
Architectural Drafting and Design (MindTap Course List)
7th Edition
ISBN: 9781285165738
Author: Alan Jefferis, David A. Madsen, David P. Madsen
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.1Q
To determine
The definition of tread.
Expert Solution & Answer

Explanation of Solution
A tread is defined as a horizontal step of the stairs. It is generally made from 1´´(25 mm) material in enclosed stairs and 2´´( 50 mm) material on open stair. According to IRC ,the minimum tread depth should be 10´´(254 mm) for the individual tread run but size varies based on the type of construction and walk line location. The diagram is shown below:
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
How can smaller municipalities with limited resources effectively integrate environmental site planning practices into their projects?
Help me finish solving this problem. Tips on how to solve are listed at the bottom of the image
Answer numbers 1&2. Show complete solution and write the proper units thanks
Chapter 39 Solutions
Architectural Drafting and Design (MindTap Course List)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- The structures in the following problems are single-story, one-bay assemblies representing one common lateral force- resisting systems used in buildings: Moment-Resisting Frames (MRFS). Each frame is fix-connected at its base. Your tasks are as follows: 1. 2. Solve for the support reactions (vertical, lateral, and moment) under the applied lateral load. Determine member end forces (axial, shear, and moment) for all relevant structural members.arrow_forwardThe structures in the following problems are single-story, one-bay assemblies representing one common lateral force- resisting systems used in buildings: Moment-Resisting Frames (MRFs). Each frame is fix-connected at its base. Your tasks are as follows: Solve for the support reactions (vertical, lateral, and moment) under the applied lateral load. Determine member end forces (axial, shear, and moment) for all relevant structural members. 1. 2. 3. Draw internal force diagrams (bending moment) for the required elements. 4. Determine the lateral deflection of joint B Be sure to clearly label your diagrams and show all work leading to your solutions. You must use the slope deflection equations to solve the problem, otherwise it will take forever. Use dimensions referenced to elements' centerlines. You shall neglect axial and shear induced deformations.arrow_forwardWhat are some relative code requirements specific to a roof system components?arrow_forward
- The ____________ costs can often be the determining factor in a successful project. Group of answer choices Overhead Material Labor Profitarrow_forwardWho is responsible for conducting special inspections and ensuring the work completed complies with design documents and referenced standards, why are specical inspections required?arrow_forwardYou are viewing Attempt 1/Continue Work * Incorrect The 123-kg industrial door with mass center at G is being positioned for repair by insertion of the 8° wedge under corner B. Horizontal movement is prevented by the small ledge at corner A. If the coefficients of static friction at both the top and bottom wedge surfaces are 0.65, determine the force P required to lift the door at B. Assume a = 1.4 m, b = 1.2 m, a = 8° A Answer: P = 1144.28 N Barrow_forward
- How can new sustainable materials change dead load calculations in future designs in earthquake-prone areas?arrow_forwardGiven the truss with loading shown. Note that the roller connection at Joint D is in atrack so that it cannot move in the x-direction, but it can roll in the y-direction.Solve the truss with the virtual load you would use if you are going to solve for the verticaldeflection at Joint E using the method of virtual work.Note: Just solve the truss. You DO NOT need to find the vertical deflection at Joint E.arrow_forwardQuestion (1): (18 Marks) Gaza City has a total population of 650,000 inhabitant, where 75% of the population is connected to wastewater collection system. The water consumption per capita is 100 L/day. Currently, the collected flow treated partially by aerated lagoon system. The municipality intend to change the treatment system to a completely mixed activated sludge system to be used for organic matter removal only to fulfill the Palestinian standards for reuse (Soluble BOD 30 mg/l). The given data from the municipality laboratory and assumptions: ⚫ The influent soluble Biological Oxygen demand = 500 mg/l. Biomass yield (Y) = 0.5 mg VSS/mg BOD removed • Endogenous decay rate constant (Ka) = 0.05d¹ • • The concentration of biomass (X) = 3000 mg MLVSS The concentration of recycled biomass (X) = 10000 mg MLVSS/L Growth rate (d) 2.5 1.25 100 For the completely mixed activated sludge system find the following: a) The average flow to the treatment plant. b) The mean cell residence time. c)…arrow_forward
- Question (3): (20 Marks) You have been assigned to design a secondary wastewater treatment component based on a tricking filter technique. The flow rate is 3500 m³/day, the raw wastewater has a BOD5 of 600 mg/l. This wastewater is primarily treated with an efficiency of 35%. • Assume suitable design criteria to obtain a BOD effluent of 15 mg/l. Design the secondary clarifier • Perform all the necessary cheeks on your design.arrow_forwardQuestion (3): (20 Marks) You have been assigned to design a secondary wastewater treatment component based on a tricking filter technique. The flow rate is 3500 m³/day, the raw wastewater has a BOD5 of 600 mg/l. This wastewater is primarily treated with an efficiency of 35%. • Assume suitable design criteria to obtain a BOD effluent of 15 mg/l. Design the secondary clarifier • Perform all the necessary cheeks on your design.arrow_forwardData:Total budget = $25,000BCWS = $ 8,333BCWP = $ 6,400ACWP = $ 7,800Project duration = 40 daysData date: 10 days Perform the following analyses of the project based on the data given above.a. Cost Variance b. Schedule Variancearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Architectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning

Architectural Drafting and Design (MindTap Course...
Civil Engineering
ISBN:9781285165738
Author:Alan Jefferis, David A. Madsen, David P. Madsen
Publisher:Cengage Learning

Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning

Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,

Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning