
Concept explainers
Why does a child in a wagon seem to fall backward when you give the wagon a sharp pull forward?

Reason for a child in a wagon seems to fall backward when you give the wagon a sharp pull forward.
Answer to Problem 1Q
Solution:
It’s due to inertia
Explanation of Solution
The force is applied only on the wagon, but not on the child. The wagon accelerates due to this applied force. The child remains at rest, relative to the ground but the wagon moves. While the wagon moves forward and the child remains at rest, the child will move backward relative to the wagon. The child has inertia so child’s state of motion will not change until an outside force acts.
The child tends to remain at rest according to Newton’s first law of motion unless an external unbalanced force acts on the child. As force is applied only to the wagon, not the child. This makes the wagon accelerates out from under the child, making it look like the child falls backward relative to the wagon.
Want to see more full solutions like this?
Chapter 4 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Campbell Biology: Concepts & Connections (9th Edition)
Applications and Investigations in Earth Science (9th Edition)
Campbell Essential Biology (7th Edition)
Microbiology: An Introduction
Human Biology: Concepts and Current Issues (8th Edition)
Anatomy & Physiology (6th Edition)
- Please helparrow_forward15 cm Two lenses lie 70 cm apart. The focal lengths are f₁ = 20 cm for lens 1 (converging), and f₂ = -51 cm for lens 2 (diverging). A 15 cm tall object sits 45 cm in front of lens 1. Note: the 50 and 100 cm markings on the line are not the positions of the lenses! a) First, draw the positions of the two lenses. Then draw a ray diagram with all the primary rays. Include the location of image 1 formed by lens 1 and the final image formed by lens 2. (4 points) 0 cm 50 cm 100 cm 150 cm b) For each of image 1 and the final image: are they real or virtual, upright or inverted (relative to the original object)? (1 point) c) Calculate the distance of the final image from the object. (2 points) d) Find the magnification and size in cm of the final image. (2 points) e) Do your calculations in parts c) and d) match your ray diagrams in part a)? (1 point)arrow_forwardA simple series circuit consists of a 150 Ω resistor, a 27.0 V battery, a switch, and a 2.00 pF parallel-plate capacitor (initially uncharged) with plates 5.0 mm apart. The switch is closed at t =0s . Part A Part complete Part B Part complete Part C Find the electric flux at t =0.50ns. Express your answer in volt-meters. View Available Hint(s)for Part C Activate to select the appropriates template from the following choices. Operate up and down arrow for selection and press enter to choose the input value typeActivate to select the appropriates symbol from the following choices. Operate up and down arrow for selection and press enter to choose the input value type nothing V⋅m Part D Find the displacement current at t =0.50ns.arrow_forward
- Please helparrow_forwardPlease dont forget the last three rowsarrow_forward1. [3.33/20 Points] Shown in the figure below is an electrical circuit containing three resistors and two batteries. R₁ www 4 R3 ww 10 www Write down the Kirchhoff Junction equation and solve it for I, in terms of I, and I. Write the result here: 4-42-13 Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and follows the perimeter of the circuit diagram dockwise. 0-10-₁ +4 × Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and touches the components 10V, R₁, 4V, and R₂. 0--12R₂-IR₁ × The resistors in the circuit have the following values: R, 20 R₂ =6 R 100 Solve for all the following (some answers may be negative): I-1.3478 -0.2174 --1.1304 x Amperes x Amperes x Amperes NOTE: For the equations, put in resistances and currents SYMBOLICALLY using variables like R,,R₂,R, and I, J₂,;. Use numerical values of 10 and 4 for the voltages. SUBMIT ANSWERarrow_forward
- Q3:A tow truck pulls a car that is stuck in the mud, with a force of 2 500 N as shown. The tow cable is under tension and therefore pulls downward and to the left on the pin at its upper end. The light pin is held in equilibrium by forces exerted by the two bars A and B. Each bar is a strut: that is, each is a bar whose weight is small com-pared to the forces it exerts, and which exerts forces only through hinge pins at its ends. Each strut exerts a force directed parallel to its length. (i) Determine the force of tension or compression in each strut. Proceed as follows: Make a guess as to which way (pushing or pulling) each force acts on the top pin. (4) (ii) Draw a free-body diagram of the pin. Use the condition for equilibrium of the pin to translate the free-body diagram into equations. From the equations calculate the forces exerted by struts A and B. 4A negative answer means the direction should be reversed, but the absolute value correctly gives the magnitude of the force. (8)…arrow_forward2. Kiran is doing a summer internship in a physics lab that uses optical fibres. Their Thorlabs 1550BHP fibre has specifications listed here. To the right is a diagram of the various layers (thicknesses to scale) and the definition of the bending radius (not to scale). Kiran needs to route a beam of A = 1550 nm light through a tight mechanical setup and needs to keep the curves larger than the listed minimum bend radius (Long Term). Assume that any curves are circular (i.e. the curve makes a perfect circular arc segment) and Coating Cladding Core Cladding Coating that all the light is perfectly aligned when it enters the fibre. Bending Radius a) Draw a diagram of the situation showing the light beams, the core, and core-cladding interface of the fibre. Include a circular bend of the minimum bending radius, and the path of the light beams as they reflect. b) Based on the minimum bending radius, what is the ratio of the indices of refraction of the core and cladding material? I.e. find…arrow_forward1. Tobenna is visiting the penguin exhibit at a zoo. He sees a penguin swimming underwater, using its beak to look for food at the bottom of the tank. According to a tour guide, the tank is 2.0 m deep. The index of refraction of the water is the usual one of 1.33, and Tobenna is standing right at the edge of the tank. a) Tobenna's excellent depth perception tells him the penguin is 5.3 m away. He has taken PHYS 102 so he knows that this is just an apparent distance. Determine the apparent and actual horizontal distances of the penguin from the edge of the tank. b) If Tobenna crouches down so his head is only 1.0 m above the ground, will he perceive the penguin to be closer or further from the wall than in a)? c) Is there a place where Tobenna could stand where he would not see the penguin at all, despite being able to draw a straight line between his eyes and the penguin? (i.e. due to refraction, not from standing around a corner.) d) This question is qualitative only. You don't need…arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





