
Concept explainers
(a)
To explain: The reason that Beth’s brother is albino although her parents are not albino.
(a)

Answer to Problem 129E
Solution: The child will be an albino
Explanation of Solution
Alleles inherited from Parent |
|||
Alleles |
|||
Alleles inherited from Parent. |
|||
Alleles inherited from Parent. |
|||
Alleles |
|||
Alleles inherited from Parent. |
|||
Alleles inherited from Parent. |
|||
Alleles |
|||
Alleles inherited from Parent. |
|||
With both the parents as non-albino, that is, genes
(b)
The genetic type of Beth’s parents’ child.
(b)

Answer to Problem 129E
Solution: Beth’s parents’ child could have the genetic type as
Explanation of Solution
Alleles inherited from Parent. |
|||
Alleles |
|||
Alleles inherited from Parent. |
|||
Therefore, Beth’s parents’ child could have either of the set of genes
To find: Probability of each type of genes inherited by the offspring.

Answer to Problem 129E
Solution: The probabilities for each set of genes are:
Explanation of Solution
Calculation: It is provided in the question that the inheritance of the alleles by the child is an independent
And
The probabilities for each set of genes inherited can be calculated as follows:
Hence, the obtained probabilities are
(c)
To find: The conditional probabilities for Beth’s genetic type provided the fact that Beth is nonalbino.
(c)

Answer to Problem 129E
Solution: The conditional probabilities obtained are:
Explanation of Solution
Calculation: The possible cases for types of genes of Beth based on the genes inherited from her parents are presented in the form of table in part (b) as follows:
Alleles inherited from Parent. |
|||
Alleles |
|||
Alleles inherited from Parent. |
|||
Since, it is provided that Beth is not albino, therefore, the possible genetic types of Beth are either
And
Hence, the obtained probabilities are:
Want to see more full solutions like this?
Chapter 4 Solutions
Introduction to the Practice of Statistics: w/CrunchIt/EESEE Access Card
- Don’t solve questionarrow_forwardDon’t solve questionsarrow_forwardFred needs to choose a password for a certain website. Assume that he will choose an 8-character password, and that the legal characters are the lowercase letters a, b, c, ..., z, the uppercase letters A, B, C, ..., Z, and the numbers 0, 1, . . ., 9. (a) How many possibilities are there if he is required to have at least one lowercase letter in his password? (b) How many possibilities are there if he is required to have at least one lowercase letter and at least one uppercase letter in his password? (c) How many possibilities are there if he is required to have at least one lowercase letter, at least one uppercase letter, and at least one number in his password?arrow_forward
- a =1500, b=1700 what is percentage of a is barrow_forwardA 12-inch bar that is clamped at both ends is to be subjected to an increasing amount of stress until it snaps. Let Y = the distance from the left end at which the break occurs. Suppose Y has the following pdf. f(y) = { (a) Compute the cdf of Y. F(y) = 0 0 y -옴) 0 ≤ y ≤ 12 1- 12 y 12 Graph the cdf of Y. F(y) 1.0 0.8 0.6 0.4 0.2 y 2 6 8 10 12 F(y) F(y) F(y) 1.01 1.0ㅏ 1.0 0.8 0.6 0.4 0.2 0.8 0.8 0.6 0.4 ཨཱུ སྦེ 0.6 0.4 0.2 2 4 6 8 10 12 (b) Compute P(Y ≤ 5), P(Y > 6), and P(5 ≤ y ≤ 6). (Round your answers to three decimal places.) P(Y ≤ 5) = P(Y > 6) = P(5 ≤ y ≤ 6) = (c) Compute E(Y), E(y²), and V(Y). E(Y) = in E(Y2) v(x) = in 2 2 2 4 6 8 10 12 y 2 4 6 8 10 12arrow_forwardA restaurant serves three fixed-price dinners costing $12, $15, and $20. For a randomly selected couple dining at this restaurant, let X = the cost of the man's dinner and Y = the cost of the woman's dinner. The joint pmf of X and Y is given in the following table. p(x, y) 15 y 12 20 12 0.05 0.10 0.35 x 15 0.00 0.20 0.10 20 0.05 0.05 0.10 (a) Compute the marginal pmf of X. x 12 Px(x) Compute the marginal pmf of Y. y Pyly) 12 15 20 15 20 (b) What is the probability that the man's and the woman's dinner cost at most $15 each? (c) Are X and Y independent? Justify your answer. X and Y are independent because P(x, y) = Px(x) · Py(y). X and Y are not independent because P(x, y) =Px(x) · Pyly). X and Y are not independent because P(x, y) * Px(x) · Py(y). X and Y are independent because P(x, y) * Px(x) · Py(y). (d) What is the expected total cost, in dollars, of the dinner for the two people? $ (e) Suppose that when a couple opens fortune cookies at the conclusion of the meal, they find the…arrow_forward
- Let X = the time between two successive arrivals at the drive-up window of a local bank. If X has an exponential distribution with λ = 1, (which is identical to a standard gamma distribution with α = 1), compute the following. (If necessary, round your answer to three decimal places.) (a) the expected time between two successive arrivals (b) the standard deviation of the time between successive arrivals (c) P(X ≤ 1) (d) P(2 ≤ X ≤ 4) You may need to use the appropriate table in the Appendix of Tablesarrow_forwardIn each case, determine the value of the constant c that makes the probability statement correct. (Round your answers to two decimal places.) USE SALT (a) (c) 0.9842 (b) P(0 ≤ Z ≤ c) = 0.3051 (c) P(CZ) = 0.1335 You may need to use the appropriate table in the Appendix of Tables to answer this question.arrow_forwardSarrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





