above the ACWP may be an indicator of excessive front loading.arrow_forwardData:Total budget = $25,000BCWS = $ 8,333BCWP = $ 6,400ACWP = $ 7,800Project duration = 40 daysData date: 10 days Plot an S-Curve and show Cost Variance and Schedule Variance on it.arrow_forward
- Water table A L₁ = 2 m Sand y = 15.9 kN/m³ c' = 0 $' = 32° E L₂ = 3 m D Determine: a) Theoretical Depth and actual depth of penetration Sand Ysat 19.33 kN/m³ c' = 0 $' = 32° Clay c = 47 kN/m² =0arrow_forward3. The following Sheet Pile is to be designed for a granular soil without the influence of the water table: Determine: L = 5m Y = 15.9kN/m³ $' = 32° Gall = 172MN/m² e) Theoretical Embedment Deptharrow_forward3. The following Sheet Pile is to be designed for a granular soil without the influence of the water table: Determine: L = 5m y = 15.9kN/m³ $'=32° Gall = 172MN/m² f) Actual Embedment depth taking into account a 30% increasearrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning





