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§1 Motivation: A modular Wronskian isomorphism

Let V be a vector space.
> Sym?V = V&2 /(veaw-wav:v,we V)
=(w:veV,weV)
> ANV =V®/(vav:veV)
=(vAw:veV,weV)



§1 Motivation: A modular Wronskian isomorphism

Let V be a vector space.
> Sym?V = V&2 /(vaw-—wev:v,we V)
=(w:veV,weV)
> ANV =V®/(vav:veV)
=(vAw:veV,weV)

Observation. Sym?C? and A®C9*! both have dimension (“1).

> For instance, if vq, ..., vy is a basis for C¢ then Sym?C? has
basis v127 ey vg, ViVa, ..., Vg_1Vy Of size d + (;)

Question. Asked by 8s8:3s x0demsdg on MathOverflow: Is there a
natural isomorphism between these vector spaces?



§1 Motivation: A modular Wronskian isomorphism

Let V be a vector space.
> Sym?V = V&2 /(vaw-—wev:v,we V)
=(w:veV,weV)
> ANV =V®/(vav:veV)
=(vAw:veV,weV)

Observation. Sym?C? and A®C9*! both have dimension (“1).

> For instance, if vq, ..., vy is a basis for C¢ then Sym?C? has
basis v127 ey vg, ViVa, ..., Vg_1Vy Of size d + (;)

Question. Asked by 8s8:3s x0demsdg on MathOverflow: Is there a
natural isomorphism between these vector spaces?

Answer. Yes!



§1 Motivation: the Wronskian isomorphism
Are there nice isomorphisms S2(k") = A2(k"*1)?

Asked 1 year, 1 monthago Active 1year, 1 monthago Viewed 349 times

A This might be forced to migrate to math.SE but let me still risk it.
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The spaces S?(k") and A2(k"*!) from the title have equal dimensions. Is there a natural
isomorphism between them?
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Let E be a 2-dimensional k-vector space. The Wronksian isomorphism is an isomorphism of SL(E)-
modules /" S™=1(E) =~ S™S"(E). Itis easiest to deduce it from the corresponding identity in
symmetric functions (specialized to 1 and g), but it can also be defined explicitly: see for example
Section 2.5 of this paper of Abdesselam and Chipalkatti.

In particular, identifying S" (E) with the homogeneous polynomial functions on E of degree n, their
definition becomes the map A>S"(E) — S2S"~!(E) defined by

of dg  of og
SNE= 5x oy ~arax

Now S"(E) 2 k™! and S""!(E) = k", so we have the required isomorphism S?k” = AZk™*!.
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Action of SLy(F) on A>Sym?E where E = (X, Y)
X2 A XY Y2 A XY X2 A Y?
Xy a3 —a?pB aB?6 — aB? 20266 — 2032
a B v v a”p afy
( ) — | —ay?5+ 393 ad® — By6? 2B~%85 — 2ay62
v 0295 — 2B b — o

a262 . 6272
X2AXY YZ2AXY X2 A Y2
a’A —B°A 2a8A
—72A 2A —27v6A
ayA —B6A (ad + By)A
X2AXY YZAXY X2 A Y2
a? —B? 2a3
= -2 52 =276

ay —B6 ad + By
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Action of SLy(F) on A>Sym?E where E = (X, Y)

Xy X2 A XY Y2 A XY X2 A Y?
a B a36 — a’By aB?6 — af?y 20265 — 2a3%y
( . ) — | —ay?5+ 393 ad® — By6? 28726 — 20062
a?yd—ay?B P90 — aBs? a?0? — f22
X2AXY YZ2AXY X2 N Y?
a’A —B2A 2a8A
= R AY 2A —27v6A
ayA —B6A (ad + By)A
X2AXY XY AY? X2 A Y2
a? B2 2a8
= 72 52 276
ay 51 ad + By

> Even after the sign flip, this is not the matrix for Sym?E. The
matrices are not even conjugate if char F =2



Action of SLy(F) on A>Sym?E where E = (X, Y)

X v X2 A XY Y2 A XY X2 A Y?
a B a36 — a’By aB?6 — af?y 20265 — 2a3%y
( vy 6 ) — | —an?i+ B8y ad® - Brd? 26770 — 20492
a2,)/5 _ 04’725 5275 _ aﬂ52 o262 — ﬁ272
X2AXY YZ2AXY X2 N Y?
a’A —B°A 2a8A
= R AY 52A —2790A
ayA —B6A (ad + By)A
X2AXY XY AY? X2 A Y2
a? 52 2a3
= 2 52 270
ay 51 ad + By

> Even after the sign flip, this is not the matrix for Sym?E. The
matrices are not even conjugate if char F = 2! Instead

SymyE = (X@X,YRY,X®Y+Y®X)=(Sym?E)*.

» So (Sym2E)* =S1,(F) /\2 Sym?E and the duality is essential.



Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let E = F? be the natural representation of
SLa(F). There is an explicit isomorphism

Sym,SymeE =SLa(F) /\Sym’H*lE.



Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let E = F? be the natural representation of
SLa(F). There is an explicit isomorphism

Sym,SymZE =SLa(F) /\Sym’H*lE.

As a corollary we obtain a modular version of Hermite reciprocity.

Corollary (Hermite 1854 over C, McDowell-W 2020)

Let F be any field. Let m, £ € N and let E be the natural
2-dimensional representation of GLy(F). Then

Sym, Sym’E = Sym‘Sym, E

by an explicit map.



§2 Schur functors and Schur functions
» Polynomial representations of GL(E)with E= ey, e, e3) =C3.
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§2 Schur functors and Schur functions
» Polynomial representations of GL(E)with E={er, e, e3) =C3
e EQ E=Sym’E® N\’ E
e EREQEXSym’E® \N’E @ VRVE @ VRIE

Now take E = (e, &) = C?
» Tensor product: Sym?E ® Sym?E
> Symmetric power of symmetric power: Sym?(Sym?E)
» Composition of Schur functors: V”(V*(E))

» Symmetric functions
* sy, y2,3) = Yi+Yi+yi+yy+nys+yeys

2]

o 5.1y (x1, %2, x3) = X2 4x2 px P pxP g x4 x
2

= X12X2 + X12X3 + X1X22 + 2x1x0X3 + -+ - + X0X3



§2 Schur functors and Schur functions
» Polynomial representations of GL(E)with E={er, e, e3) =C3
e EQ E=Sym’E® N\’ E
e EREQEXSym’E® \N’E @ VRVE @ VRIE

Now take E = (e, e2) = C?

» Tensor product: Sym?E ® Sym?E

> Symmetric power of symmetric power: Sym?(Sym?E)

» Composition of Schur functors: V”(V*(E))
» Symmetric functions

* sy, y2,3) = Yi+Yi+yi+yy+nys+yeys
e 501)(x1, %2, x3) = Xxxxxxxx

= X12X2 + X12X3 + X1X22 + 2x1x0x3 + - - - + X2X32

> Multiplication: sp)(x1,x2)? = (X + x5 + x1x2)?

> Evaluate s2)(y1, y2, ¥3) at monomials in s5)(x1, x2) to get
S@) (455, x0e) = (4)7 + () (38) + () (xixe) +- -+ (xaxe) .

» Plethysm: (s, 05,)(x1,x,...,Xq4) = s, evaluated at monomials
in s,(xt,...,xq). Equivalently: formal character of V¥ (V*(E))



Combinatorial definitions

Given a tableau t let x* = x{x3? ... where a; is the number of
entries of t equal to /.

Definition (Schur function)

Let i be a partition. The Schur function s, is the generating
function enumerating semistandard p-tableaux by weight:

t
ZtESSYT(M) X

5(2)(X1,X2, .. ) =X

:x12+xlx2+x22—|—X1X3+---

For example x2 = x1 Xxpx3x5 and

00, 00, 2R, 6

Definition
Let p and v be partitions. Let SSYT(u) = {t(1),t(2),...}. The
plethystic product of s, and s, is s, 0 5, = 5,(x*(}), x* 2), S

Y

Warning. | haven't defined a general plethysm. Note o is not
linear in its second component: fo(g+ h)#fog+foh.



§3 Plethysms and Stanley’'s Hook Content Formula

Theorem
Let E = (X, Y) be natural representation of SLy(C). Let X and
be partitions and let {, m € N. The following are equivalent:

(i) VASym‘E g1, (c) V*Sym™E;

)
(i) sx(¢%,q2,...,q7 ") =s.(q™,q™2,...,q"™);
(iv) sx(1,q,...,9°) = s.(1,q,...,9™) up to a power of q;

(i) representations (ii) plethysms of (iv) combinatorial
of SLy(C) symmetric functions enumeration

Example of (iv) <= (i): Hermite reciprocity over C.



§3 Plethysms and Stanley’'s Hook Content Formula

Theorem
Let E = (X, Y) be natural representation of SLy(C). Let X and
be partitions and let £, m € N. The following are equivalent:
(i) VASym‘E g1, (c) V*Sym™E;
(i) (sxos)(@a7t) = (suoswm)a.q )
(i) sx(q%¢72,...,q7Y) =s.(9m g 2,...,q7™);
(iv) sx(1,q,...,9°) = s.(1,q,...,9™) up to a power of q;
(v) €O+ €+ 1/H\) = o) +m+1/H(y)
where / is difference of multisets (negative multiplicities okay) and
» C(A)={j—1i:(i,j) € [\]} is the multiset of contents of \;
> H(A) = {hgj): (i,) € [N} is the multiset of hook lengths of \.

Part (v) is a corollary of Stanley's Hook Content Formula.

Example of (v) <= (i): Wronksian isomorphism over C.



Plethystic complement isomorphism for SL,(C)

Let A\ be a partition contained in a box with d rows and s columns.
Let A*? be its complement. For example if s =5, d = 4 then

(4,3,3,1)* = (4,2,2,1).




Plethystic complement isomorphism for SL,(C)

Let X\ be a partition contained in a box with d rows and s columns.
Let A*? be its complement. For example if s =5, d = 4 then

(4,3,3,1)* = (4,2,2,1).

Theorem (King 1985 [if], Paget-W 2019 [only if])

Let E be the natural representation of SLy(C). Let A have at most
d parts. Then

VASym‘E = VA'Sym‘E
if and only if \=\*9 or 0 =d — 1.



From the complement isomorphism to combinatorics
For example, using a rectangle with 4 rows and 5 columns,

v(4,3,3,1)sym3E ~ v(4,2,2,1)sym3 E.
By (i) = (v) taking A=(4,3,3,1), \**=(4,2,2,1)
C(A) +4/H(\) = C(A**) +4/H(\Y).




From the complement isomorphism to combinatorics
For example, using a rectangle with 4 rows and 5 columns,
V33D 8ym3E = y(*221)gym3E.
By (i) = (v) taking A=(4,3,3,1), A**=(4,2,2,1)
CA) +4UHWMY) = CO) +4UH).
C(\)+4
5|6 |7
415
314

= IN(W|Pd




From the complement isomorphism to combinatorics
For example, using a rectangle with 4 rows and 5 columns,

v(4,3,3,1)sym3E ~ v(4,2,2,1)sym3 E.
By (i) = (v) taking A=(4,3,3,1), A\ =(4,2,2,1)
CA) +4UHWMY) = CO) +4UH).

C(\)+4
415|6|7|1
314|513
234|214
1(1(2(5]|7

H()\.4)



From the complement isomorphism to combinatorics
For example, using a rectangle with 4 rows and 5 columns,

v(4,3,3,1)sym3E ~ v(4,2,2,1)sym3 E.
By (i) = (v) taking A=(4,3,3,1), A\ =(4,2,2,1)
CA) +4UHWMY) = CO) +4UH).

C(\)+4 H(\)
4 5/6(7|1 7541
3(4(5|1|3 5 2
2(3(4(2|4 4 1
1(1(2|5]|7 1

H()\.4)



From the complement isomorphism to combinatorics
For example, using a rectangle with 4 rows and 5 columns,
v(4,3,3,1)sym3E ~ v(4,2,2,1)sym3E
By (i) = (v) taking A=(4,3,3,1), A**=(4,2,2,1)
C(A) +4UHWM) = CA*) +4UH(N).

() +4 H(\)
415(6|7 |1 715|411
3(a]5(1]3 5(3[2]3]2
2(3[a2]4 al2]1]al3
11]2]s]7 1(7]6]5]4
H(A%) COy+4

Either way have same multiset: {14 23 33 44 53 6,72}



From the complement isomorphism to combinatorics
For example, using a rectangle with 4 rows and 5 columns,
V33D 8ym3E = y(*221)gym3E.
By (i) = (v) taking A=(4,3,3,1), A**=(4,2,2,1)
CA) +4UHWMY) = CO) +4UH).

C(\)+4 H(\)
4o |51 (62|73 |10 7352|4110 | 1o
3041521031 5231203120
20|31 42|20 |4 45|21 | 10|41 |30
lo| 10|21 (52|73 1o| 73|62 51|40
H(\*%) C(A**) +4

Either way have same multiset: {14 23 33 44 53 6,72}

Problem. A 2001 theorem of Christine Bessenrodt implies a
stronger version with arm-lengths. Interpret this as a plethysm of
Jack symmetric functions.



Modular complements

Theorem (McDowell-W 2020)
> Let G be a group;

> Let V be a d-dimensional representation of G over an
arbitrary field;

> Let s € N, and let \ be a partition with ¢(\) < d and first
part at most s.

> Recall that \*? denotes the complement of \ in the d x s
rectangle.

There is an explicit isomorphism
VMV = VA VF @ (det V)25,



Modular complements

Theorem (McDowell-W 2020)
> Let G be a group;

> Let V be a d-dimensional representation of G over an
arbitrary field;

> Let s € N, and let \ be a partition with ¢(\) < d and first
part at most s.

> Recall that \*? denotes the complement of \ in the d x s
rectangle.

There is an explicit isomorphism
VMV = VA VF @ (det V)25,

This generalizes the complementary partition isomorphism from
SL>(C) to arbitrary fields and groups. In fact, over any ring.



A ‘no-go’ result in positive characteristic

Theorem (King 1985)

Let E be the natural representation of SLy(C) and let m € N. For
a large class of partitions A, there is an explicit isomorphism

v)\Symer@(/\)E gSL(E) v)\’symm+£(,\/)E'

» In particular, King's result holds when X is a hook; that is
A= (a+1,1P) for some a, b € Np.

» Just for this talk: say that a partition in the class for King's
theorem is ‘royal'.

Theorem (Paget-W 2019)

Let E be the natural representation of SLy(C). There is a
plethystic isomorphism

VASym™E g1 g) VY Sym™ E

if and only if X is royal and m — m' = £(\) — £(N).



A ‘no-go’ result in positive characteristic

Let F be an infinite field of prime characteristic p and let E be the
natural representation of SLy(F).

Theorem (McDowell-W 2020)

There exist infinitely many pairs (a, b) such that, provided e is
sufficiently large, the eight representations of SLy(F) obtained
from V(a+11°)GymP b E by

» Replacing V with A (duality)

» Replacing (a+ 1,1P) with (b + 1,12) and p® + b with p¢ + a

(King conjugation);

» Replacing Sym*E with Sym,E (another duality);

are all non-isomorphic.



A ‘no-go’ result in positive characteristic

Let F be an infinite field of prime characteristic p and let E be the
natural representation of SLy(F).
Theorem (McDowell-W 2020)

There exist infinitely many pairs (a, b) such that, provided e is
sufficiently large, the eight representations of SLy(F) obtained
from V(a+11°)GymP b E by

» Replacing V with A (duality)

» Replacing (a+ 1,1P) with (b + 1,12) and p® + b with p¢ + a

(King conjugation);

» Replacing Sym*E with Sym,E (another duality);

are all non-isomorphic.

Problem

What plethystic isomorphisms of representations of SL,(C) have
modular analogues?



84 Modular plethysms for the symmetric group

Problem (Decomposition numbers)
Determine the composition factors of Specht modules over fields of

prime characteristic.

—
_ S & ® 4 d d
O Lo < (32} < ™ N
(6) 1
(5,1) 1 1
4,2y - - 1
33 - 1 - 1
4,1,1) - 1 - . 1
3,21) 1 1 - 1 1 1
(2,2,1,1) - . . . . .1
(2,22 1 - - - - 1 -
3,1,1,1) - - - - 1 1
21,1,1,1) - - - 1 - 1
(1,1,1,1,1) - - - 1

For instance the Specht module $(33) has composition factors
labelled by (5,1) and (3, 3).



Even partitions and plethysms

For n € N,
mon= Y o
A€ePar(n)

where 2\ is the even partition obtained by doubling each part of .
Equivalently, for the symmetric group,

Sn
CTSzzsn: @ S2A,

XePar(n)

Given a p-core 7, let £(y) be the set of even partitions obtained
from ~ by adding the least possible number of disjoint p-hooks.

» For example if p =3 then 5<H) = {(6,2), (4,4), (4,2,2)}

Theorem (Giannelli-W 2014)

Let p be an odd prime and let v be a p-core. Let A\ € E(vy) be
maximal. The column of the decomposition matrix labelled by A

has entries 0 and 1. Moreover its non-zero entries are in rows
labelled by E(v)



Decomposition Numbers: 3-block of Sy, with core (3,1, 1)

_a2ad
Co88 o ~UNN o
R RN A O
[ R I R R
12,15 =2 1
9,4H)=2,2) 1 1
9.3.2=, D] 2 11
®42)=M| 1 1 111
(6%,2) = (1,2) 11
6,4%) =(1,2,2) IR R
6,425=2,22 1 1 1011 1 1
6,3,22,)=(1, 1,2 2 1 1 11
5,422, )=, 1 1 1 111 11
42,22,15=3)| 1 1 11 11 1
9,15 =(2,3) 1
(6,4,1%) = (2,2,3) 1
(6,3,2,13) =(1,2,3) 1 11
6,23,12) = (3,2) 1
6,13)=(2,3,3) 1
(5.4,2,13 =(1,3) 211 1 1
3419 =31 1 1 1 1
32,29 =(1,1,3)] 1 1
(32,22, 1% = (1,1,1) 11 11
(32,2,16)=(1,3,3) 2 1 1
(3,23,15)=@3,3) 1 1
(3,1 =(3,3,3) 1
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_=a<4
T8 goataq
AT 0T 0 T T
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3419 =31 1 1 1 1
32,29 =(1,1,3)] 1 1
(32,22, 1% = (1,1,1) 11 11
(32,2,16)=(1,3,3) 2 1 1
(3,23,15)=@3,3) 1 1
(3,1 =(3,3,3) 1




Decomposition Numbers: 3-block of Sy, with core (3,1, 1)

_=a<4
T8 goataq
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Decomposition Numbers: 3-block of Sy, with core (3,1, 1)

_=a<4
T8 goataq
AT 0T 0 T T
[ R I R R
12,15 =2 1
9,4H)=2,2) 1 1
9.3.2=, D] 2 11
®42)=M| 1 1 111
(6%,2) = (1,2) 11
6,4%) =(1,2,2) IR R
6,425=2,22 1 1 1011 1 1
6,3,22,)=(1, 1,2 2 1 1 11
5,422, )=, 1 1 1 111 11
42,22,15=3)| 1 1 11 11 1
9,15 =(2,3) 1
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6,23,12) = (3,2) 1
6,13)=(2,3,3) 1
(5.4,2,13 =(1,3) 2011 11
3419 =31 1 1 1 1
32,29 =(1,1,3)] 1 1
(32,22, 1% = (1,1,1) 11 11
(32,2,16)=(1,3,3) 2 1 1
(3,23,15)=@3,3) 1 1
(3,1 =(3,3,3) 1




The plethysm 510y 0 52
Proposition (Paget-W 2022)
Let v € Par(n) and let u € Par(m) with m,n > 2. The only

plethysms s, o s, in which every constituent is both maximal and
minimal in the dominance order are s1n) © 52y and s(iny © 5(12).

For example, s(15) o 5(2) has constituents

EEEEEEEE

This is a special case of a much more general theorem extending
joint work from 2019 and 2021 that gives an explicit combinatorial
description of all maximal and minimal constituents in plethysms.

Problem
Get results on decomposition numbers from the monomial modules
for the symmetric group corresponding to s k)(s(ln) o 5(12)).



Thank you!



Thank you!

Some more suggestions for problems on modular plethysms are in
my MFO 'Research summary'.



