
Vector Mechanics for Engineers: Statics
12th Edition
ISBN: 9781259977268
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.3, Problem 4.102P
PROBLEM 4.102
For the pipe assembly of Problem 4.101, determine (a) the largest permissible value of a if the assembly is not to tip, (b) the corresponding tension in each wire.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A long (into the page) duct with three walls is shown in the figure below. A constant rate
of energy (q = 5000 W) is supplied to the backside of the bottom wall. All this power leaves
surface 1 as radiative heat flow into the duct (i.e., participates in radiative exchange with
surfaces 2 and 3). The backside of Surface 2 is perfectly insulated. The table below lists
geometric and radiative properties of each surface.
Calculate T3-
2
Surface
T [K]
ε
AiFij, [m²]
1
700
1
A1F12
= 0.18
2
3
1
A2F23 = 0.86
1
A3 F31 = 0.36
Shaft 1 is the motor shaft and rotates at 1160 rpm. Calculate the transmission ratio and the angular velocity of output shaft 6.
Na=18Nb=34Nc=20Nd=62Ne=30Nf=60Ng=2 (worm gear)Nh=40Nı=16Nj=88
The power transmission system shown in the figure includes a helical and a bevel gear. The shaft is supported by two bearings and rotates at 600 rpm. The load on the bevel gear is -0.5Pi - 0.41Pj + 0.44Pk. The axial load on the shaft is carried by the bearing on the left. For a lifespan of 36,000 hours and 98% reliability, select two identical single-row tapered roller bearings.
Chapter 4 Solutions
Vector Mechanics for Engineers: Statics
Ch. 4.1 - Two crates, each of mass 350 kg, are placed as...Ch. 4.1 - A lever AB is hinged at C and attached to a...Ch. 4.1 - A light rod AD is supported by frictionless pegs...Ch. 4.1 - A tension of 20 N is maintained in a tape as it...Ch. 4.1 - A gardener uses a 60 N wheelbarrow to transport a...Ch. 4.1 - The gardener of Prob. 4.1 wishes to transport a...Ch. 4.1 - A 2100-lb tractor is used to lift 900 lb of grave....Ch. 4.1 - For the beam and loading shown, determine (a) the...Ch. 4.1 - A load of lumber of weight W = 25 kN is being...Ch. 4.1 - A load of lumber of weight W = 25 kN is being...
Ch. 4.1 - A hand truck is used to move a compressed-air...Ch. 4.1 - Two external shafts of a gearbox are subject to...Ch. 4.1 - Three loads are applied as shown to a light beam...Ch. 4.1 - The 10-m beam AB rests upon, but is not attached...Ch. 4.1 - The maximum allowable value of each of the...Ch. 4.1 - For the beam of Sample Prob. 4.2, determine the...Ch. 4.1 - The maximum allowable value of each of the...Ch. 4.1 - For the beam and loading shown, determine the...Ch. 4.1 - PROBLEM 4.15 The required tension in cable AB is...Ch. 4.1 - PROBLEM 4.16 Determine the maximum tension that...Ch. 4.1 - Two links AB and DE are connected by a bell crank...Ch. 4.1 - Prob. 4.18PCh. 4.1 - The bracket BCD is hinged at C and attached to a...Ch. 4.1 - The ladder AB, of length L and weight W, can be...Ch. 4.1 - The ladder AB, of length L and weight W, can be...Ch. 4.1 - A lever AB is hinged at C and attached to a...Ch. 4.1 - 4.23 and 4.24 For each of the plates and loadings...Ch. 4.1 - 4.23 and 4.24 For each of the plates and loadings...Ch. 4.1 - A rod AB, hinged at A and attached at B to cable...Ch. 4.1 - Fig. P4.25 and P4.26 4.26 A rod AB, hinged at A...Ch. 4.1 - For the frame and loading shown, determine the...Ch. 4.1 - Determine the reactions at A and C when (a) = 0,...Ch. 4.1 - Prob. 4.29PCh. 4.1 - Prob. 4.30PCh. 4.1 - Neglecting friction, determine the tension in...Ch. 4.1 - Fig. P4.31 and P4.32 4.32 Neglecting friction,...Ch. 4.1 - PROBLEM 4.33 A force P of magnitude 90 lb is...Ch. 4.1 - PROBLEM 4.34 Solve Problem 4,33 for a = 6 in,...Ch. 4.1 - Bar AC supports two 400-N loads as shown. Rollers...Ch. 4.1 - PROBLEM 4.36 A light bar AD is suspended from a...Ch. 4.1 - A 160-lb overhead garage door consists of a...Ch. 4.1 - Fig. P4.37 4.38 In Prob. 4.37, determine the...Ch. 4.1 - A movable bracket is held at rest by a cable...Ch. 4.1 - Fig. P4.39 4.40 Solve Prob. 4.39 when = 30.Ch. 4.1 - The semicircular rod ABCD is maintained in...Ch. 4.1 - Determine the range of values of for which the...Ch. 4.1 - The rig shown consists of a 1200-lb horizontal...Ch. 4.1 - Fig. P4.43 4.44 For the rig and crate of Prob....Ch. 4.1 - A 175-kg utility pole is used to support at C the...Ch. 4.1 - Knowing that the tension in wire BD is 1300 N,...Ch. 4.1 - Fig. P4.46 and P4.47 4.47 Determine the range of...Ch. 4.1 - Beam AD carries the two 40-lb loads shown. The...Ch. 4.1 - Fig. P4.48 and P4.49 4.49 For the beam and loading...Ch. 4.1 - A traffic-signal pole may be supported in the...Ch. 4.1 - A uniform rod AB with a length of l and weight of...Ch. 4.1 - Rod AD is acted upon by a vertical force P at end...Ch. 4.1 - A slender rod AB with a weigh of W is attached to...Ch. 4.1 - 4.54 and 4.55 A vertical load P is applied at end...Ch. 4.1 - 4.54 and 4.55 A vertical load P is applied at end...Ch. 4.1 - A collar B with a weight of W can move freely...Ch. 4.1 - A 400-lb weight is attached at A to the lever...Ch. 4.1 - A vertical load P is applied at end B of rod BC....Ch. 4.1 - Eight identical 500 750-mm rectangular plates,...Ch. 4.1 - A truss can be supported in the eight different...Ch. 4.2 - A 500-lb cylindrical tank, 8 ft in diameter, is to...Ch. 4.2 - Determine the reactions at A and E when =0.Ch. 4.2 - Determine (a) the value of for which the reaction...Ch. 4.2 - A 12-ft ladder, weighing 40 lb, leans against a...Ch. 4.2 - Determine the reactions at B and C when a = 30 mm.Ch. 4.2 - Determine the reactions at A and E. Fig. P4.66Ch. 4.2 - Determine the reactions at B and D when b = 60 mm....Ch. 4.2 - For the frame and loading shown, determine the...Ch. 4.2 - A 50-kg crate is attached to the trolley-beam...Ch. 4.2 - One end of rod AB rests in the corner A and the...Ch. 4.2 - For the boom and loading shown, determine (a) the...Ch. 4.2 - Prob. 4.72PCh. 4.2 - Determine the reactions at A and D when = 30.Ch. 4.2 - Determine the reactions at A and D when = 60.Ch. 4.2 - Rod AB is supported by a pin and bracket at A and...Ch. 4.2 - Solve Prob. 4.75, assuming that the 170-N force...Ch. 4.2 - The L-shaped member ACB is supported by a pin and...Ch. 4.2 - Using the method of Sec. 4.2B, solve Prob. 4.22....Ch. 4.2 - Knowing that = 30, determine the reaction (a) at...Ch. 4.2 - Prob. 4.80PCh. 4.2 - Determine the reactions at A and B when = 50....Ch. 4.2 - Determine the reactions at A and B when = 80.Ch. 4.2 - Rod AB is bent into the shape of an arc of circle...Ch. 4.2 - A slender rod of length L is attached to collars...Ch. 4.2 - Prob. 4.85PCh. 4.2 - A uniform plate girder weighing 6000 lb is held in...Ch. 4.2 - A slender rod BC with a length of L and weight W...Ch. 4.2 - A thin ring with a mass of 2 kg and radius r = 140...Ch. 4.2 - Prob. 4.89PCh. 4.2 - Prob. 4.90PCh. 4.3 - Two tape spools are attached to an axle supported...Ch. 4.3 - A 12-m pole supports a horizontal cable CD and is...Ch. 4.3 - A 20-kg cover for a roof opening is hinged at...Ch. 4.3 - END-OF-SECTION PROBLEMS 4.91 Two transmission...Ch. 4.3 - Solve Prob. 4.91, assuming that the pulley rotates...Ch. 4.3 - A small winch is used to raise a 120-lb load. Find...Ch. 4.3 - Two transmission belts pass over sheaves welded to...Ch. 4.3 - A 250 400-mm plate of mass 12 kg and a...Ch. 4.3 - Solve Prob. 4.95 for = 60. 4.95 A 250 400-mm...Ch. 4.3 - The rectangular plate shown weighs 60 lb and is...Ch. 4.3 - A load W is to be placed on the 60-lb plate of...Ch. 4.3 - An opening in a floor is covered by a 1 1.2-m...Ch. 4.3 - PROBLEM 4.100 Solve Problem 4.99, assuming that...Ch. 4.3 - PROBLEM 4.101 Two steel pipes AB and BC, each...Ch. 4.3 - PROBLEM 4.102 For the pipe assembly of Problem...Ch. 4.3 - PROBLEM 4.103 The 24-lb square plate shown is...Ch. 4.3 - PROBLEM 4.104 The table shown weighs 30 lb and has...Ch. 4.3 - PROBLEM 4.105 A 10-ft boom is acted upon by the...Ch. 4.3 - PROBLEM 4.106 The 6-m pole ABC is acted upon by a...Ch. 4.3 - PROBLEM 4.107 Solve Problem 4.106 for a = 1.5 m....Ch. 4.3 - A 3-m pole is supported by a ball-and-socket joint...Ch. 4.3 - PROBLEM 4.109 A 3-m pole is supported by a...Ch. 4.3 - PROBLEM 4.110 A 7-ft boom is held by a ball and...Ch. 4.3 - PROBLEM 4.111 A 48-in. boom is held by a...Ch. 4.3 - PROBLEM 4.112 Solve Problem 4.111, assuming that...Ch. 4.3 - PROBLEM 4.114 The bent rod ABEF is supported by...Ch. 4.3 - Prob. 4.114PCh. 4.3 - The horizontal platform ABCD weighs 60 lb and...Ch. 4.3 - PROBLEM 4.116 The lid of a roof scuttle weighs 75...Ch. 4.3 - PROBLEM 4.117 A 100-kg uniform rectangular plate...Ch. 4.3 - Solve Prob. 4.117, assuming that cable DCE is...Ch. 4.3 - PROBLEM 4.119 Solve Prob. 4.113, assuming that the...Ch. 4.3 - PROBLEM 4.120 Solve Prob. 4.115, assuming that the...Ch. 4.3 - PROBLEM 4.121 The assembly shown is used to...Ch. 4.3 - PROBLEM 4.122 The assembly shown is welded to...Ch. 4.3 - PROBLEM 4.123 The rigid L-shaped member ABC is...Ch. 4.3 - Prob. 4.124PCh. 4.3 - The rigid L-shaped member ABF is supported by a...Ch. 4.3 - Solve Prob. 4.125, assuming that the load at C has...Ch. 4.3 - Three rods are welded together to form a corner...Ch. 4.3 - Prob. 4.128PCh. 4.3 - Frame ABCD is supported by a ball-and-socket joint...Ch. 4.3 - Prob. 4.130PCh. 4.3 - Prob. 4.131PCh. 4.3 - PROBLEM 4.132 The uniform 10kg rod AB is supported...Ch. 4.3 - The frame ACD is supported by ball-and-socket...Ch. 4.3 - Solve Prob. 4.133, assuming that cable GBH is...Ch. 4.3 - The 8-ft rod AB and the 6-ft rod BC are hinged at...Ch. 4.3 - Prob. 4.136PCh. 4.3 - Prob. 4.137PCh. 4.3 - The pipe ACDE is supported by ball-and-socket...Ch. 4.3 - Solve Prob. 4.138, assuming that wire DF is...Ch. 4.3 - Two 2 4-ft plywood panels, each with a weight of...Ch. 4.3 - Solve Prob. 4.140, subject to the restriction that...Ch. 4 - A 3200-lb forklift truck is used to lift a 1700-lb...Ch. 4 - The lever BCD is hinged at C and attached to a...Ch. 4 - Determine the reactions at A and B when (a) h =0,...Ch. 4 - Neglecting friction and the radius of the pulley,...Ch. 4 - PROBLEM 4.146 Bar AD is attached at A and C to...Ch. 4 - PROBLEM 4.147 A slender rod AB, of weight W, is...Ch. 4 - PROBLEM 4.148 Determine the reactions at A and B...Ch. 4 - For the frame and loading shown, determine the...Ch. 4 - PROBLEM 4.150 A 200-mm lever and a 240-mm-diameter...Ch. 4 - The 45-lb square plate shown is supported by three...Ch. 4 - The rectangular plate shown weighs 75 lb and is...Ch. 4 - A force P is applied to a bent rod ABC, which may...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As shown in the figure, a shaft manufactured with a surface treatment will carry the belt-pulley system, which is loaded with continuous and non-impact loads (in the YZ plane at α = 30 degrees). Design a shaft with a 95% reliability rating, a 2.5 safety factor, and made of cold-drawn AISI 1045 material. The shaft has no discontinuities or radius.arrow_forwardAir is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine inlet temperature of 1000 K. The properties of air at room temperature are cp=1.005 kJ/kg⋅K and k=1.4 . Determine the required mass flow rate of air for a net power output of 66 MW, assuming both the compressor and the turbine have an isentropic efficiency of 85 percent. The required mass flow rate of air is _________ kg/s.arrow_forwardF T = 450 Nm A ☑ 100 mm B 500 mm 1000 mm Şekil, 52 kN eksantrik yük taşıyan bir sonsuz mili göstermektedir. Mil radyal ve eksenel yük taşıyan rulmanlarla yataklanmıştır. Yük şekilde gösterildiği gibi somuna asılmış ve dönmeyi engellemektedir. Sürtünmeyi yenip yükü kaldırmak için uygulanan tork 450 Nm'dir. A ve B noktalarındaki gerilmeleri hesaplayınız. Milin, AISI 4140 540°C'DE temperlenmiş alaşımlı çelik olduğu bilindiğine göre maksimum kayma gerilmesi teorisine göre emniyetli olup olmadığını belirleyiniz. The figure shows a worm shaft carrying a 52 kN eccentric load. The shaft is supported by bearings that carry radial and axial loads. The load is suspended from the nut, as shown, preventing rotation. The torque applied to overcome friction and lift the load is 450 Nm. Calculate the stresses at points A and B. Knowing that the shaft is made of AISI 4140 alloy steel tempered at 540˚C, determine whether it is safe according to the maximum shear stress theory. 400 mmarrow_forward
- Stress, ksi 220 200 180 160 140 120 100 80 Question P: Data for an extension spring is shown in the table below. Use only this table for this question! Also shown is an abridged version of Table 18-2 and figure 18 Spring Material ASTM A228 Music wire Max Operating Load: Fo= 21 Type of Service = Average Estimated Wahl Factor: K = 1.200 Required Mean Diameter: D = 0.550 Design Stress in Wire: Td 90,000 psi TABLE 18-2 Wire Gages and Diameters for Springs Gage no. U.S. steel wire gage¹ (in) Music wire gage² (in) 0.6 26 0.0181 0.063 27 0.0173 0.067 28 00162 0.071 29 00150 0.075 30 00140 0.080 31 0.0132 0.085 22 0.0128 0.090 33 00118 0.095 34 0.0104 0.100 35 0.0095 0.106 36 0.0090 Wire diameter, mm Compression and extension springs, Music Wire, ASTM A228 O'S 5.4 5.8 6.2 0.112 1515 1380 Light service 1240 1100 Average service 965 Severe service 825 690 Wire diameter, in OLIO 0.190 0120 0.250 550 Stress, MPa FIGURE 18-9 Design shear stresses for ASTM A228 steel wire (music wire) What is the…arrow_forwardEndurance limit,, (psi) 100 000 80 000 60 000 Ground 40 000 20 000 As-rolled 0 50 60 70 80 90 100 110 120 Polished Machined or cold drawn As-forged 130 140 150 160 17 Tensile strength, s, (ksi) (a) U.S. customary units What is the minimum shaft diameter of D3 in inches? (Type in a three-decimal number). Note: We want to know the diameter D3, of the shaft, not the diameter at the base of a ring groove, profile keyseat or any other geometric feature on the shaft. Answer: x (3.008)arrow_forwardQuestion G: The machined shaft shown in the diagram below has the following components on it: (A) Sheave (B) Bearing (C) Sprocket (D) Bearing (E) Spur Gear Diameter D3 is located underneath Bearing B. Only the sheave at point A, the sprocket at point C and the spur gear at point E are held in place with rings. Diameter Dy is located underneath Bearing B. Only the sheave at point A, the sprocket at point C and the spur gear at point E are held in place with rings. PPENDIX 3 Design Properties of Carbon and Alloy Steels Material designation (SAE number) Condition Tensile strength Yield strength (ksi) (MPa) (MPa) Bearing Bearing 1020 Hot-rolled 55 379 207 V-belt sheave 6.00 in PD DD 1020 Cold-drawn 61 420 352 Spur gear Chain sprocket 10.00 in PD 20 FD 12.00 in PD 1020 Annealed 60 414 296 (a) Side view of shaft 10401 Hot-rolled 72 496 290 Belt drive to conveyor 1040 Cold-drawn 80 552 1040 OQT 1300 88 607 1040 OQT 400 113 779 1050 Hot-rolled 90 620 leput from water turbine Gear E drives Q to…arrow_forward
- 220 200 180 160 140 120 Stress, ksi 100 80 Question O: Data for an extension spring is shown in the table below. Use only this table for this question! Also shown is an abridged version of Table 18-2 and figure 18. Spring Material ASTM A228 Music wire Max Operating Load: F₁ = 57 Type of Service Average Estimated Wahl Factor: K= 1.200 Required Mean Diameter: D = 0.850 Design Stress in Wire: 1 = 115,000 psi TABLE 18-2 Wire Gages and Diameters for Springs 0.0181 27 0.0175 Gage no. U.S. steel wire gage (in) Music wire gage² (in) 0063 0.067 28 0.0162 0.071 29 0.0150 0.075 30 00140 0.080 31 0.0132 0085 32 00128 0.090 33 00118 0096 34 0.0104 0.100 35 0.0095 36 0.0090 1.8 Wire diameter, mm 0.106 0.112 5.4 5.8 6.2 1515 Compression and extension springs, Music Wire, ASTM A228. 1380 Light service 1240 Average service 1100 965 Severe service 825 690 P10100 OSO 0 0.150 0.170 061'0 0.210 0.230 F 0.250 550 Stress, MPa Wire diameter, in FIGURE 18-9 Design shear stresses for ASTM A228 steel wire (music…arrow_forwardPlease see attachment.arrow_forwardPlease see attachment.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L

International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY