
Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 31.1, Problem 31.2GI
Where would you place an object so that its real image is the same size as the object, as in Fig. 31.7? (a) at the center of curvature C; (b) at the focal point F; (c) between F and the mirror; (d) between F and C; (e) beyond C
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please help
15 cm
Two lenses lie 70 cm apart. The focal lengths are f₁ = 20 cm for lens 1 (converging), and f₂ = -51 cm
for lens 2 (diverging). A 15 cm tall object sits 45 cm in front of lens 1. Note: the 50 and 100 cm
markings on the line are not the positions of the lenses!
a) First, draw the positions of the two lenses. Then draw a ray diagram with all the primary rays.
Include the location of image 1 formed by lens 1 and the final image formed by lens 2. (4
points)
0 cm
50 cm
100 cm
150 cm
b) For each of image 1 and the final image: are they real or virtual, upright or inverted (relative to
the original object)? (1 point)
c) Calculate the distance of the final image from the object. (2 points)
d) Find the magnification and size in cm of the final image. (2 points)
e) Do your calculations in parts c) and d) match your ray diagrams in part a)? (1 point)
A simple series circuit consists of a 150 Ω resistor, a 27.0 V battery, a switch, and a 2.00 pF parallel-plate capacitor (initially uncharged) with plates 5.0 mm apart. The switch is closed at t =0s .
Part A
Part complete
Part B
Part complete
Part C
Find the electric flux at t =0.50ns.
Express your answer in volt-meters.
View Available Hint(s)for Part C
Activate to select the appropriates template from the following choices. Operate up and down arrow for selection and press enter to choose the input value typeActivate to select the appropriates symbol from the following choices. Operate up and down arrow for selection and press enter to choose the input value type
nothing
V⋅m
Part D
Find the displacement current at t =0.50ns.
Chapter 31 Solutions
Essential University Physics
Ch. 31.1 - You stand in front of a plane mirror whose top is...Ch. 31.1 - Where would you place an object so that its real...Ch. 31.2 - Prob. 31.3GICh. 31.3 - A thin lens has focal length +50 cm. Which of the...Ch. 31.4 - If you look backward through a refracting...Ch. 31 - How can you see a virtual image, when its not...Ch. 31 - Under what circumstances will the image in a...Ch. 31 - If you're handed a converging lens, what can you...Ch. 31 - Is there any limit to the temperature you can...Ch. 31 - If you placed a screen at the location of a...
Ch. 31 - If you look into the bowl of a metal spoon, you...Ch. 31 - Is the image on a movie screen real or virtual?...Ch. 31 - Does a fish in a spherical bowl appear larger or...Ch. 31 - A block of ice contains a hollow, air-filled space...Ch. 31 - The refractive index of the human cornea is about...Ch. 31 - A shoe store uses small floor-level mirrors to let...Ch. 31 - A candle is on the axis of a 15-cm-focal-length...Ch. 31 - Prob. 13ECh. 31 - A virtual image is located 40cm behind a concave...Ch. 31 - (a) Where on the axis of a concave mirror would...Ch. 31 - A lightbulb is 56 cm from a convex lens. Its image...Ch. 31 - By what factor is the image magnified for an...Ch. 31 - A lens with 50-cm focal length produces a real...Ch. 31 - By holding a magnifying glass 25 cm from your desk...Ch. 31 - Youre writing specifications for a new line of...Ch. 31 - You're standing in a wading pool and your feet...Ch. 31 - Prob. 22ECh. 31 - Prob. 23ECh. 31 - Prob. 24ECh. 31 - You have to hold a book 55 cm from your eyes for...Ch. 31 - What focal length should you specify if you want a...Ch. 31 - Youre an optometrist helping a nearsighted patient...Ch. 31 - A particular eye has a focal length of 2.0 cm...Ch. 31 - A compound microscope has objective and eyepiece...Ch. 31 - Prob. 30ECh. 31 - Prob. 31ECh. 31 - Prob. 32ECh. 31 - Prob. 33ECh. 31 - Example 31.4: (a) Rework Example 31.4 to find the...Ch. 31 - Prob. 35ECh. 31 - Prob. 36ECh. 31 - Prob. 37ECh. 31 - (a) Find the focal length of a concave mirror if...Ch. 31 - A 12-mm-high object is 10cm from a concave mirror...Ch. 31 - Prob. 40PCh. 31 - An objects image in a 27-cm-focal-length concave...Ch. 31 - Youre asked to design a concave mirror that will...Ch. 31 - Viewed from Earth, the Moon subtends an angle of...Ch. 31 - At what two distances could you place an object...Ch. 31 - How far from a page should you hold a lens with...Ch. 31 - A converging lens has focal length 4.0 cm. A...Ch. 31 - A lens has focal length f = 35 cm. Find the type...Ch. 31 - How far apart are the object and image produced by...Ch. 31 - A candle and a screen are 70cm apart. Find two...Ch. 31 - Prob. 50PCh. 31 - How far from a 25-cm-focal-length lens should you...Ch. 31 - An object and its lens-produced real image are 2.4...Ch. 31 - An object is 68 cm from a plano-convex lens whose...Ch. 31 - Prob. 54PCh. 31 - Prob. 55PCh. 31 - A magnifier for reading is in the form of a glass...Ch. 31 - Prob. 57PCh. 31 - A contact lens is in the shape of a convex...Ch. 31 - For what refractive index would the focal length...Ch. 31 - An object is 28 cm from a double-convex lens with...Ch. 31 - Youre an optician whos been asked to design a new...Ch. 31 - A double-convex lens with equal 28.5-cm curvature...Ch. 31 - An object placed 17.5 cm from a convex lens of...Ch. 31 - Youre taking a photography class, working with a...Ch. 31 - A camera can normally focus as close as 60cm, but...Ch. 31 - A 300-power compound microscope has a...Ch. 31 - To the unaided eye, Jupiter has an angular...Ch. 31 - A Cassegrain telescope like that shown in Fig....Ch. 31 - You stand with your nose 6.0 cm from the surface...Ch. 31 - A contact lens prescription calls for...Ch. 31 - Show that placing a 1-diopter lens in front of a...Ch. 31 - Derive an expression for the thickness t of a...Ch. 31 - Show that identical objects placed equal distances...Ch. 31 - Generalize the derivation of the lensmakers...Ch. 31 - Draw a diagram like Fig. 31.10, but showing a ray...Ch. 31 - Prob. 76PCh. 31 - The maximum magnification of a simple magnifier...Ch. 31 - Chromatic aberration results from variation of the...Ch. 31 - For visible wavelengths, the refractive index of...Ch. 31 - The table below shows measurements of...Ch. 31 - Zooming your camera's lens for telephoto shots...Ch. 31 - Increasing the f-ratio from 2.8 to 5.6 a....Ch. 31 - Youre given two lenses with different diameters....Ch. 31 - If a lens suffers from spherical aberration,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
6. A particle starts from x0 = 10 m at t = 0 s and moves with the velocity graph shown in FIGURE EX2.6.
a. Do...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
Problems 49 through 61 describe a situation. For each problem, draw a motion diagram, a force identification di...
College Physics: A Strategic Approach (3rd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please helparrow_forwardPlease dont forget the last three rowsarrow_forward1. [3.33/20 Points] Shown in the figure below is an electrical circuit containing three resistors and two batteries. R₁ www 4 R3 ww 10 www Write down the Kirchhoff Junction equation and solve it for I, in terms of I, and I. Write the result here: 4-42-13 Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and follows the perimeter of the circuit diagram dockwise. 0-10-₁ +4 × Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and touches the components 10V, R₁, 4V, and R₂. 0--12R₂-IR₁ × The resistors in the circuit have the following values: R, 20 R₂ =6 R 100 Solve for all the following (some answers may be negative): I-1.3478 -0.2174 --1.1304 x Amperes x Amperes x Amperes NOTE: For the equations, put in resistances and currents SYMBOLICALLY using variables like R,,R₂,R, and I, J₂,;. Use numerical values of 10 and 4 for the voltages. SUBMIT ANSWERarrow_forward
- Q3:A tow truck pulls a car that is stuck in the mud, with a force of 2 500 N as shown. The tow cable is under tension and therefore pulls downward and to the left on the pin at its upper end. The light pin is held in equilibrium by forces exerted by the two bars A and B. Each bar is a strut: that is, each is a bar whose weight is small com-pared to the forces it exerts, and which exerts forces only through hinge pins at its ends. Each strut exerts a force directed parallel to its length. (i) Determine the force of tension or compression in each strut. Proceed as follows: Make a guess as to which way (pushing or pulling) each force acts on the top pin. (4) (ii) Draw a free-body diagram of the pin. Use the condition for equilibrium of the pin to translate the free-body diagram into equations. From the equations calculate the forces exerted by struts A and B. 4A negative answer means the direction should be reversed, but the absolute value correctly gives the magnitude of the force. (8)…arrow_forward2. Kiran is doing a summer internship in a physics lab that uses optical fibres. Their Thorlabs 1550BHP fibre has specifications listed here. To the right is a diagram of the various layers (thicknesses to scale) and the definition of the bending radius (not to scale). Kiran needs to route a beam of A = 1550 nm light through a tight mechanical setup and needs to keep the curves larger than the listed minimum bend radius (Long Term). Assume that any curves are circular (i.e. the curve makes a perfect circular arc segment) and Coating Cladding Core Cladding Coating that all the light is perfectly aligned when it enters the fibre. Bending Radius a) Draw a diagram of the situation showing the light beams, the core, and core-cladding interface of the fibre. Include a circular bend of the minimum bending radius, and the path of the light beams as they reflect. b) Based on the minimum bending radius, what is the ratio of the indices of refraction of the core and cladding material? I.e. find…arrow_forward1. Tobenna is visiting the penguin exhibit at a zoo. He sees a penguin swimming underwater, using its beak to look for food at the bottom of the tank. According to a tour guide, the tank is 2.0 m deep. The index of refraction of the water is the usual one of 1.33, and Tobenna is standing right at the edge of the tank. a) Tobenna's excellent depth perception tells him the penguin is 5.3 m away. He has taken PHYS 102 so he knows that this is just an apparent distance. Determine the apparent and actual horizontal distances of the penguin from the edge of the tank. b) If Tobenna crouches down so his head is only 1.0 m above the ground, will he perceive the penguin to be closer or further from the wall than in a)? c) Is there a place where Tobenna could stand where he would not see the penguin at all, despite being able to draw a straight line between his eyes and the penguin? (i.e. due to refraction, not from standing around a corner.) d) This question is qualitative only. You don't need…arrow_forward
- Reta 2. The force of gravity between two objects becomes stronger/twice as strong) LAWS OF MOTION 99 if the distance between them is halved. (four times 3. The force of gravity is weaker on the moon than on earth because the moon has less 4. The gravitational force exerted by the earth on an object is called the object's (Analysis) (mass/distance) (Application) (weight/mass) (Understanding) ANSWERS 1. decreases 2. four times stronger 3. mass 4. weight. Numericals Find the gravitational force between two bodies of masses 50 kg each, situated at 1 m from each other. Ans. 1.67 x 107 N. 2. Find the attractive force between moon and earth if mass of earth is 6 x 1024 kg, mass of moon is 7.4 × 1022 kg and moon is at a distance of 3.84 x 108 m from the earth. Ans. 2.01 x 1020 N. 3. How does the gravitational force between two bodies change, if the distance between them is reduced to half? Calculate the value of 'g' at height of 3 times to radius of earth. Ans. 4 times. Ans. g/16. Ans. 60 kg.…arrow_forward6. [0/5 Points] DETAILS MY NOTES PREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE ANOTHER The emf in the figure below is 4.38 V. The resistances are R₁ = 26.02, R2 = 26.50, and R3 = 38.00. Find the following. R₁ R2 R3 (a) the current in each resistor (Give your answers to at least three significant figures.) 12= 13 = A A A (b) the power consumed by each resistor P1 P₂ = P3 W W W (c) the power supplied by the emf device Enter a number. W Viewing Saved Work Revert to Last Response SUBMIT ANSWER KatzPSE1 29.P.040.arrow_forwardThe stators in a gas turbine are designed to increase the kinetic energy of the gas passing through them adiabatically. Air enters a set of these nozzles at 300 psia and 700°F with a velocity of 76 ft/s and exits at 250 psia and 645°F. Calculate the velocity at the exit of the nozzles. The specific heat of air at the average temperature of 672.5°F is cp=0.253 Btu/lbm⋅R . The velocity at the exit of the nozzles is __________ ft/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY