Python Programming: An Introduction to Computer Science, 3rd Ed.
Python Programming: An Introduction to Computer Science, 3rd Ed.
3rd Edition
ISBN: 9781590282755
Author: John Zelle
Publisher: Franklin, Beedle & Associates
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 8PE
Program Plan Intro

Removing duplicates

Program Plan:

  • Function definition to check if the value is present.
    • Loop through the length of the list.
      • Check if the value is present.
        • Return true.
  • Give function definition for “removeDuplicates ()” to remove duplicates.
    • Create an empty list.
    • Loop through the list.
      • Call the function “isPresent ()”.
        • Append the item to the list.
    • Return the list.
  • Define the main function.
    • Create a list.
    • Call the function “removeDuplicates ()” by passing “myList” as the argument.

Blurred answer
Students have asked these similar questions
(Dynamic Programming.) Recall the problem presented in Assign- ment 3 where given a list L of n ordered integers you're tasked with removing m of them such that the distance between the closest two remaining integers is maxi- mized. See Assignment 1 for further clarification and examples. As it turns out there is no (known) greedy algorithm to solve this problem. However, there is a dynamic programming solution. Devise a dynamic programming solution which determines the maximum distance between the closest two points after removing m numbers. Note, it doesn't need to return the resulting list itself. Hint 1: Your sub-problems should be of the form S(i, j), where S(i, j) returns the maximum distance of the closest two numbers when only considering removing j of the first i numbers in L. As an example if L [3, 4, 6, 8, 9, 12, 13, 15], then S(4, 1) = 2, since the closest two values of L' = [3,4,6,8] are 6 and 8 after removing 4 (note, 8-6 = = 2). = Hint 2: For the sub-problem S(i, j),…
(Dynamic Programming.) A group of friends is visiting a number of attractions located along a highway, starting at kilometre 0, placed at distances ɑ1 < A2 < ···
(Greedy Algorithms) Describe an efficient algorithm that, given a set {x1, x2, . . ., xn} of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
New Perspectives on HTML5, CSS3, and JavaScript
Computer Science
ISBN:9781305503922
Author:Patrick M. Carey
Publisher:Cengage Learning
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage