
Concept explainers
Why is mathematical problem solving not a major feature of this book?

The reason for not including mathematical problem as a major feature in the book.
Answer to Problem 3RQ
Mathematics is the best tool for analysis of scientific facts, but it is a poor substitute for learning the concept. So first learn the concept, then using mathematics to reinforce what has been inserted.
Explanation of Solution
Mathematics should be used as an important tool to solve the problems in science. It is very necessary that the learner has clear ideas about the subject and what the person is going to study.
While mathematics provides an excellent tool for analysis of scientific facts, it serves as a poor replacement for learning the concepts. Hence, the emphasis is placed in this book on learning the concept first and then using mathematics to reinforce what has been inserted.
Conclusion:
Therefore, Mathematics is the best tool for analysis of scientific facts, but it is a poor substitute for learning the concept. So first learn the concept, then using mathematics to reinforce what has been inserted.
Chapter 1 Solutions
Conceptual Physical Science Explorations
Additional Science Textbook Solutions
Chemistry: A Molecular Approach (4th Edition)
Introductory Chemistry (6th Edition)
Biology: Life on Earth (11th Edition)
Cosmic Perspective Fundamentals
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Anatomy & Physiology (6th Edition)
- A simple series circuit consists of a 150 Ω resistor, a 27.0 V battery, a switch, and a 2.00 pF parallel-plate capacitor (initially uncharged) with plates 5.0 mm apart. The switch is closed at t =0s . Part A Part complete Part B Part complete Part C Find the electric flux at t =0.50ns. Express your answer in volt-meters. View Available Hint(s)for Part C Activate to select the appropriates template from the following choices. Operate up and down arrow for selection and press enter to choose the input value typeActivate to select the appropriates symbol from the following choices. Operate up and down arrow for selection and press enter to choose the input value type nothing V⋅m Part D Find the displacement current at t =0.50ns.arrow_forward
- 1. [3.33/20 Points] Shown in the figure below is an electrical circuit containing three resistors and two batteries. R₁ www 4 R3 ww 10 www Write down the Kirchhoff Junction equation and solve it for I, in terms of I, and I. Write the result here: 4-42-13 Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and follows the perimeter of the circuit diagram dockwise. 0-10-₁ +4 × Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and touches the components 10V, R₁, 4V, and R₂. 0--12R₂-IR₁ × The resistors in the circuit have the following values: R, 20 R₂ =6 R 100 Solve for all the following (some answers may be negative): I-1.3478 -0.2174 --1.1304 x Amperes x Amperes x Amperes NOTE: For the equations, put in resistances and currents SYMBOLICALLY using variables like R,,R₂,R, and I, J₂,;. Use numerical values of 10 and 4 for the voltages. SUBMIT ANSWERarrow_forwardQ3:A tow truck pulls a car that is stuck in the mud, with a force of 2 500 N as shown. The tow cable is under tension and therefore pulls downward and to the left on the pin at its upper end. The light pin is held in equilibrium by forces exerted by the two bars A and B. Each bar is a strut: that is, each is a bar whose weight is small com-pared to the forces it exerts, and which exerts forces only through hinge pins at its ends. Each strut exerts a force directed parallel to its length. (i) Determine the force of tension or compression in each strut. Proceed as follows: Make a guess as to which way (pushing or pulling) each force acts on the top pin. (4) (ii) Draw a free-body diagram of the pin. Use the condition for equilibrium of the pin to translate the free-body diagram into equations. From the equations calculate the forces exerted by struts A and B. 4A negative answer means the direction should be reversed, but the absolute value correctly gives the magnitude of the force. (8)…arrow_forward2. Kiran is doing a summer internship in a physics lab that uses optical fibres. Their Thorlabs 1550BHP fibre has specifications listed here. To the right is a diagram of the various layers (thicknesses to scale) and the definition of the bending radius (not to scale). Kiran needs to route a beam of A = 1550 nm light through a tight mechanical setup and needs to keep the curves larger than the listed minimum bend radius (Long Term). Assume that any curves are circular (i.e. the curve makes a perfect circular arc segment) and Coating Cladding Core Cladding Coating that all the light is perfectly aligned when it enters the fibre. Bending Radius a) Draw a diagram of the situation showing the light beams, the core, and core-cladding interface of the fibre. Include a circular bend of the minimum bending radius, and the path of the light beams as they reflect. b) Based on the minimum bending radius, what is the ratio of the indices of refraction of the core and cladding material? I.e. find…arrow_forward
- 1. Tobenna is visiting the penguin exhibit at a zoo. He sees a penguin swimming underwater, using its beak to look for food at the bottom of the tank. According to a tour guide, the tank is 2.0 m deep. The index of refraction of the water is the usual one of 1.33, and Tobenna is standing right at the edge of the tank. a) Tobenna's excellent depth perception tells him the penguin is 5.3 m away. He has taken PHYS 102 so he knows that this is just an apparent distance. Determine the apparent and actual horizontal distances of the penguin from the edge of the tank. b) If Tobenna crouches down so his head is only 1.0 m above the ground, will he perceive the penguin to be closer or further from the wall than in a)? c) Is there a place where Tobenna could stand where he would not see the penguin at all, despite being able to draw a straight line between his eyes and the penguin? (i.e. due to refraction, not from standing around a corner.) d) This question is qualitative only. You don't need…arrow_forwardReta 2. The force of gravity between two objects becomes stronger/twice as strong) LAWS OF MOTION 99 if the distance between them is halved. (four times 3. The force of gravity is weaker on the moon than on earth because the moon has less 4. The gravitational force exerted by the earth on an object is called the object's (Analysis) (mass/distance) (Application) (weight/mass) (Understanding) ANSWERS 1. decreases 2. four times stronger 3. mass 4. weight. Numericals Find the gravitational force between two bodies of masses 50 kg each, situated at 1 m from each other. Ans. 1.67 x 107 N. 2. Find the attractive force between moon and earth if mass of earth is 6 x 1024 kg, mass of moon is 7.4 × 1022 kg and moon is at a distance of 3.84 x 108 m from the earth. Ans. 2.01 x 1020 N. 3. How does the gravitational force between two bodies change, if the distance between them is reduced to half? Calculate the value of 'g' at height of 3 times to radius of earth. Ans. 4 times. Ans. g/16. Ans. 60 kg.…arrow_forward6. [0/5 Points] DETAILS MY NOTES PREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE ANOTHER The emf in the figure below is 4.38 V. The resistances are R₁ = 26.02, R2 = 26.50, and R3 = 38.00. Find the following. R₁ R2 R3 (a) the current in each resistor (Give your answers to at least three significant figures.) 12= 13 = A A A (b) the power consumed by each resistor P1 P₂ = P3 W W W (c) the power supplied by the emf device Enter a number. W Viewing Saved Work Revert to Last Response SUBMIT ANSWER KatzPSE1 29.P.040.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





