
Explanation of Solution
Method definition for “reverse()”:
The method definition for “reverse()” is given below:
/* Method definition for "reverse()" */
public void reverse()
{
//Create a list "rev_list" and set it to "null"
Node rev_list = null;
/* This loop will perform up to the first node equals to "null" */
while (first != null)
{
/* Move a node to rev_list from what leftovers of the original list */
/* Set a reference "ref" to first node */
Node ref = first;
/* Set "first" to next first node */
first = first.next;
/* Set next node to "rev_list" */
ref.next = rev_list;
/* Set the "rev_list" to reference "ref" */
rev_list = ref;
}
/* Make the list "rev_list" as the new list */
first = rev_list;
}
Explanation:
From the above method definition,
- Create a list “rev_list” and then set it to “null”.
- Performs “while” loop. This loop will perform up to the first node becomes “null”.
- Set a reference “ref” to first node.
- Set “first” to next value of “first”.
- Assign next node to “rev_list”.
- Assign the “rev_list” to reference “ref”.
- Finally make the list “rev_list” as new list.
Complete code:
The complete executable code for “reverse()” method is given below:
//Define "LinkedList1" class
class LinkedList1
{
/* The code for this part is same as the textbook of "LinkedList1" class */
/* Method definition for "reverse()"*/
public void reverse()
{
//Create a list "rev_list" and set it to "null"
Node rev_list = null;
/* This loop will perform up to the first node equals to "null" */
while (first != null)
{
/* Move a node to rev_list from what remains of the original list */
/* Set a reference "ref" to first node */
Node ref = first;
/* Set "first" to next first node */
first = first...
Want to see the full answer?
Check out a sample textbook solution
Chapter 19 Solutions
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
- Need help writing code to answer this question in Python! (image attached)arrow_forwardNeed help with python code! How do I simplify my code for a beginner to understand, simple fixed format and centering? Such as: print(f"As an int variable: {age_int:^7}") print(f"In numeric binary: {age_int:^7b}") My Code:name = input("Enter your name: ")print(f"In text name is: {' '.join(name)}")decimal_values = []binary_values = []for letter in name: ascii_val = ord(letter) binary_val = format(ascii_val, '08b') decimal_values.append(str(ascii_val)) binary_values.append(binary_val)# Loop through each letter:print(f"In ASCII decimal: {' '.join(decimal_values)}")print(f"In ASCII binary: {' '.join(binary_values)}")# Ageage_str = input("Enter your age: ")age_int = int(age_str)print(f"As a string \"{age_str}\": {' '.join(age_str)}")age_decimal_values = []age_binary_values = []for digit in age_str: ascii_val = ord(digit) binary_val = format(ascii_val, '07b') age_decimal_values.append(str(ascii_val)) age_binary_values.append(binary_val)print(f"In ASCII decimal: {'…arrow_forwardDon't use chatgpt or any other AIarrow_forward
- Don't use chatgpt or any other AIarrow_forwardGiven a relation schema R = (A, B, C, D, E,G) with a set of functional dependencies F {ABCD BC → DE B→ D D→ A}. (a) Show that R is not in BCNF using the functional dependency A → BCD. (b) Show that AG is a superkey for R (c) Compute a canonical cover Fc for the set of functional dependencies F. Show your work. (d) Give a 3NF decomposition of R based on the canonical cover found in (c). Show your work. (e) Give a BCNF decomposition of R using F. Show your work.arrow_forwardThe following entity-relationship (ER) diagram models a database that helps car deal- ers maintain records of customers and cars in their inventory. Construct a relational database schema from the ER diagram. Your set of schemas should include primary-key and foreign-key constraints and you should ensure there are no redundant schemas. has_model model modelID name vehicle has_vehicle VIN dealer_ID brand name has_available_option has_option has_dealer options options_ID specification dealer dealer ID name customer_ID owned_by customer customer ID namearrow_forward
- A relation schema R = (A, B, C, D, E) with a set of functional dependencies F= {D A CAB} is decomposed into R₁ = (A, B, C) and R2 = (C, D, E). (a) Is this a lossless-join decomposition? Why or why not? (b) Is the decomposition dependency preserving? Why or why not?arrow_forwardNo chatgpt pleasearrow_forwardPlease help draw alu diagraarrow_forward
- 1. Level the resources (R) for the following network. Show exactly which activity is being moved at each cycle and how many days it is being moved. Show all cycles required to utilize the free float and the back float. B H 3 3 L 2 0-0-0 A C F G K N P Q T 0 3 2 2 1 2-2-2 7R 8R 4R 6R 4R 2R 5R 4R D 1 2R 2 M 000 4R 2 4R 1 2 3 4 B5 B BE B 5 5 7 D 2003 C NO C MBSCM В H 5 2 F 7 7 8 SH2F80 5 Н Н 6 7 7L3G4+ 6H2G4 J 4 4 14 8 L K 00 36 9 10 11 12 13 14 15 P 2 Z+ N N 4 4 Z t 2334 4 Σ + M M 4 +arrow_forward2. Perform resource allocation for the following project. Resource limits are 6 labors and 2 helpers. Legend: Activity Dur Resources G H 2 3 2L 1H 2L OH A 1 3L 1H + B D F J K 3 4 6 2 4 4L 2H 3L OH 4L 1H 2L 2H 4L 2H C E 2 2 I 1 2L 1H 3L 1H 5L 1Harrow_forwardNeed Java method please. Thank you.arrow_forward
EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENT
C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage Learning
New Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage Learning
Systems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage LearningProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:Cengage
Microsoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,




