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§1: Vertices and the Brauer Correspondence for Modules

Let G be a finite group. Let F be a field of prime characteristic p.
Let V be an indecomposable FG-module.

A subgroup P < G is said to be a vertex of V is there is an
FG-module U such that V| UTE, and P is minimal with this
property.
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Green showed in 1959 that

(i) Vertices are p-subgroups of G;
(i) If P, Q < G are vertices of V then P* = Q for some x € G.
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Theorem (Broué 1985)
If V(Q) # 0 then Q is contained in a vertex of V.



Brauer Correspondence for p-Permutation Modules

Let Pnax be a Sylow p-subgroup of G.

An FG-module V is p-permutation if it has a basis
B ={vi,...,vn} such that v;g € B for all g € Prax.

Remark: V is an indecomposable p-permutation module if and
only if V| F1§ for some P < G.

Lemma
Suppose that V is p-permutation with respect to the basis B. If
Q < Prax then V(Q) = (B?) .

Theorem (Broué 1985)

Let V be an indecomposable p-permutation FG-module. Then
V(Q) #0 <= Q is contained in a vertex of V. If V has vertex
P then V(P) is the Green correspondent of V.



§2 Vertices of Specht Modules

Theorem

Let n € N and let p be a prime such that p |/ n. The vertex of
S(n=r1") " defined over a field of characteristic p, is a Sylow
p-subgroup of S,_,_1 X S,.

The proof uses a p-permutation basis for S(7—r=1.17),
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§2 Vertices of Specht Modules

Theorem

Let n € N and let p be a prime such that p |/ n. The vertex of
S(n=r1") " defined over a field of characteristic p, is a Sylow
p-subgroup of S,_,_1 X S,.

The proof uses a p-permutation basis for S(7—r=1.17),

Application: In characteristic 2 Specht modules may be
decomposable. | used this theorem to give a short proof of a
theorem of Murphy (1980): if n is odd and 27! < r < 2¢ then
Sn=r17 s decomposable, unless n = 2r + 1 mod 2t

Remark: Suppose that S*, defined over a field of characteristic p,
is indecomposable with vertex Q. It follows from a theorem of
Green (1960) that if g is a p-element such that x*(g) # 0 then
there exists x € G such that g € Q.



Open Problems

Problem
Find vertices of hook Specht modules S("="1") over fields of
characteristic p > 3 where p | n.

Solved when p = 2 by Murphy and Peel (1984).

Work is in progress with Susanne Danz and Karin Erdmann on
S(n=3.L.11) in characteristic 3.

Problem
Clarify the relationship between character values on p-elements
and vertices in characteristic p.



A Subgroup Bound on Vertices

Let A be a partition and let t be a A\-tableau. Let H(t) be the
subgroup of the row stabilising group of t that permutes, as blocks
for its action, the entries of columns of t of equal length.

For example if A = (8,4,1) and

1]2]3]4]5]6]|7]8]
10]11]12

..,
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then H(t) is generated by

(2,3,4)(10,11,12), (2,3)(10, 11), (5,6, 7,8), (5, 6).
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A Subgroup Bound on Vertices

Let A be a partition and let t be a A\-tableau. Let H(t) be the
subgroup of the row stabilising group of t that permutes, as blocks
for its action, the entries of columns of t of equal length.

For example if A = (8,4,1) and

1]2]3]4]5]6]|7]8]
10]11]12

..,
I

13

then H(t) is generated by

(2,3,4)(10,11,12), (2,3)(10, 11), (5,6, 7,8), (5, 6).

Theorem
If S* is indecomposable then it has a vertex containing a Sylow
p-subgroup of H(t).



Outline Proof

We assume w.l.o.g. t is the greatest tableau under >. Let Q be a
Sylow p-subgroup of H(t).

(1) Show that e; is fixed by every permutation in Q. So for
instance, we need

e

1]2]3]4]s5]6][7]8]
9 [10]11]12
13

to be fixed by (2, 3,4)(10,11,12) and (5,6,7).
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We assume w.l.o.g. t is the greatest tableau under >. Let Q be a
Sylow p-subgroup of H(t).

(1) Show that e; is fixed by every permutation in Q. So for
instance, we need

e

1]2]3]4]s5]6][7]8]
9 [10]11]12
13

to be fixed by (2, 3,4)(10,11,12) and (5,6,7).

(2) Then show that e; ¢ ZR<QT1",§(5)‘)R. Hence S*(Q) # 0,
so by Broué's theorem, S* has a vertex containing Q.

For (2) it suffices to show that if u is a A-tableau and g € H(t) is a
p-element then, when e, + e, g + - - - + e,gP ! is written as a linear
combination of standard polytabloids, the coefficient of e; is 0.



§3 Complexity of Modules and Two Results of K. J. Lim

Definition
Let G be a finite group and let V and an FG-module. Let
P —=>Pr—>FP—V

be a minimal projective resolution of V. The complexity of V is
the least non-negative integer ¢ such that

. dimF P
lim =0
n—o0 n¢

Theorem (Lim 2011, Theorem 3.2)

Suppose that the Specht module S*, defined over a field of odd
characteristic, has an abelian vertex. Let m be the p-rank of Q.
If ¢ is the complexity of S* and w is the weight of u then

c =w = m and Q is conjugate to the elementary abelian subgroup

((1,...,p)) x - x(wp—p+1,...,wp)) < Sup.



Abelian Vertices

In 2003 | proved:

Theorem
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a non-trivial cyclic vertex if and only if X has p-weight 1.



Abelian Vertices

In 2003 | proved:

Theorem
The Specht module S*, defined over a field of characteristic p, has
a non-trivial cyclic vertex if and only if X has p-weight 1.

For odd characteristic, Lim has proved.

Theorem (Lim 2011, Corollary 5.1)

Let p be an odd prime and let 1 < m < p— 1. The Specht module
S*, defined over a field of characteristic p has an abelian vertex of
p-rank m if and only if the p-weight of u is m.



Abelian Vertices

In 2003 | proved:

Theorem
The Specht module S*, defined over a field of characteristic p, has
a non-trivial cyclic vertex if and only if X has p-weight 1.

For odd characteristic, Lim has proved.

Theorem (Lim 2011, Corollary 5.1)

Let p be an odd prime and let 1 < m < p— 1. The Specht module
S*, defined over a field of characteristic p has an abelian vertex of
p-rank m if and only if the p-weight of u is m.

Problem
Classify all Specht modules with abelian vertex.



