
Concept explainers
Determine the highest real root of
(a) Graphically.
(b) Fixed-point iteration method (three iterations,
(c) Newton-Raphson method (three iterations,
(d) Secant method (three iterations,
(e) Modified secant method (three iterations,
Compute the approximate percent relative errors for your solutions.
(a)

To calculate: The highest real root of the function
Answer to Problem 2P
Solution:
The highest real root of the function
Explanation of Solution
Given:
The function,
Formula used:
The roots of the function are the points at which the graph of the function crosses the x-axis.
Calculation:
Consider the function,
Substitute different values of x and find the corresponding values of
For
For
For
For
For
Summarize the above values as shown below,
x | |
0 | |
1 | 3 |
2 | |
3 | |
4 | 6.6 |
Plot the above points on the graph and join them as below,
From the above graph, it is observed that the graph of the function crosses the x-axis from three points. That is, approximately
Hence, the highest real root of the function
(b)

To calculate: The highest real root of the function
Answer to Problem 2P
Solution:
The highest real root of the function
Explanation of Solution
Given:
The function,
Formula used:
The simple fixed-point iteration formula for the function
And, formula for approximate error is,
Calculation:
Consider the function,
The function can be formulated as fixed-point iteration as,
Use initial guess
Therefore, the approximate error is,
Use
Therefore, the approximate error is,
Use
Therefore, the approximate error is,
Thus, all the iteration can be summarized as below,
0 | 3 | |
1 | 3.18079 | 5.683% |
2 | 3.333959 | 4.594% |
3 | 3.4425 | 3.153% |
Hence, the highest root is 3.4425.
(c)

To calculate: The highest real root of the function
Answer to Problem 2P
Solution:
The highest real root of the function
Explanation of Solution
Given:
The function,
Formula used:
The Newton-Raphson formula,
And, formula for approximate error is,
Calculation:
Consider the function,
Differentiate the above function with respect to x,
The initial guess is
Therefore, the approximate error is,
Use
Therefore, the approximate error is,
Use
Therefore, the approximate error is,
Similarly, all the iteration can be summarized as below,
0 | 3 | |
1 | 5.133 | 41.555% |
2 | 4.26955 | 20.223% |
3 | 3.792837 | 12.569% |
Hence, the highest root is 3.792837.
(d)

To calculate: The highest real root of the function
Answer to Problem 2P
Solution:
The highest real root of the function
Explanation of Solution
Given:
The function,
Formula used:
The iterative equation of secant method is,
And, formula for approximate error is,
Calculation:
Consider the function,
The initial guess is
Therefore, the approximate error is,
Use
Therefore, the approximate error is,
Use
Therefore, the approximate error is,
Similarly, all the iteration can be summarized as below,
0 | 4 | |
1 | 3.3265 | 20.25% |
2 | 3.4812 | 4.443% |
3 | 3.58629 | 2.93% |
Hence, the highest root is 3.58629.
(e)

To calculate: The highest real root of the function
Answer to Problem 2P
Solution:
The highest real root of the function
Explanation of Solution
Given:
The function,
Formula used:
The iteration formula for modified secant method is,
And, formula for approximate error is,
Calculation:
Consider the function,
Use initial guess of
Simplify furthermore,
Therefore, the approximate error is,
Use
Simplify furthermore,
Therefore, the approximate error is,
Use
Simplify furthermore,
Therefore, the approximate error is,
Similarly, all the iteration can be summarized as below,
0 | 3 | |
1 | 4.89259 | 38.68% |
2 | 4.14145 | 18.14% |
3 | 3.7429 | 10.65% |
Hence, the highest root is 3.7429.
Want to see more full solutions like this?
Chapter 6 Solutions
Numerical Methods for Engineers
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Pathways To Math Literacy (looseleaf)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Math in Our World
Elementary Statistics Using The Ti-83/84 Plus Calculator, Books A La Carte Edition (5th Edition)
College Algebra (Collegiate Math)
- Subject— Applied mathematicsarrow_forwardWrite complete solution and indicate proper unitsarrow_forwardProblem 4 (10pt). Use Stokes' theorem to evaluate the line integral (zdx+xdy + ydz) where C is the triangle in the xy-plane with vertices (1,0,0), (0,1,0), and (1,2,0) with counterclockwise orientation when viewed from above.arrow_forward
- Problem 3 (10pt). Let R be the portion of the plane x+y+z = 1 in the first octant (i.e, x,y,z > 0). Compute the surface integral xds.arrow_forwardProblem 5 (10pt). Let F = xyi - zj and R is the unit square in the xy-plane, {0 < x,y≤1,z=0}. Compute curlF ds = c curlF.NdS where N is the unit upward normal vector to R.arrow_forwardProblem 6 (10pt). R Use divergence theorem to calculate the surface integral f√ F. ds = √ √ F. Nds where N is the unit outward normal vector, F = x²i – x³z²j – 4x³zk, and R is the closed surface bounded by the cylinder x² + y² = 1 and planes z = x + 2 and z = = 0.arrow_forward
- Problem 2 (10pt). Let F = xyzi+yzj + zk. Compute the divergence and curl of F.arrow_forwardThe Fibbonacci sequence is defined recursevely as following for i≥3 FiFi-1+ Fi-2; F1 = 1, F2 = 1. Write a scipt that uses a for loop to compute the 10th element of the Fibbonacci sequence and assing it to the variable named farrow_forwardEN (4)(p()) 5 (3c) Prove by induction that: Vn E N using your recursive definition from (2c) for the function defined below: p = n↔ 2n(n + 1) =: N → N Begin your work on this page and continue onto pages that follow, numbered as per instructions, as needed. 0 (i) BC 0 (ii) RCS You may discuss with anyone 319arrow_forward
- is this correct? my number J is 00292366, i will also provide what s and b are from the different page i got it from, if incorrect, please fix itarrow_forwardplease ignore the work already done for these as i am not sure they are correct.arrow_forward4 - het B = { [´8 ], [ -5]} and C = { [4] [1]} Find the change of coordinates. matrix from ẞ to C and from C to B.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage