
Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.1, Problem 14.1P
A 30-g bullet is fired with a horizontal velocity of 450 m/s and becomes embedded in block B, which has a mass of 3 kg. After the impact, block B slides on 30-kg carrier C until it impacts the end of the carrier. Knowing the impact between B and C is perfectly plastic and the coefficient of kinetic friction between B and C is 0.2. determine (a) the velocity of the bullet and B after the first impact, (b) the final velocity of the carrier.
c
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A long (into the page) duct with three walls is shown in the figure below. A constant rate
of energy (q = 5000 W) is supplied to the backside of the bottom wall. All this power leaves
surface 1 as radiative heat flow into the duct (i.e., participates in radiative exchange with
surfaces 2 and 3). The backside of Surface 2 is perfectly insulated. The table below lists
geometric and radiative properties of each surface.
Calculate T3-
2
Surface
T [K]
ε
AiFij, [m²]
1
700
1
A1F12
= 0.18
2
3
1
A2F23 = 0.86
1
A3 F31 = 0.36
Shaft 1 is the motor shaft and rotates at 1160 rpm. Calculate the transmission ratio and the angular velocity of output shaft 6.
Na=18Nb=34Nc=20Nd=62Ne=30Nf=60Ng=2 (worm gear)Nh=40Nı=16Nj=88
The power transmission system shown in the figure includes a helical and a bevel gear. The shaft is supported by two bearings and rotates at 600 rpm. The load on the bevel gear is -0.5Pi - 0.41Pj + 0.44Pk. The axial load on the shaft is carried by the bearing on the left. For a lifespan of 36,000 hours and 98% reliability, select two identical single-row tapered roller bearings.
Chapter 14 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases with...Ch. 14.1 - A bullet is fired with a horizontal velocity of...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9. assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - A 300-kg space vehicle traveling with a velocity...Ch. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Car A was traveling east at high speed when it...Ch. 14.1 - Knowing that the coordinates of the utility pole...Ch. 14.1 - An expert archer demonstrates his ability by...Ch. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation Ho=rmv+HG between the angular...Ch. 14.1 - Show that Eq. (14.23) may be derived directly from...Ch. 14.1 - Consider the frame of reference Ax'y'z' in...Ch. 14.1 - Show that the relation MA=HA where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - In Prob. 14.6. determine the work done by the...Ch. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Two automobiles A and B, of mass mA and mB,...Ch. 14.2 - It is assumed that each of the two automobiles...Ch. 14.2 - Solve Sample Prob. 14.5, assuming that cart A is...Ch. 14.2 - Two hemispheres are held together by a cord which...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - Three spheres, each with a mass of m, can slide...Ch. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - The 2-kg sub-satellite B has an initial velocity...Ch. 14.2 - A 900-lb space vehicle traveling with a velocity...Ch. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each of weight 2...Ch. 14.2 - Three small spheres A, B, C, each of mass m, are...Ch. 14.2 - In a game of billiards, ball A is given an initial...Ch. 14.2 - For the game of billiards of Prob. 14.51, it is...Ch. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.3 - A stream of water with a density of =1000kg/m3 is...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - A rotary power plow is used to remove snow from a...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Sand falls from three hoppers onto a conveyor belt...Ch. 14.3 - The stream of water shown flows at a rate of 550...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m/min...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m3/min...Ch. 14.3 - Coal is being discharged from a first conveyor...Ch. 14.3 - The total drag due to air friction on a jet...Ch. 14.3 - While cruising in level flight at a speed of 600...Ch. 14.3 - In order to shorten the distance required for...Ch. 14.3 - The helicopter shown can produce a maximum...Ch. 14.3 - Prior to takeoff, the pilot of a 3000-kg...Ch. 14.3 - The jet engine shown scoops in air at A at a rate...Ch. 14.3 - A jet airliner is cruising at a speed of 900 km/h...Ch. 14.3 - A 16-Mg jet airplane maintains a constant speed of...Ch. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - The wind turbine generator shown has an...Ch. 14.3 - A wind turbine generator system having a diameter...Ch. 14.3 - While cruising in level flight at a speed of 570...Ch. 14.3 - In a Pelton-wheel turbine, a stream of water is...Ch. 14.3 - A circular reentrant orifice (also called Borda’s...Ch. 14.3 - A railroad car with length L and mass mg when...Ch. 14.3 - The depth of water flowing in a rectangular...Ch. 14.3 - Determine the rate of flow in the channel of Prob....Ch. 14.3 - A chain of length I and mass m lies in a pile on...Ch. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - The ends of a chain lie in piles at A and C. When...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - A rocket sled bums fuel at the constant rate of...Ch. 14.3 - A space vehicle describing a circular orbit about...Ch. 14.3 - A 540-kg spacecraft is mounted on top of a rocket...Ch. 14.3 - The rocket used to launch the 540-kg spacecraft of...Ch. 14.3 - The weight of a spacecraft, including fuel, is...Ch. 14.3 - The rocket engines of a spacecraft are fired to...Ch. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb. including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - For the spacecraft and the two-stage launching...Ch. 14.3 - In a jet airplane, the kinetic energy imparted to...Ch. 14.3 - In a rocket, the kinetic energy imparted to the...Ch. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 30-g bullet is fired with a velocity of 480 m/s...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - In a game of pool, ball A is moving with a...Ch. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - A 15-lb block B is at rest and a spring of...Ch. 14 - Car A of mass 1800 kg and car B of mass 1700 kg...Ch. 14 - The nozzle shown discharges a stream of water at...Ch. 14 - An airplane with a weight W and a total wing span...Ch. 14 - The final component of a conveyor system receives...Ch. 14 - A garden sprinkler has four rotating arms, each of...Ch. 14 - A chain of length I and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As shown in the figure, a shaft manufactured with a surface treatment will carry the belt-pulley system, which is loaded with continuous and non-impact loads (in the YZ plane at α = 30 degrees). Design a shaft with a 95% reliability rating, a 2.5 safety factor, and made of cold-drawn AISI 1045 material. The shaft has no discontinuities or radius.arrow_forwardAir is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine inlet temperature of 1000 K. The properties of air at room temperature are cp=1.005 kJ/kg⋅K and k=1.4 . Determine the required mass flow rate of air for a net power output of 66 MW, assuming both the compressor and the turbine have an isentropic efficiency of 85 percent. The required mass flow rate of air is _________ kg/s.arrow_forwardF T = 450 Nm A ☑ 100 mm B 500 mm 1000 mm Şekil, 52 kN eksantrik yük taşıyan bir sonsuz mili göstermektedir. Mil radyal ve eksenel yük taşıyan rulmanlarla yataklanmıştır. Yük şekilde gösterildiği gibi somuna asılmış ve dönmeyi engellemektedir. Sürtünmeyi yenip yükü kaldırmak için uygulanan tork 450 Nm'dir. A ve B noktalarındaki gerilmeleri hesaplayınız. Milin, AISI 4140 540°C'DE temperlenmiş alaşımlı çelik olduğu bilindiğine göre maksimum kayma gerilmesi teorisine göre emniyetli olup olmadığını belirleyiniz. The figure shows a worm shaft carrying a 52 kN eccentric load. The shaft is supported by bearings that carry radial and axial loads. The load is suspended from the nut, as shown, preventing rotation. The torque applied to overcome friction and lift the load is 450 Nm. Calculate the stresses at points A and B. Knowing that the shaft is made of AISI 4140 alloy steel tempered at 540˚C, determine whether it is safe according to the maximum shear stress theory. 400 mmarrow_forward
- Stress, ksi 220 200 180 160 140 120 100 80 Question P: Data for an extension spring is shown in the table below. Use only this table for this question! Also shown is an abridged version of Table 18-2 and figure 18 Spring Material ASTM A228 Music wire Max Operating Load: Fo= 21 Type of Service = Average Estimated Wahl Factor: K = 1.200 Required Mean Diameter: D = 0.550 Design Stress in Wire: Td 90,000 psi TABLE 18-2 Wire Gages and Diameters for Springs Gage no. U.S. steel wire gage¹ (in) Music wire gage² (in) 0.6 26 0.0181 0.063 27 0.0173 0.067 28 00162 0.071 29 00150 0.075 30 00140 0.080 31 0.0132 0.085 22 0.0128 0.090 33 00118 0.095 34 0.0104 0.100 35 0.0095 0.106 36 0.0090 Wire diameter, mm Compression and extension springs, Music Wire, ASTM A228 O'S 5.4 5.8 6.2 0.112 1515 1380 Light service 1240 1100 Average service 965 Severe service 825 690 Wire diameter, in OLIO 0.190 0120 0.250 550 Stress, MPa FIGURE 18-9 Design shear stresses for ASTM A228 steel wire (music wire) What is the…arrow_forwardEndurance limit,, (psi) 100 000 80 000 60 000 Ground 40 000 20 000 As-rolled 0 50 60 70 80 90 100 110 120 Polished Machined or cold drawn As-forged 130 140 150 160 17 Tensile strength, s, (ksi) (a) U.S. customary units What is the minimum shaft diameter of D3 in inches? (Type in a three-decimal number). Note: We want to know the diameter D3, of the shaft, not the diameter at the base of a ring groove, profile keyseat or any other geometric feature on the shaft. Answer: x (3.008)arrow_forwardQuestion G: The machined shaft shown in the diagram below has the following components on it: (A) Sheave (B) Bearing (C) Sprocket (D) Bearing (E) Spur Gear Diameter D3 is located underneath Bearing B. Only the sheave at point A, the sprocket at point C and the spur gear at point E are held in place with rings. Diameter Dy is located underneath Bearing B. Only the sheave at point A, the sprocket at point C and the spur gear at point E are held in place with rings. PPENDIX 3 Design Properties of Carbon and Alloy Steels Material designation (SAE number) Condition Tensile strength Yield strength (ksi) (MPa) (MPa) Bearing Bearing 1020 Hot-rolled 55 379 207 V-belt sheave 6.00 in PD DD 1020 Cold-drawn 61 420 352 Spur gear Chain sprocket 10.00 in PD 20 FD 12.00 in PD 1020 Annealed 60 414 296 (a) Side view of shaft 10401 Hot-rolled 72 496 290 Belt drive to conveyor 1040 Cold-drawn 80 552 1040 OQT 1300 88 607 1040 OQT 400 113 779 1050 Hot-rolled 90 620 leput from water turbine Gear E drives Q to…arrow_forward
- 220 200 180 160 140 120 Stress, ksi 100 80 Question O: Data for an extension spring is shown in the table below. Use only this table for this question! Also shown is an abridged version of Table 18-2 and figure 18. Spring Material ASTM A228 Music wire Max Operating Load: F₁ = 57 Type of Service Average Estimated Wahl Factor: K= 1.200 Required Mean Diameter: D = 0.850 Design Stress in Wire: 1 = 115,000 psi TABLE 18-2 Wire Gages and Diameters for Springs 0.0181 27 0.0175 Gage no. U.S. steel wire gage (in) Music wire gage² (in) 0063 0.067 28 0.0162 0.071 29 0.0150 0.075 30 00140 0.080 31 0.0132 0085 32 00128 0.090 33 00118 0096 34 0.0104 0.100 35 0.0095 36 0.0090 1.8 Wire diameter, mm 0.106 0.112 5.4 5.8 6.2 1515 Compression and extension springs, Music Wire, ASTM A228. 1380 Light service 1240 Average service 1100 965 Severe service 825 690 P10100 OSO 0 0.150 0.170 061'0 0.210 0.230 F 0.250 550 Stress, MPa Wire diameter, in FIGURE 18-9 Design shear stresses for ASTM A228 steel wire (music…arrow_forwardPlease see attachment.arrow_forwardPlease see attachment.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE LPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning

International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L

Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning

Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning

Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning

Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY