
Make a rough sketch of the graph of each function. Do not use a calculator. Just use the graphs given in Figures 12 and 13 and, if necessary, the transformations of Section 1.3.
48. (a) y = ln(–x)
(b) y = ln |x|
(a)

To sketch: The function
Explanation of Solution
From Figure 13, the graph of the function
Then, draw the graph of
Observe that Figure 2 is obtained from Figure 1 in such a way that it is reflected about the y-axis.
(b)

To sketch: The function
Explanation of Solution
The absolute function
From part (a), identify that the graph of
Thus, the graph
Therefore, the graph of
Observe that Figure 3 is obtained from Figure 1 and Figure 2 in such a way that it is drawn on the same screen.
Chapter 1 Solutions
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
- answer the questionarrow_forwardDescribe the streamlines of the given velocity fields.arrow_forwardFind the remainder in the Taylor series centered at the point a for the following function. Then show that lim |Rn(x)=0 f(x)=ex f(x) = e a=0 n-∞ First find a formula for f (n) (x). f(n) (x) = (Type an exact answer.) Next, write the formula for the remainder. n+1 Rn(x) = (n+1)! for some value c between x and 0 = 0 for all x in the interval of convergence. (Type exact answers.) Find a bound for Rn(x) that does not depend on c, and thus holds for all n. Choose the correct answer below. ex elx OC. R(x)(n+1 OE. Rn(x)(n+1) | Rn (x)| = (n+1)* = 0 for all x in the interval of convergence by taking the limit of the bound from above and using limit rules. Choose the correct reasoning below. Show that lim R,(x)=0 OA. Use the fact that lim U = 0 for all x to obtain lim |R,(x)| = el*1.0=0. OB. Use the fact that lim = 0 for all x to obtain lim |R,(x)=1+0=0. OC. Use the fact that lim A(+1) (n+1)! = 0 for all x to obtain lim R₁(x) =+0=0. e OD. Use the fact that lim = 0 for all x to obtain fim R₁(x)| =…arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





