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Abstract. The enumeration of extensional acyclic digraphs, which have the

property that the outneighbourhoods are pairwise distinct, was considered in a
recent article of Policriti and Tomescu. Several asymptotic questions were left

as open problems. In this article, we determine the asymptotic number of such

digraphs and show that a number of distributional results can be carried over
from ordinary acyclic digraphs. In particular, we consider the distribution of

the number of sources, the number of arcs, the maximum rank and the number

of vertices of maximum rank, thereby also proving some conjectures made by
Policriti and Tomescu. Finally, we study a very similar class of acyclic digraphs

and provide analogous distributional results. Extensional acyclic digraphs and
Essential acyclic digraphs and Full sets and Asymptotic enumeration and Limit

theorems 05C30 and 05A16

1. Introduction

Acyclic digraphs, i.e., digraphs without an oriented cycle, are the directed ana-
logue of trees. Their enumeration is explained very nicely in Section 1.6 of Harary
and Palmer’s book [8], following the work of Robinson [13]. The counting sequence
for labelled acyclic digraphs starts with the terms

(1) 1, 3, 25, 543, 29281, 3781503, 1138779265, . . .

which is Sloane’s A003024 [1]. One sees that the numbers grow quite rapidly, and

indeed it turns out that they behave asymptotically like A ·Bn ·n! · 2(n
2) for certain

constants A and B. The approach that leads to this result will be outlined briefly
below, as it will also be relevant for our purposes. It is one of the nicest applications
of generating functions and singularity analysis to a graph enumeration problem.

In this paper, we will mostly be concerned with a special subfamily of acyclic
digraphs: extensional acyclic digraphs (EADs in the following) were studied recently
by Policriti and Tomescu [12]. In addition to being acyclic, they have the property
that the outneighbourhoods are pairwise distinct. These graphs occur naturally in
set theory: a full (transitive) set is a set X with the property that every element of
X is also a subset of X. For example, X = {{}, {{}}} is such a set. Every full set
corresponds bijectively to an acyclic digraph, where the vertices represent sets and
the directed edges (arcs) stand for set membership (i.e., an arc from u to v indicates
that v is an element of u). It is easy to see that the outneighbourhood of a vertex
uniquely characterises the corresponding element of the transitive set, and so the
outneighbourhoods of distinct vertices have to be distinct (see the original article
of Peddicord [11] for further background on full sets). An example of an EAD is
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shown in Figure 1: it corresponds to the full set {{}, {{}}, {{{}}}, {{}, {{}}}}, and
the correspondence between vertices and set elements is indicated as well.

{{}}

{{{}}}

{{}, {{}}} {}

Figure 1. An example of an extensional acyclic digraph.

Policriti and Tomescu provide recursive formulas for determining the number
of EADs of given order as well as the number of such digraphs with additional
restrictions on the number of sources or the number of vertices of maximum rank
(where the rank of a vertex v, in graph-theoretical terms, is the length of a longest
directed path starting at v). Moreover, they study weakly extensional acyclic di-
graphs (WEADs), for which the outneighbourhood condition is slightly relaxed:
only the nonempty outneighbourhoods have to be pairwise distinct, thus allowing
several sinks (corresponding to additional “atoms” in the set construction). At the
end of their paper, they remark that the asymptotic enumeration is left as an open
problem, and formulate a number of conjectures. In particular, they conjecture
(based on numerical values) that the proportion of EADs among all labelled acyclic
digraphs converges to a limit, which is roughly 32.6%. This fact will be one of the
main results of the present paper. The number of labelled EADs of order 1 to 7 is
given by

1, 2, 12, 216, 10560, 1297440, 381013920,

compare with (1). The numbers in the unlabelled case, 1, 1, 2, 9, . . . (Sloane’s
A001192), which are simply obtained by dividing by the factorials, also enumerate
full sets. Aside from determining the asymptotic density of EADs within the class
of acyclic digraphs, we will also prove some distributional results: specifically, we
consider the distribution of the number of sources and sinks (the latter only in the
case of WEADs, which can have several sinks as opposed to EADs), the number of
arcs and the maximum rank (length of the longest directed path). Finally, we also
briefly show how analogous results can be obtained for essential acyclic digraphs,
which were studied in [14, 15]. The following table summarises our results:

This is an extended version of the conference paper [16]. It contains more detailed
proofs as well as some additional material, in particular Section 8.

2. Preliminaries

In order to understand the methods of the following sections, it is useful to briefly
review the approach of Robinson [13] that leads to the aforementioned asymptotic
formula for the number of ordinary labelled acyclic digraphs. Let an be the number
of acyclic digraphs on n labelled vertices. The number of such digraphs for which a
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Asymptotic number of EADs and
WEADs of order n

Theorem 1 (EADs), Theorem 6
(WEADs)

Limit distribution of the number of
sources (discrete distribution)

Theorem 2 (EADs), Theorem 9
(WEADs), Theorem 13 (Es-
sADs)

Central limit theorem for the number of
arcs (Gaussian distribution)

Theorem 3 (EADs), Theorem 7
(WEADs), Theorem 11 (Es-
sADs)

Central limit theorem for the maximum
rank (= length of the longest directed
path, Gaussian distribution)

Theorem 4 (EADs), Theorem 8
(WEADs), Theorem 12 (Es-
sADs)

Limit distribution of the number of ver-
tices of highest rank (discrete distribu-
tion)

Theorem 5 (EADs), Theorem 9
(WEADs)

Table 1. Summary of results.

given set of k vertices are sources is 2k(n−k)an−k, so the inclusion-exclusion principle
yields

an =

n∑
k=1

(−1)k−1
(
n

k

)
2k(n−k)an−k

for n ≥ 1, with initial value a0 = 1. This can be rewritten as
n∑
k=0

(−1)n−k
(
n

k

)
2k(n−k)ak = [n = 0],

using Iverson’s notation [P ] = 1 if P is true, and [P ] = 0 otherwise. Divide by

n!2(n
2) to get

n∑
k=0

(−1)n−k

(n− k)!
2−(k

2)−(n−k
2 ) ak

k!
= [n = 0].

Let us now introduce the “special” generating functions

A(x) =
∑
n≥0

anx
n

n!
2−(n

2)

and

φ(x) =
∑
n≥0

(−1)nxn

n!
2−(n

2).

Then the above identity translates to

A(x)φ(x) = 1

or

A(x) =
1

φ(x)
.

Note that φ(x) is an entire function. It is known [13] that its first zero from the
origin is z0 ≈ 1.488079, and the second is z1 ≈ 4.881141. Indeed, the zeros of this
function have been studied quite thoroughly on their own right [7].

We deduce that A(x) is meromorphic inside the circle of radius z1, with a single
pole at z0. So we can apply singularity analysis, see for instance [5, Theorem IV.10]:
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if a function f(x) is meromorphic on a disk |x| ≤ R with only a single pole at x = z0
and f(x) ∼ C

1−x/z0 as x→ z0, then

[xn]f(x) = Cz−n0 +O(R−n).

Hence we obtain

an ∼
n! · 2(n

2)

−φ′(z0)zn+1
0

.

The aim of the following section is to transfer this approach to the asymptotic
enumeration of EADs to prove the conjecture of Policriti and Tomescu on the limit
proportion of EADs among acyclic digraphs.

3. The number of extensional acyclic digraphs

We try the same approach as outlined in the introduction with the number of
extensional acyclic digraphs, which we denote by bn. Similar ideas were also used
in [15] for the asymptotic enumeration of so-called essential acyclic digraphs, to
which we will come back later. The inclusion-exclusion argument now yields

(2) bn =

n∑
k=1

(−1)k−1
(
n

k

)
(2n−k − n+ k)k bn−k

with b0 = 1, where xn = x(x − 1) · · · (x − n + 1) denotes a falling factorial. This
recursion was also given by Policriti and Tomescu [12] in their paper. Note that
2n−k−n+k is exactly the number of subsets of n−k vertices, without the outneigh-
bourhoods of these vertices (since they cannot be outneighbourhoods of the new
vertices). Moreover, we have to take a falling factorial rather than a k-th power,
since the new outneighbourhoods have to be pairwise distinct. The recursion (2)
can also be written as

bn
n!

=

n−1∑
k=0

(−1)n−k−1
(

2k − k
n− k

)
bk
k!

+ [n = 0]

or, which is best for our purposes, as

n∑
k=0

(−1)n−k

(n− k)!
2−(k

2)−(n−k
2 ) bk

k!

n−1∏
j=k

(1− 2−kj) = [n = 0].

The product
∏n−1
j=k (1− 2−kj) is “almost 1”: we rewrite the equation once again to

obtain

n∑
k=0

(−1)n−k

(n− k)!
2−(k

2)−(n−k
2 ) bk

k!

=

n−1∑
k=0

(−1)n−k

(n− k)!
2−(k

2)−(n−k
2 ) bk

k!

(
1−

n−1∏
j=k

(1− 2−kj)

)
+ [n = 0].

In terms of the generating function B(x) =
∑
n≥0 2−(n

2) bnx
n

n! , this becomes

B(x)φ(x) = 1 +
∑
n≥0

n−1∑
k=0

(−1)n−kbk
k!(n− k)!

2−(k
2)−(n−k

2 )
(

1−
n−1∏
j=k

(1− 2−kj)

)
xn.
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Now we claim that the sum on the right hand side converges for |x| < 2z0, which
implies that it represents a holomorphic function (which we denote by ψ(x)) inside
this circle. To this end, note that

bk ≤ ak ≤ C1k!2(k
2)z−k0

for some constant C1, so that∣∣∣∣∣∣
n−1∑
k=0

(−1)n−kbk
k!(n− k)!

2−(k
2)−(n−k

2 )

(
1−

n−1∏
j=k

(1− 2−kj)

)
xn

∣∣∣∣∣∣
≤ C1 ·

n−1∑
k=0

2−(n−k
2 )z−k0

(
1−

n−1∏
j=k

(1− 2−kj)

)
|x|n.

Now we use the simple inequality

n−1∏
j=k

(1− 2−kj) ≥ 1−
n−1∑
j=k

2−kj ≥ 1− n22−k,

which yields

n−1∑
k=0

2−(n−k
2 )z−k0

(
1−

n−1∏
j=k

(1− 2−kj)

)
|x|n

≤ n2|x|n
n−1∑
k=0

2−(n−k
2 )(2z0)−k.

The product 2−(n−k
2 )(2z0)−k has its maximum at k = n− 3

2 − log2(z0), with a value
of C2(2z0)−n for some constant C2. Hence we end up with∣∣∣∣∣∣

n−1∑
k=0

(−1)n−kbk
k!(n− k)!

2−(k
2)−(n−k

2 )

(
1−

n−1∏
j=k

(1− 2−kj)

)
xn

∣∣∣∣∣∣
≤ C1C2n

3

(
|x|
2z0

)n
.

This proves that the series indeed converges (absolutely) for |x| < 2z0, which shows
that the function ψ in the equation

B(x)φ(x) = 1 + ψ(x)

is holomorphic within this region. Hence B(x) is meromorphic inside the open disk
|x| < 2z0, except for a simple pole at z0. We apply singularity analysis again to
obtain

bn ∼
n! · 2(n

2)(1 + ψ(z0))

−φ′(z0)zn+1
0

= α · βn · n! · 2(n
2)

with α = −(1 + ψ(z0))/(z0φ
′(z0)) ≈ 0.567952 and β = z−10 ≈ 0.672008. Hence the

limit limn→∞ an/bn is 1/(1 + ψ(z0)) ≈ 3.065509. The error term can be described
by an additional factor 1 + O(γ−n) for any fixed γ < 2, since the next singularity
has absolute value at least 2z0 (note that the second-smallest zero of φ is greater
than 2z0 as well). Let us formulate this as a theorem:



6 STEPHAN WAGNER

Theorem 1. The proportion of EADs among all labelled acyclic digraphs converges
to

1 + ψ(z0) = 1 +
∑
n≥0

n−1∑
k=0

(−1)n−kbk
k!(n− k)!

2−(k
2)−(n−k

2 )
(

1−
n−1∏
j=k

(1− 2−kj)

)
zn0 .

The numerical value of this limit is approximately 3.065509−1 ≈ 0.326210.

Remark 1. EADs have the nice property that their automorphism group is always
trivial, as was shown in [12]. This means that the number of unlabelled EADs is
simply bn/n!. An asymptotic formula follows automatically. Since almost all acyclic
digraphs have trivial automorphism group, as shown by Bender and Robinson [4],
Theorem 1 holds for unlabelled EADs as well.

4. Extensional acyclic digraphs by number of sources

The limiting distribution of the number of sources is relatively easy to obtain,
since the sources also play an essential role in our recursive approach. The inclusion-
exclusion principle shows that the number of labelled EADs with exactly ` sources,
which we denote by bn,`, is given by

bn,` =
∑
k≥`

(
k

`

)
(−1)k−`

(
n

k

)
(2n−k − n+ k)k bn−k.

The limit limn→∞ bn,`/bn can now be determined directly from the asymptotic
formula for bn: recall that

bn = α · βn · n! · 2(n
2)(1 +O(γ−n))

for any fixed γ < 2. If one combines this with the formula (2n−k − n + k)k =
2k(n−k)(1 +O(kn2k−n)), one obtains

bn,` ∼
∑
k≥`

(
k

`

)
(−1)k−`

(
n

k

)
2k(n−k) · α · βn−k · (n− k)! · 2(n−k

2 ) ∼ S`bn,

where the constant S` is given by

S` =
1

`!

∑
k≥`

(−1)k−`

(k − `)!
· β−k · 2−(k

2)

=
β−`

`!2(`
2)

∑
m≥0

(−1)mβ−m

m!
2−(m

2 )−m` =
z`0φ(2−`z0)

`!2(`
2)

.

Let us formulate this as a theorem:

Theorem 2. The distribution of the number of sources in a random EAD converges
to a discrete limiting distribution, the limit probability that the number of sources
equals ` is

S` =
z`0φ(2−`z0)

`!2(`
2)

.

Numerically,

S1 ≈ 0.574362, S2 ≈ 0.366214, S3 ≈ 0.056465,

S4 ≈ 0.002902, S5 ≈ 0.000057, . . . .
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In particular, the ratio between the number of EADs with exactly one source and
the number of all EADs tends to a value of approximately 0.574363−1 ≈ 1.741061,
as conjectured by Policriti and Tomescu. Compare also Table 2, which contains
the values of bn,` for small n. The same limiting distribution was determined by
Liskovets [9] for ordinary acyclic digraphs as well. It is worth pointing out that the
limit of the average number of sources is precisely β−1 = z0 ≈ 1.488079, the first
zero of the function φ, and that moreover the probability generating function of the
S` is

∞∑
`=1

S`u
` = φ((1− u)z0),

as can be seen by some elementary manipulations. Since φ(0) = 1, we also have

S` ∼ z`02−(`
2)/`!, i.e., the probabilities decay very rapidly.

n ` = 1 ` = 2 ` = 3 ` = 4
1 1
2 2
3 12
4 192 24
5 8160 2400
6 898560 384480 14400
7 245145600 126040320 9777600 50400

Table 2. Enumeration of labelled EADs with given number of sources.

5. The number of arcs

The number of arcs can be analysed by means of a bivariate generating function,
as it was done by Bender, Richmond, Robinson and Wormald [3] for ordinary acyclic
digraphs: denote the set of EADs with n labelled vertices by Bn. Furthermore, let
Bn(y) be the polynomial in which the coefficient of yr is the number of EADs
with n (labelled) vertices and r arcs. For instance, B1(y) = 1, B2(y) = 2y and
B3(y) = 6(y2 + y3). The recursion (2) does not have an exact counterpart, since
the number of vertices in the “forbidden” n − k outneighbourhoods is not known
when the new set of k sources is added. However, an asymptotic analysis is still
possible, and we will be able to prove a central limit theorem. For any B ∈ Bn, we
define ‖B‖ to be the number of arcs of B and

PB,k(y) =
∑

U1,U2,...,Uk

k∏
j=1

y|Uj |,

where the sum is over all k-tuples of pairwise distinct vertex subsets of B none of
which is an outneighbourhood in B. Now the inclusion-exclusion argument that
led to (2) yields

Bn(y) =

n∑
k=1

(−1)k−1
(
n

k

) ∑
B∈Bn−k

y‖B‖PB,k(y).

It is possible to express PB,k in terms of the outdegree sequence of B by means
of cycle indices, but for our purpose it is sufficient to work with crude estimates:
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assume that y lies in a fixed interval [δ, δ−1] around 1. In analogy to the estimate
in Section 3, we have

(1 + y)k(n−k) ≥ PB,k(y)

and

PB,k(y) ≥
n−1∏
j=n−k

(
(1 + y)n−k − jmax(1, y)n−k

)
≥
(

(1 + y)n−k − nmax(1, y)n−k
)k

≥ (1 + y)k(n−k)
(

1− n2
(

max(1, y)

1 + y

)n−k)
and thus ∣∣∣1− (1 + y)−k(n−k)PB,k(y)

∣∣∣ ≤ n2(max(1, y)

1 + y

)n−k
.

Now define

φ(x, y) =
∑
n≥0

(−1)nxn

n!
(1 + y)−(n

2).

Analogous reasoning as in the proof of Theorem 1 shows that

B(x, y) =
∑
n≥0

Bn(y)xn

n!(1 + y)(
n
2)

=
1 + ψ(x, y)

φ(x, y)
,

where

ψ(x, y) =
∑
n≥0

n−1∑
k=0

(−1)n−k

k!(n− k)!
(1 + y)−(k

2)−(n−k
2 )

∑
B∈Bk

y‖B‖
(

1− PB,n−k(y)

(1 + y)k(n−k)

)
xn.

As a result of the estimates for PB,k(y) above, we find that the radius of convergence
of ψ(x, y) (in x) is strictly greater than that of B(x, y), which is the first zero ρ(y)
of the function φ(x, y). Now singularity analysis yields

Bn(y) ∼ n! · (1 + y)(
n
2)(1 + ψ(ρ(y), y))

−φx(ρ(y), y)ρ(y)n+1
,

from which it is easy to deduce that the limiting distribution of the number of arcs
is Gaussian (cf. [5, Theorem IX.8], although the quasi-powers theorem does not
apply directly): let the random variable ωn be the number of arcs in a random
EAD of order n. Then the moment generating function of ωn is

E(eωnt) =
Bn(et)

Bn(1)
,

and the moment generating function of the renormalised random variable

$n =
ωn − 1

2

(
n
2

)
1
2

(
n
2

)1/2
is given by

E(e$nt) = exp

(
−
(
n

2

)1/2

t

)
Bn(exp(y(t)))

Bn(1)
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with y(t) = 2t
(
n
2

)−1/2
. One easily finds(

1 + exp(y(t))

2

)(n
2)

= exp

((
n

2

)1/2

t+
t2

2
+O

(
1

n

))
as well as (

ρ(1)

ρ(y(t))

)n+1

= exp

(
−2
√

2ρ′(1)

ρ(1)
t+O

(
1

n

))
,

and all other terms in the quotient converge to 1 as n→∞ for fixed t, hence

lim
n→∞

E(e$nt) = exp

(
−2
√

2ρ′(1)

ρ(1)
t+

t2

2

)
,

which is the moment generating function of a Gaussian distribution (with mean

− 2
√
2ρ′(1)
ρ(1) and variance 1). Thus we have the following theorem:

Theorem 3. The number of arcs in a random EAD with n vertices is asymptotically
normally distributed, with mean ∼ 1

2

(
n
2

)
and variance ∼ 1

4

(
n
2

)
.

Remark 2. More precisely, the average number of arcs is

1

2

(
n

2

)
− ρ′(1)

ρ(1)
n+ C + o(1),

which is the same as for arbitrary acyclic digraphs, except for the value of the
constant C.

Remark 3. It should be possible to obtain a stronger local limit theorem as in [3],
valid if the number of arcs lies between ε

(
n
2

)
and (1− ε)

(
n
2

)
for some fixed ε, but the

details may be quite intricate.

Remark 4. A simple heuristic argument explains why the number of arcs essen-
tially follows a binomial distribution (thus in the limit a normal distribution): in the
recursive construction that led us to (2), edges are included almost independently
and with probabiliy almost equal to 1/2. This explains why the total number of arcs
is essentially the sum of

(
n
2

)
independent Bernoulli variables.

6. The maximum rank in an extensional acyclic digraph

The rank of a set is recursively defined by rk({}) = 0 and rk(S) = 1+supx∈S rk(x).
In the correspondence between full sets and EADs, the rank of an element of the full
set corresponds to the length of the longest directed path starting at the associated
vertex in the EAD, see Figure 2.

The maximum rank of a set is thus precisely equivalent to what McKay [10]
defines as the height of an acyclic digraph. In his paper, McKay proves a central
limit theorem for the height of random acyclic digraphs, which remains true for
EADs, as we will see in this section. Again, only a few modifications of the argument
are necessary. Let dn,r,h denote the number of EADs with n labelled vertices of
which r have highest rank h. Since such an EAD is obtained by adding r sources to
an EAD with k vertices of highest rank h− 1 for some k such that each of the new
sources has an arc to one of the old vertices of highest rank, we have the recursion

dn,r,h =
∑
k≥1

(
n

r

)
((2k − 1)2n−r−k)r dn−r,k,h−1
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Figure 2. An EAD in which the vertices are arranged by rank.

with initial values dn,r,0 = 1 if n = r = 1 and dn,r,0 = 0 otherwise. Let us now
define the generating functions

Dr(x, y) =
∑
n≥1

∑
h≥0

dn,r,hx
nyh

n!2(n
2)

.

Then the recursion above translates to the functional equation

Dr(x, y) =
xry

r!2(r
2)

∑
k≥1

(1− 2−k)r(Dk(x, y)−Qk,r(x, y))

+ x · [r = 1],

where

Qk,r(x, y) =
∑

n≥r+1

∑
h≥1

dn−r,k,h−1x
n−ryh−1

(n− r)!2(n−r
2 )(

1−
r−1∏
j=0

(
1− j

2k − 1
· 2−(n−r−k)

))
.

Now set

(3) Rr(x, y) = − xry

r!2(r
2)

∑
k≥1

(1− 2−k)rQk,r(x, y) + x · [r = 1],

define the infinite matrix M = M(x, y) by its entries mij = xiy(1− 2−j)i/(i!2(i
2)),

and let D = D(x, y) and R = R(x, y) be the infinite vectors whose entries are
D1(x, y), D2(x, y), . . . and R1(x, y), R2(x, y), . . . respectively. Then we have

(4) D = MD +R

or
D = (I −M)−1 ·R,

where I stands for the infinite identity matrix. As it was pointed out by McKay
in [10], the rapid convergence of the entries mij of M as i → ∞ implies that the
formal inverse (I −M)−1 = adj(I −M)/ det(I −M) is indeed well-defined. Since
we will have to estimate the product with the vector R (in the case of ordinary
EADs, this vector is simply the first unit vector (1, 0, 0, . . .)T ), let us treat this
infinite matrix inverse in more detail. A priori, the determinant exists as a formal
power series: when it is expanded, the number of terms of the form cxNyM in this



ASYMPTOTIC ENUMERATION OF EXTENSIONAL ACYCLIC DIGRAPHS 11

determinant is M !q(N,M), where q(N,M) is the number of partitions of N into
M distinct terms. Each of them has a coefficient of the form

±
M∏
m=1

(1− 2−jm)im

im!2(im
2 )

with i1 < i2 < · · · < iM and i1 + i2 + · · ·+ iM = N . It follows from these conditions
that M ≤

√
2N , and thus

M∑
m=1

(
im
2

)
=

1

2

M∑
m=1

i2m −
N

2
≥ 1

2M

( M∑
m=1

im

)2
− N

2
≥ N3/2

2
√

2
− N

2
.

Therefore, each coefficient can be estimated as∣∣∣∣∣±
M∏
m=1

(1− 2−jm)im

im!2(im
2 )

∣∣∣∣∣ ≤ 2−
∑M

m=1 (im
2 ) = O

(
exp(−C3N

3/2)
)

for a constant C3 > 0. On the other hand, log(M !q(N,M)) = O(
√
N logN). Hence

the coefficients of the formal power series that defines det(I −M) decay so rapidly
that it represents a function that is analytic in x and y in the entire complex
plane. The same is true for all entries of adj(I −M) (which are themselves similar
determinants), and the entries are even uniformly bounded if x and y are restricted
to compact sets.

Let us now estimate Rr(x, y) in a similar way as the functions before. Suppose
for now that x and y are positive and real and note that all coefficients of Qk,r(x, y)
are positive. Since

r−1∏
j=0

(
1− j

2k − 1
· 2−(n−r−k)

)
≥ 1−

r−1∑
j=0

j

2k − 1
· 2−(n−r−k) ≥ 1− r(r − 1)2−(n−r),

we get∑
k≥1

(1− 2−k)rQk,r(x, y) ≤ r(r − 1)
∑
k≥1

∑
n≥r+1

∑
h≥1

dn−r,k,h−1x
n−ryh−1

(n− r)!2(n−r
2 )

2−(n−r)

= r(r − 1)
∑
k≥1

∑
n≥1

∑
h≥1

dn,k,h−1

n!2(n
2)

(x/2)nyh−1

≤ r(r − 1)
∑
n≥1

an

n!2(n
2)

(x
2

max(1, y)
)n

,

which means that the sum in the definition of Rr(x, y) converges absolutely pro-
vided that |x|max(1, |y|) < 2z0, and thus it represents an analytic function if this
holds. As it was mentioned earlier, the entries of adj(I −M) are analytic and uni-

formly bounded if |x| and |y| are. The factor r!2(r
r) in the denominator of (3) thus

guarantees that all entries of the product adj(I −M) ·R are still analytic in x if y
is in some fixed region around 1 and |x| < 2z0/max(1, |y|).

Hence we can write

Dr(x, y) =
sr(x, y)

t(x, y)

for any r ≥ 1, where t(x, y) = det(I −M) and sr(x, y) is analytic in an open circle
that contains the smallest zero τ(y) of t(x, y) (in particular, note that τ(1) has to
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be z0), provided that y is restricted to a suitable region around 1. Moreover, the
total generating function

D(x, y) =
∑
r≥1

Dr(x, y) =
s(x, y)

t(x, y)

can also be written as such a fraction. Now one can use standard results on pertur-
bation of meromorphic singularities (see [5, Theorem IX.9]) to obtain the following
result:

Theorem 4. The maximum rank of a vertex in a random EAD with n vertices is
asymptotically normally distributed, with mean ∼ µrn and variance ∼ σrn, where

µr = −τ
′(1)

τ(1)
≈ 0.764334 and σr =

(
τ ′(1)

τ(1)

)2

− τ ′′(1) + τ ′(1)

τ(1)
≈ 0.145210.

This limiting distribution is the same as for ordinary acyclic digraphs, as deter-
mined in the aforementioned paper of McKay [10]. Moreover, we find that the as-
ymptotic proportion of EADs with r vertices of maximum rank is sr(z0, 1)/s(z0, 1).
We have the following theorem:

Theorem 5. The distribution of the number of vertices of maximum rank in a
random EAD converges to a discrete limiting distribution, the limit probability that
the number of vertices of maximum rank equals r is

Hr = sr(z0, 1)/s(z0, 1).

Numerically,

H1 ≈ 0.815221, H2 ≈ 0.171843, H3 ≈ 0.012571,

H4 ≈ 0.000361, H5 ≈ 0.000004, . . . .

Compare the values in Table 3. In particular, the ratio between the number of
EADs with a unique vertex of maximum rank and the number of all EADs with
n vertices converges to a a limit whose numerical value is 0.815221−1 ≈ 1.22666,
which was also conjectured by Policriti and Tomescu.

Remark 5. Comparing residues in (4) at x = z0 (y = 1), we see that the vector
whose entries are H1, H2, . . . is an eigenvector of the infinite matrix M(z0, 1). The
rapid decay of the entries of M(z0, 1) along columns implies that the probabilities
H1, H2, . . . decrease equally rapidly.

n r = 1 r = 2 r = 3 r = 4
1 1
2 2
3 12
4 192 24
5 9120 1440
6 1082880 208800 5760
7 314979840 62657280 3366720 10080

Table 3. Enumeration of labelled EADs with given number of
vertices of maximum rank.



ASYMPTOTIC ENUMERATION OF EXTENSIONAL ACYCLIC DIGRAPHS 13

7. Weakly extensional acyclic digraphs

Let us now see how the asymptotic number of WEADs can be determined along
the same lines. We denote by cn,s the number of labelled WEADs with s sinks.
Then clearly cn,s = 0 for n < s, cs,s = 1, and by analogous reasoning to equation (2)

cn,s =

n∑
k=1

(−1)k−1
(
n

k

)
(2n−k − n+ k + s− 1)k cn−k,s.

It is not hard to modify the proof of Theorem 1 to obtain

Theorem 6. For any given s, the proportion of labelled WEADs with s sinks among
all labelled acyclic digraphs converges to a limit Ws.

The exact value of the limit Ws is determined by the convergent series

Ws =
zs0

s!2(s
2)

+
∑
n≥s

n−1∑
k=s

(−1)n−k

(n− k)!
· 2−(k

2)−(n−k
2 ) ck,s

k!(
1−

n−s∏
j=k−s+1

(1− 2−kj)

)
zn0 .

Numerical values of these constants can now be obtained quite easily, since the
sum converges exponentially:

W1 ≈ 0.326210, W2 ≈ 0.283213, W3 ≈ 0.049917,

W4 ≈ 0.002732, W5 ≈ 0.000055, . . . .

In particular, the total number of WEADs whose sinks are labelled with distinct
labels from the set {0, 1} is given by 2(cn,1 + cn,2) ∼ (2 + 2W2/W1)cn,1. The limit
ratio 2 + 2W2/W1 ≈ 3.736383 was conjectured by Policriti and Tomescu, albeit for
WEADs with exactly one element of highest rank. It is clear, however, that the
distribution of the number of vertices of highest rank (as given in Theorem 5) is
the same for WEADs as for ordinary EADs (see Theorem 9 below). Altogether,
we find that the proportion of WEADs among all acyclic digraphs is in the limit∑∞
s=1Ws ≈ 0.662127. Table 4 shows a few explicit values of cn,s.

n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s =
7

1 1
2 2 1
3 12 9 1
4 216 180 28 1
5 10560 9060 1540 75 1
6 1297440 1122480 195720 10350 186 1
7 38101392033044508058053240 3144750 61194 441 1

Table 4. Enumeration of labelled WEADs with given number of sinks.

If the sinks of a WEAD receive additional labels, then the automorphism group
is necessarily trivial again. Hence the number of unlabelled WEADs in which the
s sinks bear one of t distinct labels is given by tscn,s/n!. Asymptotically, however,
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it is not necessary to endow the sinks with labels: as almost every acyclic digraph
has trivial automorphism group and WEADs with a given number of sinks form a
positive proportion, we can infer that Theorem 6 also holds for unlabelled WEADs.

All distributional results derived for EADs in the previous sections can be proved
for WEADs in the same way quite easily. Explicitly, we have:

Theorem 7. For any fixed s, the number of arcs in a random WEAD with s
sinks and n vertices is asymptotically normally distributed, with mean ∼ 1

2

(
n
2

)
and

variance ∼ 1
4

(
n
2

)
.

Theorem 8. For any fixed s, the maximum rank of a vertex in a random WEAD
with s sinks and n vertices is asymptotically normally distributed, with mean ∼ µrn
and variance ∼ σrn, where the constants are the same as in Theorem 4.

Theorem 9. For any fixed s, the number of sources and the number of vertices
of maximum rank in a random WEAD with s sinks and n vertices asymptotically
follow the same discrete distributions as for EADs (see Theorem 2 and Theorem 5).

8. Essential acyclic digraphs

Essential acyclic digraphs (in the following EssADs) are another very interesting
class of digraphs whose definition is similar to that of EADs. They originate from
the study of Bayesian networks [2], and their enumeration has been studied by
Steinsky in two papers [14, 15]. An acyclic digraph is called essential if there is
no pair of two vertices u and v such that the inneighbourhood of u is the union of
the inneighbourhood of v and the set {v}; in other words, if there is no arc from
a vertex v to a vertex u such that u has the same inneighbours as v (except for v
itself).

For the recursion, it is convenient now to add sinks with each step. If en denotes
the number of EssADs of order n, then one has the recursion

en =

n∑
k=1

(−1)k−1
(
n

k

)
(2n−k − n+ k)k en−k

in analogy to (2), since each of k newly added sinks has 2n−k − n + k possible
inneighbourhoods (n − k choices are forbidden by the aforementioned condition),
and they do not necessarily have to be distinct, in contrast to EADs. The following
was proven in [15]:

Theorem 10. The proportion of EssADs among all labelled acyclic digraphs con-
verges to a limit whose numerical value is ≈ 13.651798−1 ≈ 0.073250.

The precise value of the constant is

1 +
∑
n≥0

n−1∑
k=0

(−1)n−kek
k!(n− k)!

2−(k
2)−(n−k

2 )
(

1− (1− k2−k)n−k
)
zn0 ,

and the proof is indeed very similar to the proof of our first main theorem (Theo-
rem 1). The number of arcs and the height of EssADs can be treated in the same
way as for EADs. Let us state the following theorems without proof, since their
proofs are almost identical to those of Theorem 3 and Theorem 4 respectively.

Theorem 11. The number of arcs in a random EssAD with n vertices is asymp-
totically normally distributed, with mean ∼ 1

2

(
n
2

)
and variance ∼ 1

4

(
n
2

)
.
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Theorem 12. The length of a longest directed path in a random EssAD with n
vertices is asymptotically normally distributed, with mean ∼ µrn and variance ∼
σrn, where the constants are the same as in Theorem 4.

The number of sources, however, is somewhat different. While the number of
sinks of a random EssAD follows the same discrete distribution as for all acyclic
digraphs (which, by symmetry, is the same as the distribution of the number of
sources, which is in turn the same as the distribution of the number of sources of
a random EAD, see Section 4), this is not the case for the number of sources of
a random EssAD. In order to determine the distribution, we have to make use of
a bivariate generating function, in which u marks the number of sources (cf. [6],
where the problem of counting acyclic digraphs by sources and sinks is studied in
detail). Let en(u) be the polynomial in which the coefficient of uk is the number of
EssADs of order n with precisely k sources. Then we have

en(u) =

n∑
k=1

(−1)k−1
(
n

k

)
(2n−k − n+ k + u− 1)k en−k(u),

since a newly added sink is only also a source if its inneighbourhood is empty (which
is one of the 2n−k − n+ k possible choices). This can be rewritten as

n∑
k=0

(−1)n−k

(n− k)!
2−(k

2)−(n−k
2 ) ek(u)

k!

=

n−1∑
k=0

(−1)n−k

(n− k)!
2−(k

2)−(n−k
2 ) ek(u)

k!

(
1− (1− 2−k(k + 1− u))n−k

)
+ [n = 0].

We introduce the generating function E(x, u) =
∑
n≥0 2−(n

2) en(u)x
n

n! as in Section 3
and obtain

E(x, u)φ(x) = 1 +H(x, u)

with

H(x, u) =

∞∑
n=0

n−1∑
k=0

(−1)n−k

(n− k)!
2−(k

2)−(n−k
2 ) ek(u)

k!

(
1− (1− 2−k(k + 1− u))n−k

)
xn

Assume that 0 < u < 2; we use the inequality

ek(u) ≤ ak max(1, u)k ≤ C1k!2(k
2)z−k0 max(1, u)k

as well as

(1− 2−k(k + 1− u))n−k ≥ 1− (n− k)(k + 1− u)2−k ≥ 1− n22−k

and estimate the coefficients of H(x, u) in the same way as in Section 3 to find
that it converges absolutely for |x| < 2z0/max(1, u) and is thus holomorphic in
this region. By singularity analysis, we find

lim
n→∞

en(u)

an
= 1 +H(z0, u)

for all 0 < u < 2, which means that the distribution of the number of sources con-
verges to the discrete distribution whose probability generating function is given by
(1 + H(z0, u))/(1 + H(z0, 1)). The probabilities can again be determined numeri-
cally:
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Theorem 13. The distribution of the number of sources in a random EAD con-
verges to a discrete limiting distribution, the limit probability that the number of
sources equals ` is

S̃` = [u`]
1 +H(z0, u)

1 +H(z0, 1)
.

Numerically,

S̃1 = 0, S̃2 ≈ 0.700275, S̃3 ≈ 0.276627,

S̃4 ≈ 0.022528, S̃5 ≈ 0.000564, S̃6 ≈ 0.000005, . . . .

Note that an EssAD of order > 1 cannot have a single source, which is easy to
see from the definition: arrange the vertices by rank, as in Figure 2. If there was
only a single source v at rank k, one of its outneighbours at rank k− 1 would have
v as its only inneighbour, thus violating the definition of an EssAD.

9. Conclusion

We have seen that roughly 32.6% of all (labelled or unlabelled) acyclic digraphs
are extensional, and more generally, we were able to determine the proportion of
WEADs with a fixed number of sinks among all acylic digraphs. The distribution of
the number of sources, the number of arcs and the maximum rank are the same for
EADs as for the family of all acyclic digraphs, meaning that they have essentially
the same shape. Analogous results hold for the very similar class of EssADs.

Things might be quite different if other subfamilies of acyclic digraphs are stud-
ied. For instance, Policriti and Tomescu mention the problem of counting slim
EADs, which have the additional property that removal of an arbitrary arc yields
an acyclic digraph which is no longer extensional. It seems to be a quite challenging
problem to determine the asymptotic number of such EADs.
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