
Lecture- Tutorials for Introductory Astronomy
3rd Edition
ISBN: 9780321820464
Author: Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 19SEP
To determine
Whether the seasons occur and the temperature difference between seasons would still be great when the number of daylight hours remains same throughout the year.
Expert Solution & Answer

Learn your wayIncludes step-by-step video

schedule02:00
Chapter 4 Solutions
Lecture- Tutorials for Introductory Astronomy
Ch. 4 - Which Moon position (AE) best corresponds with the...Ch. 4 - In the blank boxes below, sketch how the Moon...Ch. 4 - Shade in each of the four Moons shown in Figure 2...Ch. 4 - Which Moon position (Fl) best corresponds with the...Ch. 4 - How much of the entire Moon’s surface is...Ch. 4 - How much of the Moon’s illuminated surface is...Ch. 4 - Would your answers to Questions 5 or 6 change if...Ch. 4 - Consider the following discussion between two...Ch. 4 - If the Moon is a full Moon tonight, will the Moon...Ch. 4 - Where (in the southern sky, on the eastern...
Ch. 4 - Where (in the southern sky, on the eastern...Ch. 4 -
Where (in the southern sky, on the eastern...Ch. 4 -
If the Moon is a new Moon when it rises, which of...Ch. 4 -
What time is it for the person shown in Figure...Ch. 4 -
Draw a stick figure person on Earth in Figure 1...Ch. 4 - Answer the following questions for the position of...Ch. 4 -
At what time would you look to see a...Ch. 4 -
If the Sun set below your western horizon about 2...Ch. 4 -
A friend comments to you that there was a...Ch. 4 - According to Figure 1, in which direction would...Ch. 4 - If it is wintertime right now (just after the...Ch. 4 - Since Figure 1 is a reasonable representation for...Ch. 4 - During what time(s) of year would the Sun...Ch. 4 - Does the Sun always set in precisely the same...Ch. 4 - What do the x’s in the shadow plots represent?
Ch. 4 - Approximately how much time went by from the time...Ch. 4 - Approximately how long did it take to create each...Ch. 4 - How does the direction of the stick’s shadow...Ch. 4 - Using Figures 1 and 2, in what direction would the...Ch. 4 - Clearly circle the x for the shadow that...Ch. 4 - Compare the position of the x that corresponds to...Ch. 4 - Which Shadow Plot (A or B) most closely...Ch. 4 - On Figure 2, sketch the Sun’s position shortly...Ch. 4 - Based on the shadow plots in Figure 2, during...Ch. 4 - If Shadow Plot A corresponds to the path of the...Ch. 4 - If Shadow Plot B corresponds to the path of the...Ch. 4 - If you were to mark the end of the stick’s shadow...Ch. 4 - Will the stick ever cast a shadow along the...Ch. 4 - Is there ever a clear (no clouds) day of the year...Ch. 4 - Is the direction that Earth’s axis is tilted...Ch. 4 - Using the information listed above, does Earth...Ch. 4 - Would you say the temperature stays approximately...Ch. 4 - Are the seasons (summer or winter) the same in the...Ch. 4 - Consider the following discussion between two...Ch. 4 - Do you think these differences in distance between...Ch. 4 - Consider the following discussion between two...Ch. 4 - Which of the two lighted areas (the one created by...Ch. 4 - Which of the two lighted areas is smaller?
Ch. 4 - Which of the two lighted areas receives more...Ch. 4 - If a thermometer were placed in each of the...Ch. 4 - Which of the two positions would be similar to the...Ch. 4 - Which location(s) (A–F) correspond(s) with summer...Ch. 4 - Which location(s) (A–F) correspond(s) with winter...Ch. 4 - During which season (summer or winter) is the...Ch. 4 - During which season (summer or winter) is the Sun...Ch. 4 - How are your answers to the previous two questions...Ch. 4 - How would the number of hours of sunlight and the...Ch. 4 - If, somehow, the number of daylight hours did not...Ch. 4 - If the Northern Hemisphere were tilted 90° toward...Ch. 4 - Provide two pieces of evidence to support the fact...Ch. 4 - Which two things are most directly responsible for...Ch. 4 - Given the data in Table 1, plot the motion of the...Ch. 4 - On what date was the mystery planet located...Ch. 4 - On what date was the mystery planet located...Ch. 4 - Describe how the mystery planet moved (east or...Ch. 4 - During which dates does the mystery planet appear...Ch. 4 - During which dates does this mystery planet appear...Ch. 4 - If a planet were moving with retrograde motion,...Ch. 4 - Suppose your instructor says that Mars is moving...Ch. 4 - Which direction (right or left) are the oceanic...Ch. 4 - Which is hotter, the piece of mantle material at...Ch. 4 - What direction are the pieces of mantle material...Ch. 4 - Consider the following discussion between two...Ch. 4 - Just beneath Point I on the drawing is a tropical...Ch. 4 - Just beneath Point C on the drawing is an ancient...Ch. 4 - Imagine that an impact occurred on the continental...Ch. 4 - Consider the image below of the rocky and...Ch. 4 - If a new planet were discovered, what evidence...Ch. 4 - Which TWO forms of light account for the majority...Ch. 4 - Consider the following debate between two students...Ch. 4 - Comparing the visible and the infrared types of...Ch. 4 - Comparing the ultraviolet and the infrared types...Ch. 4 - Based upon Figures 1 and 2, why is ultraviolet...Ch. 4 - What gas molecules are primarily responsible for...Ch. 4 - What are the two greenhouse gases most responsible...Ch. 4 - The Sun is approximately 6000 K at the surface and...Ch. 4 - Does Earth’s surface give off light at night? If...Ch. 4 - Consider the following debate between two students...Ch. 4 - Will the light given off by Earth’s surface easily...Ch. 4 - How does the total amount of energy coming from...Ch. 4 - What type of light primarily heats Earth’s surface...Ch. 4 - Is more energy absorbed by Earth’s surface in the...Ch. 4 - Due to the light absorbed by Earth’s surface that...Ch. 4 - Prob. 16GRPCh. 4 - Consider the following debate between two students...Ch. 4 - What was the temperature at the location of...Ch. 4 - What was the temperature at the location of Mars?
Ch. 4 - Which planets formed at temperatures hotter than...Ch. 4 - Which planets formed at temperatures cooler than...Ch. 4 - Over what range of distances from the Sun would...Ch. 4 - Over what range of distances from the Sun would...Ch. 4 - Is it likely that a large, Jovian planet would...Ch. 4 - Which of the following pairs of objects would make...Ch. 4 - Using small circles to represent Earth and the...Ch. 4 - To make a scale model of the Earth–Moon orbital...Ch. 4 - Can any combinations of the following items be...Ch. 4 - Does this mean that two Suns placed side-by-side...Ch. 4 - If you were to use a 1-foot (12-inch) basketball...Ch. 4 - If we used a basketball to represent the Sun and a...Ch. 4 - How many Moons would fit across the diameter of...Ch. 4 - Approximately how many times could the Moon’s...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
41. A reaction in which A, B, and C react to form products is first order in A, second order in B, and zero ord...
Chemistry: Structure and Properties (2nd Edition)
8.63 Two flasks of equal volume and at the same temperature contain different gases. One flask contains 10.0 g ...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
WHAT IF? Most prairies experience regular fires, typically every few years. If these disturbances were relativ...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please dont forget the last three rowsarrow_forward1. [3.33/20 Points] Shown in the figure below is an electrical circuit containing three resistors and two batteries. R₁ www 4 R3 ww 10 www Write down the Kirchhoff Junction equation and solve it for I, in terms of I, and I. Write the result here: 4-42-13 Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and follows the perimeter of the circuit diagram dockwise. 0-10-₁ +4 × Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and touches the components 10V, R₁, 4V, and R₂. 0--12R₂-IR₁ × The resistors in the circuit have the following values: R, 20 R₂ =6 R 100 Solve for all the following (some answers may be negative): I-1.3478 -0.2174 --1.1304 x Amperes x Amperes x Amperes NOTE: For the equations, put in resistances and currents SYMBOLICALLY using variables like R,,R₂,R, and I, J₂,;. Use numerical values of 10 and 4 for the voltages. SUBMIT ANSWERarrow_forwardQ3:A tow truck pulls a car that is stuck in the mud, with a force of 2 500 N as shown. The tow cable is under tension and therefore pulls downward and to the left on the pin at its upper end. The light pin is held in equilibrium by forces exerted by the two bars A and B. Each bar is a strut: that is, each is a bar whose weight is small com-pared to the forces it exerts, and which exerts forces only through hinge pins at its ends. Each strut exerts a force directed parallel to its length. (i) Determine the force of tension or compression in each strut. Proceed as follows: Make a guess as to which way (pushing or pulling) each force acts on the top pin. (4) (ii) Draw a free-body diagram of the pin. Use the condition for equilibrium of the pin to translate the free-body diagram into equations. From the equations calculate the forces exerted by struts A and B. 4A negative answer means the direction should be reversed, but the absolute value correctly gives the magnitude of the force. (8)…arrow_forward
- 2. Kiran is doing a summer internship in a physics lab that uses optical fibres. Their Thorlabs 1550BHP fibre has specifications listed here. To the right is a diagram of the various layers (thicknesses to scale) and the definition of the bending radius (not to scale). Kiran needs to route a beam of A = 1550 nm light through a tight mechanical setup and needs to keep the curves larger than the listed minimum bend radius (Long Term). Assume that any curves are circular (i.e. the curve makes a perfect circular arc segment) and Coating Cladding Core Cladding Coating that all the light is perfectly aligned when it enters the fibre. Bending Radius a) Draw a diagram of the situation showing the light beams, the core, and core-cladding interface of the fibre. Include a circular bend of the minimum bending radius, and the path of the light beams as they reflect. b) Based on the minimum bending radius, what is the ratio of the indices of refraction of the core and cladding material? I.e. find…arrow_forward1. Tobenna is visiting the penguin exhibit at a zoo. He sees a penguin swimming underwater, using its beak to look for food at the bottom of the tank. According to a tour guide, the tank is 2.0 m deep. The index of refraction of the water is the usual one of 1.33, and Tobenna is standing right at the edge of the tank. a) Tobenna's excellent depth perception tells him the penguin is 5.3 m away. He has taken PHYS 102 so he knows that this is just an apparent distance. Determine the apparent and actual horizontal distances of the penguin from the edge of the tank. b) If Tobenna crouches down so his head is only 1.0 m above the ground, will he perceive the penguin to be closer or further from the wall than in a)? c) Is there a place where Tobenna could stand where he would not see the penguin at all, despite being able to draw a straight line between his eyes and the penguin? (i.e. due to refraction, not from standing around a corner.) d) This question is qualitative only. You don't need…arrow_forwardReta 2. The force of gravity between two objects becomes stronger/twice as strong) LAWS OF MOTION 99 if the distance between them is halved. (four times 3. The force of gravity is weaker on the moon than on earth because the moon has less 4. The gravitational force exerted by the earth on an object is called the object's (Analysis) (mass/distance) (Application) (weight/mass) (Understanding) ANSWERS 1. decreases 2. four times stronger 3. mass 4. weight. Numericals Find the gravitational force between two bodies of masses 50 kg each, situated at 1 m from each other. Ans. 1.67 x 107 N. 2. Find the attractive force between moon and earth if mass of earth is 6 x 1024 kg, mass of moon is 7.4 × 1022 kg and moon is at a distance of 3.84 x 108 m from the earth. Ans. 2.01 x 1020 N. 3. How does the gravitational force between two bodies change, if the distance between them is reduced to half? Calculate the value of 'g' at height of 3 times to radius of earth. Ans. 4 times. Ans. g/16. Ans. 60 kg.…arrow_forward
- 6. [0/5 Points] DETAILS MY NOTES PREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE ANOTHER The emf in the figure below is 4.38 V. The resistances are R₁ = 26.02, R2 = 26.50, and R3 = 38.00. Find the following. R₁ R2 R3 (a) the current in each resistor (Give your answers to at least three significant figures.) 12= 13 = A A A (b) the power consumed by each resistor P1 P₂ = P3 W W W (c) the power supplied by the emf device Enter a number. W Viewing Saved Work Revert to Last Response SUBMIT ANSWER KatzPSE1 29.P.040.arrow_forwardThe stators in a gas turbine are designed to increase the kinetic energy of the gas passing through them adiabatically. Air enters a set of these nozzles at 300 psia and 700°F with a velocity of 76 ft/s and exits at 250 psia and 645°F. Calculate the velocity at the exit of the nozzles. The specific heat of air at the average temperature of 672.5°F is cp=0.253 Btu/lbm⋅R . The velocity at the exit of the nozzles is __________ ft/s.arrow_forwardA desktop computer is to be cooled by a fan whose flow rate is 0.34 m³/min. Determine the mass flow rate of air through the fan at an elevation of 3400 m where the air density is 0.7 kg/m³. Also, if the average velocity of air is not to exceed 103 m/min, determine the diameter of the casing of the fan. Air outlet Air inlet Exhaust fan The mass flow rate of air through the fan is The diameter of the casing of the fan is kg/min. cm.arrow_forward
- Air at 80 kPa and 127°C enters an adiabatic diffuser steadily at a rate of 6600 kg/h and leaves at 100 kPa. The velocity of the airstream is decreased from 230 m/s to 30 m/s as it passes through the diffuser. The gas constant of air is 0.287 kPa·m3/kg·K. The enthalpy of air at the inlet temperature of 400 K is h1 = 400.98 kJ/kg. Determine the exit area of the diffuser. The exit area of the diffuser is_______ m2.arrow_forwardThere is a ring of metal flying through space towards Earth. The ring's velocity and normal vector both point right towards Earth. The ring is on the left and the Earth is on the right. The ring is initially constant and uniform magnetic field is pointing upwards relative to the ring's direction of motion. What is the distribution of charges on the ringarrow_forwardSteel train rails are laid in 15.0-m-long segments placed end to end. The rails are laid on a winter day when their temperature is -1.0 °C. Part A How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is 34.0°C? Express your answer to two significant figures and include the appropriate units. D= 0.0058 Submit 0 ? m Previous Answers Request Answer × Incorrect; Try again; 4 attempts remaining Part B If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 34.0°C? Express your answer using two significant figures. Enter positive value if the stress is tensile and negative value if the stress is compressive. ΤΟ ΑΣΦ TA F = -7.7.107 Submit Q Previous Answers Request Answer × Incorrect; Try Again; 5 attempts remaining ? Paarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY