
Three groups of students from the
(a)
(b)
Figure 2.35 (a) Soil-aggregate stockpile; (b) sieve analysis (Courtesy of Khaled Sobhan, Florida Atlantic University, Boca Raton, Florida)
a. Determine the coefficient of uniformity and the coefficient of gradation for Soils A, B, and C.
b. Which one is coarser: Soil A or Soil C? Justify your answer.
c. Although the soils are obtained from the same stockpile, why are the curves so different? (Hint: Comment on particle segregation and representative field sampling.)
d. Determine the percentages of gravel, sand and fines according to Unified Soil Classification System.
(a)

Calculate the coefficient of uniformity
Answer to Problem 2.1CTP
The uniformity coefficient of soil A is
The coefficient of gradation of soil A is
The uniformity coefficient of soil B is
The coefficient of gradation of soil B is
The uniformity coefficient of soil C is
The coefficient of gradation of soil C is
Explanation of Solution
Sketch the grain size distribution curve for soils A, B, and C as shown in Figure 1.
Refer to Figure 1.
For soil A:
The diameter of the particle corresponding to
The diameter of the particle corresponding to
The diameter of the particle corresponding to
For soil B:
The diameter of the particle corresponding to
The diameter of the particle corresponding to
The diameter of the particle corresponding to
For soil C:
The diameter of the particle corresponding to
The diameter of the particle corresponding to
The diameter of the particle corresponding to
Calculate the uniformity coefficient
For soil A:
Substitute
Hence, the uniformity coefficient for soil A is
For soil B:
Substitute
Hence, the uniformity coefficient for soil B is
For soil C:
Substitute
Hence, the uniformity coefficient for soil C is
Calculate the coefficient of gradation
For soil A:
Substitute
Hence, the coefficient of gradation for soil A is
For soil B:
Substitute
Hence, the coefficient of gradation for soil B is
For soil C:
Substitute
Therefore, the coefficient of gradation for soil C is
(b)

State which of the soil is coarser from soil A and C.
Answer to Problem 2.1CTP
Soil A is coarser than soil C.
Explanation of Solution
Refer to part (a).
The uniformity coefficient of soil A is
The uniformity coefficient of soil C is
The percent of soil finer than
The percent of soil finer than
Hence, a higher percentage of soil C is finer than soil A.
Hence, soil A is coarser than soil C.
(c)

Explain the reason for curve different of soil A, B and C if it is obtained from same stockpile.
Explanation of Solution
The particle-size distribution curve shows the range of particle sizes present in a soil and the type of distribution of various-size particles.
Refer to Figure 1.
Particle separation of coarser and finer particles may take place in aggregate stockpiles. This makes representative sampling difficult.
Therefore, the particle-size distribution curve is different for soils A, B, and C.
(d)

Calculate the percentages of gravel, sand, and fines according to the Unified Soil Classification System.
Answer to Problem 2.1CTP
The percentage of gravel for soil A is
The percentage of sand for soil A is
The percentage of fines for soil A is
The percentage of gravel for soil B is
The percentage of sand for soil B is
The percentage of fines for soil B is
The percentage of gravel for soil C is
The percentage of sand for soil C is
The percentage of fines for soil C is
Explanation of Solution
Refer to Figure 1.
For soil A.
The percent passing through
The percent passing through
Calculate the percentage of gravel as shown below.
Hence, the percentage of gravel is
Calculate the percentage of sand as shown below.
Hence, the percentage of sand is
Calculate the percentage of fines as shown below.
Hence, the percentage of fines is
Refer to Figure 1.
For soil B.
The percent passing through
The percent passing through
Calculate the percentage of gravel as shown below.
Hence, the percentage of gravel is
Calculate the percentage of sand as shown below.
Hence, the percentage of sand is
Calculate the percentage of fines as shown below.
Hence, the percentage of fines is
Refer to Figure 1.
For soil C.
The percent passing through
The percent passing through
Calculate the percentage of gravel as shown below.
Hence, the percentage of gravel is
Calculate the percentage of sand as shown below.
Hence, the percentage of sand is
Calculate the percentage of fines as shown below.
Hence, the percentage of fines is
Want to see more full solutions like this?
Chapter 2 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
- Given the truss with loading shown. Note that the roller connection at Joint D is in atrack so that it cannot move in the x-direction, but it can roll in the y-direction.Solve the truss with the virtual load you would use if you are going to solve for the verticaldeflection at Joint E using the method of virtual work.Note: Just solve the truss. You DO NOT need to find the vertical deflection at Joint E.arrow_forwardQuestion (1): (18 Marks) Gaza City has a total population of 650,000 inhabitant, where 75% of the population is connected to wastewater collection system. The water consumption per capita is 100 L/day. Currently, the collected flow treated partially by aerated lagoon system. The municipality intend to change the treatment system to a completely mixed activated sludge system to be used for organic matter removal only to fulfill the Palestinian standards for reuse (Soluble BOD 30 mg/l). The given data from the municipality laboratory and assumptions: ⚫ The influent soluble Biological Oxygen demand = 500 mg/l. Biomass yield (Y) = 0.5 mg VSS/mg BOD removed • Endogenous decay rate constant (Ka) = 0.05d¹ • • The concentration of biomass (X) = 3000 mg MLVSS The concentration of recycled biomass (X) = 10000 mg MLVSS/L Growth rate (d) 2.5 1.25 100 For the completely mixed activated sludge system find the following: a) The average flow to the treatment plant. b) The mean cell residence time. c)…arrow_forwardQuestion (3): (20 Marks) You have been assigned to design a secondary wastewater treatment component based on a tricking filter technique. The flow rate is 3500 m³/day, the raw wastewater has a BOD5 of 600 mg/l. This wastewater is primarily treated with an efficiency of 35%. • Assume suitable design criteria to obtain a BOD effluent of 15 mg/l. Design the secondary clarifier • Perform all the necessary cheeks on your design.arrow_forward
- Question (3): (20 Marks) You have been assigned to design a secondary wastewater treatment component based on a tricking filter technique. The flow rate is 3500 m³/day, the raw wastewater has a BOD5 of 600 mg/l. This wastewater is primarily treated with an efficiency of 35%. • Assume suitable design criteria to obtain a BOD effluent of 15 mg/l. Design the secondary clarifier • Perform all the necessary cheeks on your design.arrow_forwardData:Total budget = $25,000BCWS = $ 8,333BCWP = $ 6,400ACWP = $ 7,800Project duration = 40 daysData date: 10 days Perform the following analyses of the project based on the data given above.a. Cost Variance b. Schedule Variancearrow_forwardPlease explain why large initial separations on the EV S-Curve between the lines for ACWPand BCWP with BCWP above the ACWP may be an indicator of excessive front loading.arrow_forward
- Data:Total budget = $25,000BCWS = $ 8,333BCWP = $ 6,400ACWP = $ 7,800Project duration = 40 daysData date: 10 days Plot an S-Curve and show Cost Variance and Schedule Variance on it.arrow_forwardWater table A L₁ = 2 m Sand y = 15.9 kN/m³ c' = 0 $' = 32° E L₂ = 3 m D Determine: a) Theoretical Depth and actual depth of penetration Sand Ysat 19.33 kN/m³ c' = 0 $' = 32° Clay c = 47 kN/m² =0arrow_forward3. The following Sheet Pile is to be designed for a granular soil without the influence of the water table: Determine: L = 5m Y = 15.9kN/m³ $' = 32° Gall = 172MN/m² e) Theoretical Embedment Deptharrow_forward
- 3. The following Sheet Pile is to be designed for a granular soil without the influence of the water table: Determine: L = 5m y = 15.9kN/m³ $'=32° Gall = 172MN/m² f) Actual Embedment depth taking into account a 30% increasearrow_forward3. The following Sheet Pile is to be designed for a granular soil without the influence of the water table: L = 5m y = 15.9kN/m³ $' = 32° = Gall 172MN/m² Determine: g) Minimum section modulusarrow_forward1. Given: Determine: Water table E L₁ = 2 m Sand y = 15.9 kN/m³ c' = 0 '=32° L₂ = 3 m Sand Ysat 19.33 kN/m³ c' = 0 $' = 32° D b) Minimum section modulus where σall = 172.5MN/m² Clay c = 47 kN/m² =0arrow_forward
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning




