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§1: Vertices and the Brauer Correspondence for Modules

Let G be a finite group. Let F be a field of prime characteristic p.
Let V be an indecomposable FG -module.

A subgroup P ≤ G is said to be a vertex of V is there is an
FG -module U such that V | U ↑GP , and P is minimal with this
property.

Green showed in 1959 that

(i) Vertices are p-subgroups of G ;

(ii) If P, Q ≤ G are vertices of V then Px = Q for some x ∈ G .
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Brauer Correspondence for Modules

Let V Q = {v ∈ V : vg = v for all g ∈ Q}. Given R ≤ Q ≤ G
define the trace map TrQR : V R → V Q by

TrQR (v) =
m∑
i=1

vgi

where Q = Rg1 ∪ . . . ∪ Rgm.

The Brauer correspondent of V with respect to Q is

V (Q) =
V Q∑

R<Q TrQR VR

.

The Brauer correspondent is a module for NG (Q).

Theorem (Broué 1985)

If V (Q) 6= 0 then Q is contained in a vertex of V .
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Brauer Correspondence for p-Permutation Modules

Let Pmax be a Sylow p-subgroup of G .

An FG -module V is p-permutation if it has a basis
B = {v1, . . . , vn} such that vig ∈ B for all g ∈ Pmax.

Remark: V is an indecomposable p-permutation module if and
only if V | F ↑GP for some P ≤ G .

Lemma
Suppose that V is p-permutation with respect to the basis B. If
Q ≤ Pmax then V (Q) =

〈
BQ
〉
F

.

Theorem (Broué 1985)

Let V be an indecomposable p-permutation FG -module. Then
V (Q) 6= 0 ⇐⇒ Q is contained in a vertex of V . If V has vertex
P then V (P) is the Green correspondent of V .



§2 Vertices of Specht Modules

Theorem
Let n ∈ N and let p be a prime such that p 6 | n. The vertex of
S (n−r ,1r ), defined over a field of characteristic p, is a Sylow
p-subgroup of Sn−r−1 × Sr .

The proof uses a p-permutation basis for S (n−r−1,1r ).

Application: In characteristic 2 Specht modules may be
decomposable. I used this theorem to give a short proof of a
theorem of Murphy (1980): if n is odd and 2`−1 ≤ r < 2` then
S (n−r ,1r ) is decomposable, unless n ≡ 2r + 1 mod 2`.

Remark: Suppose that Sλ, defined over a field of characteristic p,
is indecomposable with vertex Q. It follows from a theorem of
Green (1960) that if g is a p-element such that χλ(g) 6= 0 then
there exists x ∈ G such that g ∈ Qx .
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Open Problems

Problem
Find vertices of hook Specht modules S (n−r ,1r ) over fields of
characteristic p ≥ 3 where p | n.

Solved when p = 2 by Murphy and Peel (1984).

Work is in progress with Susanne Danz and Karin Erdmann on
S (n−3,1,1,1) in characteristic 3.

Problem
Clarify the relationship between character values on p-elements
and vertices in characteristic p.



A Subgroup Bound on Vertices

Let λ be a partition and let t be a λ-tableau. Let H(t) be the
subgroup of the row stabilising group of t that permutes, as blocks
for its action, the entries of columns of t of equal length.

For example if λ = (8, 4, 1) and

t =

1 2 3 4 5 6 7 8

9 10 11 12

13

then H(t) is generated by

(2, 3, 4)(10, 11, 12), (2, 3)(10, 11), (5, 6, 7, 8), (5, 6).

Theorem
If Sλ is indecomposable then it has a vertex containing a Sylow
p-subgroup of H(t).
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Outline Proof

We assume w.l.o.g. t is the greatest tableau under D. Let Q be a
Sylow p-subgroup of H(t).

(1) Show that et is fixed by every permutation in Q. So for
instance, we need

e
1 2 3 4 5 6 7 8

9 10 11 12

13

to be fixed by (2, 3, 4)(10, 11, 12) and (5, 6, 7).

(2) Then show that et 6∈
∑

R<Q TrQR (Sλ)R . Hence Sλ(Q) 6= 0,

so by Broué’s theorem, Sλ has a vertex containing Q.

For (2) it suffices to show that if u is a λ-tableau and g ∈ H(t) is a
p-element then, when eu + eug + · · ·+ eugp−1 is written as a linear
combination of standard polytabloids, the coefficient of et is 0.
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§3 Complexity of Modules and Two Results of K. J. Lim

Definition
Let G be a finite group and let V and an FG -module. Let

→ P2 → P1 → P0 → V

be a minimal projective resolution of V . The complexity of V is
the least non-negative integer c such that

lim
n→∞

dimF Pn

nc
= 0.

Theorem (Lim 2011, Theorem 3.2)

Suppose that the Specht module Sµ, defined over a field of odd
characteristic, has an abelian vertex. Let m be the p-rank of Q.
If c is the complexity of Sµ and w is the weight of µ then
c = w = m and Q is conjugate to the elementary abelian subgroup

〈(1, . . . , p)〉 × · · · × (wp − p + 1, . . . ,wp)〉 ≤ Swp.



Abelian Vertices

In 2003 I proved:

Theorem
The Specht module Sλ, defined over a field of characteristic p, has
a non-trivial cyclic vertex if and only if λ has p-weight 1.

For odd characteristic, Lim has proved.

Theorem (Lim 2011, Corollary 5.1)

Let p be an odd prime and let 1 ≤ m ≤ p − 1. The Specht module
Sλ, defined over a field of characteristic p has an abelian vertex of
p-rank m if and only if the p-weight of µ is m.

Problem
Classify all Specht modules with abelian vertex.
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