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Abstract. For G ≤ Sym(Ω), let π(G) be the set of partitions of Ω

given by the cycles of elements of G. Under the refinement order, π(G)
admits join and meet operations. We say thatG is join- or meet-coherent

if π(G) is join- or meet-closed, respectively.

The centralizer in Sym(Ω) of any permutation g is shown to be meet-

coherent, and join-coherent subject to a finiteness condition. Hence if G

is a centralizer in Sn, then π(G) is a lattice. We prove that wreath prod-

ucts, acting imprimitively, inherit join-coherence from their factors. In

particular automorphism groups of locally finite, spherically homoge-

neous trees are join-coherent.

We classify primitive join-coherent groups of finite degree, and also

join-coherent subgroups of Sn normalizing an n-cycle. We show that

if π(G) is a chain then there is a prime p such that G acts regularly

on each of its orbits as a subgroup of the Prüfer p-group, with G being

isomorphic to an inverse limit of these subgroups.

1. Introduction

Let G be a group acting on a set Ω. Each element g of G has associated

with it a partition π(g) of Ω, whose parts are the cycles of g. We define π(G)

to be the set {π(g) ∣ g ∈ G}.

If P,Q are two partitions of Ω then we say that P is a refinement of Q,

and write P ≼ Q, if every part of P is contained in a part of Q. The set of

all partitions of Ω forms a lattice under ≼. That is to say, any two partitions

P and Q have a supremum with respect to refinement, denoted P ∨Q, and

an infimum with respect to refinement, denoted P ∧Q. The parts of P ∧Q

are precisely the non-empty intersections of the parts of P and Q; for a

description of P ∨Q see Section 2 below. The lattice of all partitions of Ω

is called the congruence lattice on Ω, and is denoted Con(Ω).

The object of this paper is to prove a number of interesting structural

and classification results on the permutation groups possessing one or both

of the following properties.
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Definition. Let G be a group acting on a set.

(1) We say that G is join-coherent if π(G) is closed under ∨.

(2) We say that G is meet-coherent if π(G) is closed under ∧.

We refer to these properties collectively as orbit coherence properties. Our

first main theorem describes the groups G such that π(G) is a chain. It is

clear that any such group is both join- and meet-coherent.

Theorem 1. Let Ω be a set, and let G ≤ Sym(Ω) be such that π(G) is a

chain. There is a prime p such that the length of any cycle of any element

of G is a power of p. Furthermore, G is abelian, and either periodic or

torsion-free.

(a) If G is periodic then G is either a finite cyclic group of p-power order,

or else isomorphic to the Prüfer p-group.

(b) If G is torsion-free then G is isomorphic to a subgroup of the p-adic

rational numbers Qp. In this case G has infinitely many orbits on Ω,

and the permutation group induced by its action on any single orbit is

periodic.

Our second theorem determines when a direct product or wreath product

of permutation groups inherits join coherence from its factors. The actions

of these groups referred to in this theorem are defined in Sections 4 and 5

below.

Theorem 2. Let X and Y be sets and let G ≤ Sym(X) and H ≤ Sym(Y )

be permutation groups.

(a) If G and H are finite then G×H is join-coherent in its product action

on X × Y if and only if G and H are join-coherent and have coprime

orders.

(b) If Y is finite then G ≀H is join-coherent in its imprimitive action on

X × Y if and only if G and H are join-coherent.

We use this theorem in Corollary 5.4 to show that the automorphism

group of a locally finite spherically homogeneous tree is join-coherent.

Our third main theorem, on centralizers in a symmetric group, is the

central result of this paper.

Theorem 3. Let Ω be a set, let G = Sym(Ω), and let g ∈ G. For k ∈ N∪{∞}

let nk be the number of cycles of g of size k.

(a) CentG(g) is meet-coherent.

(b) CentG(g) is join-coherent if and only if nk is finite for all k ≠ 1,

including k = ∞.



ORBIT COHERENCE IN PERMUTATION GROUPS 3

Theorem 3 implies, in particular, that any centralizer in a finite symmetric

group is both join- and meet-coherent. This is a remarkable fact, and the

starting point of our investigation, at least chronologically. The observation

that this important class of groups exhibits orbit coherence justifies our

study of these properties, and motivates the search for further examples.

The second part of the paper contains a partial classification of finite

transitive join-coherent permutation groups. Our analysis depends on the

fact that such a group necessarily contains a full cycle, since the join of

all the orbit partitions of elements of a transitive permutation group is the

trivial one-part partition. The primitive permutation groups containing full

cycles are known; we use this classification to prove the following theorem.

Theorem 4. A primitive permutation group of finite degree is join-coherent

if and only if it is a symmetric group or a subgroup of AGL1(Fp) in its action

on p points, where p is prime.

We also give a complete classification of the finite transitive join-coherent

groups in which the subgroup generated by a full cycle is normal.

Theorem 5. Let G be a permutation group on n points, containing a nor-

mal cyclic subgroup of order n acting regularly. Let n have prime factoriza-

tion ∏i p
ai
i . Then G is join-coherent if and only if there exists for each i a

transitive permutation group Gi on paii points, such that:

● if ai > 1 then Gi is either cyclic or the extension of a cyclic group of

order paii by the automorphism x↦ xr where r = pai−1i + 1,

● if ai = 1 then Gi is a subgroup of the Frobenius group of order p(p−1),

● the orders of the groups Gi are mutually coprime,

● as a permutation group, G is isomorphic to the direct product of the

groups Gi in its product action.

Note that the permutation groups classified by Theorem 5 are always im-

primitive, unless n is prime. It would be interesting, but we believe difficult,

to extend our results to a complete classification of all finite transitive join-

coherent permutation groups. The principal obstruction to such a result

is the apparently hard problem of classifying those transitive join-coherent

imprimitive permutation groups that do not admit a non-trivial factoriza-

tion as a direct product or a wreath product, in the manner described in

Theorem 2, and which do not normalize a full cycle. One example of such a

group is the permutation group of degree 12 generated by

(1 7)(4 10), (1 2 3 4 5 6 7 8 9 10 11 12).
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It is not hard to check this group is an imprimitive join-coherent subgroup

of index 4 in C4 ≀C3 and that it does not factorize as a direct product or a

wreath product.

In smaller degrees our results do yield a complete classification: every

join-coherent permutation group of degree at most 11 is either a cyclic group

acting regularly, a symmetric group, one of the groups described in Theo-

rem 5, or an imprimitive wreath product of join-coherent groups of smaller

degree, as in Theorem 2(b).

The fact that there are no further join-coherent groups of degree at

most 11, and also the join-coherence of the group of degree 12 presented

above, have been verified computationally. In Section 8, and again in Sec-

tion 9, we require computer calculations to verify that particular groups

are not join-coherent. All of our computations have been performed using

Magma [2]. The code for these computations is available from the second

author’s website.1

Further remarks and background. It will be clear from the statement

of our main results that the majority of them concern join-coherence rather

than meet-coherence. In part this is because a finitely generated transitive

join-coherent permutation group must contain a full cycle, and the restric-

tion on the structure of the group that this imposes is very useful. However

an alternative characterization of join-coherence suggests that it is a partic-

ularly natural property to study: a permutation group G is join-coherent

if and only if for every finitely-generated subgroup H of G, there exists an

element h ∈ G whose orbits are the same as the orbits of H. There is no

similar characterization of meet-coherence in terms of subgroups.

There are groups which exhibit any combination of the properties of join-

and meet-coherence. Any symmetric group is both join- and meet-coherent,

but any non-cyclic alternating group is neither. The group C2 ×C2 acting

regularly on itself is meet- but not join-coherent. Examples of groups that

are join- but not meet-coherent are less easy to find, but one can check

that the non-cyclic group of order 21, in its action as a Frobenius group

on 7 points, is such an example (see Section 7 for our general results on

Frobenius groups).

In the context of lattices, the operations ∨ and ∧ are dual to one another.

This duality is not inherited to any great extent by the notions of join- and

meet-coherence of permutation groups. An asymmetry can be observed even

in the congruence lattice of all partitions of a set: compare for example the

two parts of Lemma 2.2 below. For this reason, while there are some parts

1See www.ma.rhul.ac.uk/~uvah099.
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of the paper, for example Section 4, where join- and meet-coherence admit a

common treatment, it is usually necessary to treat each property separately.

Literature on the orbit partitions of permutations is surprisingly sparse.

As we hope that this paper shows, there are interesting general properties

that remain to be discovered, and we believe that further study is war-

ranted. One earlier investigation which perhaps has something of the same

flavour is that of Cameron [5] into cycle-closed permutation groups. If G

is a permutation group on a finite set then the cycle-closure C(G) is the

group generated by all of the cycles of elements of G. Cameron proves that

any group which is equal to its cycle-closure is isomorphic, as a permutation

group, to a direct product of symmetric groups in their natural action and

cyclic groups acting regularly, with the factors acting on disjoint sets. He

also shows that if G = G0, and Gi+1 = C(Gi), then G4 = G3 and that there

exist groups for which G2 ≠ G3.

There is an extensive literature on the lattice of subspaces of a finite-

dimensional vector space invariant under a group of linear transformations.

In this context both the lattice elements and the lattice operations differ from

ours, and so there is no immediate connection to our situation. Indeed, we

show in Proposition 8.7 below that the general linear group GL(V ) is never

join-coherent when dimV > 1, except in the case when V = F2
2, in which case

it acts on V ∖{0} as the full symmetric group. Nonetheless, there are certain

parallels that it is interesting to observe. For instance, if T is an invertible

linear map on a K-vector space V , then by [3, Theorem 2], the lattice of

invariant subspaces of V is a chain if and only if T is cyclic of primary type.

Analogously, it follows from Theorem 1 that if G is a finite permutation

group then π(G) is a chain if and only if G is cyclic of prime-power order.

Thus if we regard T as a permutation of V , then π(⟨T ⟩) is a chain if and only

if T has prime-power order. When K has prime characteristic, this situation

arises either when T − I is nilpotent, or when there is a prime p such that V

is a direct sum of subspaces on which T acts as a Singer element of p-power

order. Such elements exist, for example, in GLd(F2a) whenever 2ad − 1 is a

prime power. For an introduction to the theory of invariant subspaces we

refer the reader to [3].

There are various areas of group theory in which lattices have previously

arisen which are not directly related to orbit partitions. Subgroup lattices,

for example, have been well studied. A well-known theorem of Ore [10]

states that the subgroup lattice of a group G is distributive if and only if G

is locally cyclic. Locally cyclic groups are also important in this paper: in
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Proposition 3.3 we show that they are precisely the groups that are join-

coherent in their regular action. A p-group is locally cyclic if and only if it

is a subgroup of the Prüfer p-group; these groups appear in Theorem 1, as

the class of transitive permutation groups G such that π(G) is a chain.

Outline. The outline of this paper is as follows. In Section 2 we prove some

general results with a lattice-theoretic flavour that will be used throughout

the paper. We begin our structural results in Section 3 where we determine

when a group acting regularly on itself is join- or meet-coherent. This sec-

tion also contains a proof of Theorem 1 on the permutation groups G for

which π(G) is a chain.

Theorem 2 is proved for direct products in Proposition 4.3, and for wreath

products in Proposition 2.4 and in Section 5. Theorem 3 on centralizers is

proved in Section 6. We have chosen to offer logically independent argu-

ments in Section 5 and Section 6, even though the results in these sections

are quite closely connected. This is partly so that they may be read in-

dependently, and partly because the two lines of approach appear to offer

different insights.

The second part of the paper, which focusses on classification results,

begins in Section 7 where we classify join-closed Frobenius groups of prime

degree. In Section 8 we determine when a linear group has a join-coherent

action on points or lines; these results are used in the proof of Theorem 4

in Section 9. Finally, Theorem 5 is proved in Section 10.

To avoid having to specify common group actions every time they occur,

we shall adopt the following conventions. Any group mentioned as acting

on a set at its first appearance will be assumed always to act on that set,

unless another action is explicitly given. In particular, Sym(Ω) always acts

naturally on the set Ω, and the finite symmetric group Sn always acts on n

points. The cyclic group Ck, for k ∈ N, acts on itself by translation. All

maps are written on the right.

2. Partitions and imprimitive actions

In this section we collect some facts about lattices of partitions that will

be useful in later parts of the paper. For an introduction to the general

theory, see for instance [7].

Given a set partition P of a set Ω we define a corresponding relation ≡P

on Ω in which x ≡P y if and only if x and y lie in the same part of P. If P

and Q are set partitions of Ω then it is not hard to see that P ∨Q is the set

partition R such that ≡R is the transitive closure of the relation ≡ defined
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on Ω by

x ≡ y ⇐⇒ x ≡P y or x ≡Q y.

Similarly P ∧Q is the set partition R such that

x ≡R y ⇐⇒ x ≡P y and x ≡Q y.

Equivalently, as we have already remarked,

P ∧Q = {P ∩Q ∣ P ∈ P,Q ∈ Q, P ∩Q /= ∅}.

The congruence lattice Con(Ω) of all partitions of Ω is distributive, i.e. the

lattice operations ∨ and ∧ distribute over one another. In the language of

lattice theory, a permutation group G ≤ Sym(Ω) is join-coherent if and only

if π(G) is an upper subsemilattice of Con(Ω), meet-coherent if and only if

π(G) is a lower subsemilattice of Con(Ω), and both join- and meet-coherent

if and only if π(G) is a sublattice of Con(Ω).

Lemma 2.1. Let L be a distributive lattice with respect to ≼, and let x ∈ L.

(1) Define

Up(x) = {y ∈ L ∣ x ≼ y},

Dn(x) = {y ∈ L ∣ y ≼ x}.

Then Up(x) and Dn(x) are sublattices of L.

(2) The maps ϕx ∶ LÐ→ Up(x) and ϕx ∶ LÐ→ Dn(x) defined by

yϕx = y ∨ x, yϕx = y ∧ x,

are lattice homomorphisms.

Proof. The first part follows directly from the defining property of ∨ and ∧,

and the second part from the definition of distributivity. �

Note that in part (1) of the following lemma, Con(B) is the congruence

lattice on the set {B ∣ B ∈ B} of parts of a partition B.

Lemma 2.2. Let Ω be a set and let B ∈ Con(Ω).

(1) Up(B) ≅ Con(B).

(2) Dn(B) ≅ ∏B∈BCon(B).

Proof. If B ≼ A then each part of A is a union of parts of B. Hence A

determines and is determined by a partition of B; this gives a bijection

between Up(B) and Con(B) that is a lattice isomorphism. For the second

part we note that whenever A ≼ B, each part B of B is a union of parts of A,

and so a subset of the parts of A form a partition of B. Clearly A itself

is determined by these partitions of the parts of B, and thus A determines

and is determined by an element of ∏B∈BCon(B). It is easy to see that this

bijection is a lattice isomorphism. �
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As a standing convention, when the same short statement holds for both

join-coherent and meet-coherent groups, we shall simply write ‘join- or meet-

coherent’, avoiding the repeated use of the word ‘respectively’.

The next proposition is a straightforward consequence of Lemma 2.2.

Proposition 2.3. Let G be a join- or meet-coherent permutation group

on Ω.

(1) Let B be a partition of Ω, and let H be the group of permutations which

fix every part of B set-wise. Then G ∩H is join- or meet-coherent.

(2) Let X ⊆ Ω, and let H be the set-stabilizer of X in G. Then H is join-

or meet-coherent.

(3) Any point-stabilizer in G is join- or meet-coherent.

Proof. If h ∈ Sym(Ω) then π(h) ≼ B if and only if Bh = B for all B ∈

B. Thus π(H) = Dn(B), which is closed under ∨ and ∧. The first part

of proposition follows, since the intersection of two join-closed sets is join

closed, and similarly for meet-closed sets. The second part follows from the

first by taking B = {X,Ω ∖X}, and the third part follows from the second

by taking X to be a singleton set. �

If G is a permutation group acting on a set Ω, then we may consider

the natural action of G on Con(Ω), defined for g ∈ G and P ∈ Con(Ω) by

Pg = {P g ∣ P ∈ P}. This action will be used in Lemma 6.2 below, which is

the critical step in the proof of Theorem 3.

Recall that a transitive permutation group G on Ω is said to be im-

primitive if it stabilizes a non-trivial partition B of Ω, in the sense that

xg ≡B yg ⇐⇒ x ≡B y for all x, y ∈ Ω and g ∈ G. An equivalent restatement,

using the action just defined, is that Bg = B for each g ∈ G. In this case, one

says that B is a system of imprimitivity for the action of G on Ω. Otherwise

G is primitive. If B is a G-invariant partition of Ω then B inherits an action

of G, since for B ∈ B and g ∈ G we have Bg ∈ B.

The next proposition gives the easier direction in Theorem 2(b). The

proof of this theorem is completed in Proposition 5.2.

Proposition 2.4. Let G be a join- or meet-coherent permutation group on

Ω, and let B be a system of imprimitivity for the action.

(1) The action of G on B is join- or meet-coherent.

(2) The set-stabilizer in G of a part B of B acts join- or meet-coherently

on B.

Proof. The second part is immediate from Proposition 2.3(2). For the first

part, let ϑ ∶ Up(B) Ð→ Con(B) be the isomorphism in Lemma 2.2(1). By
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Lemma 2.1(2), the composite map ϕBϑ ∶ Con(Ω) Ð→ Con(B) is a homomor-

phism. It is easy to check that if g ∈ G has orbit partition P on Ω then the

orbit partition of g on B is PϕBϑ = (P ∨ B)ϑ. The result now follows from

the fact that Con(B) is distributive. �

3. Regular representations and chains

Let G be a group of permutations of a set Ω. We say that G acts semireg-

ularly if every element of Ω has a trivial point stabilizer in G. This is

equivalent to the condition that for every element g ∈ G, all of the parts of

the orbit partition π(g) of Ω are of the same size. We say that the action

of G is regular if it is semiregular and transitive.

Proposition 3.1. A group G acting semiregularly is meet-coherent.

Proof. Suppose that G acts semiregularly on Ω. Let x, y ∈ G, and let z

be a generator for the cyclic group ⟨x⟩ ∩ ⟨y⟩. We shall show that π(z) =

π(x) ∧ π(y).

Let u ∈ Ω, and let P and Q be the parts of π(x) and π(y) respectively

which contain u. Then

P = {uxi ∣ i ∈ Z} and Q = {uyj ∣ j ∈ Z}.

Let v ∈ P ∩ Q, and let i, j ∈ Z be such that v = uxi = uyj . By the

semiregularity of G, we have xi = yj , and so xi, yj ∈ ⟨z⟩. It follows that

P ∩Q = {uzk ∣ k ∈ Z}, and hence that P ∩Q is a part of π(z). �

We recall that a group G is said to be locally cyclic if any pair of elements

of G generate a cyclic subgroup. The following lemma states a well-known

fact.

Lemma 3.2. A group is locally cyclic if and only if it is isomorphic to a

section of Q.

Proof. It is clear that a locally cyclic group is either periodic or torsion-

free. If it is periodic then it has at most one subgroup of order n for each

n ∈ N, and it is easy to see that it embeds into the quotient group Q/Z; for

torsion-free groups the result was first proved in [1].2 �

Proposition 3.3. A group G acting regularly is join-coherent if and only if

it is locally cyclic.

2We thank Mark Sapir for this reference.
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Proof. We may assume without loss of generality that G is transitive, and

so we may suppose that it acts on itself by translation. Let x, y ∈ G, and

let H = ⟨x, y⟩. The partition π(x) ∨ π(y) is precisely the partition of G into

cosets of H. If H = ⟨z⟩ then we have π(x) ∨ π(y) = π(z) ∈ π(G). On the

other hand, if H is not cyclic then it cannot be a part of π(z) for any z ∈ G,

and so π(x) ∨ π(y) ∉ π(G). �

We define a locally cyclic group of particular importance to us.

Definition. Let p be prime. The Prüfer p-group, P, is the subgroup of Q/Z

generated by the cosets containing 1/pi for i ∈ N.

The group P appears in the statement of Theorem 1, whose proof occupies

the remainder of this section. We begin with the following proposition.

Proposition 3.4. Let Ω be a set, and let G ≤ Sym(Ω) be such that π(G) is

a chain.

(1) No element of G has an infinite cycle.

(2) Let O be an orbit of G, and let GO ≤ Sym(O) be the permutation group

induced by the action of G on O. Then GO acts regularly on O.

(3) There is a prime p such that every cycle of every element of g has

p-power length.

(4) If G acts transitively, then there is a prime p such that G is isomorphic

to a subgroup of the Prüfer p-group P.

Proof. It is clear that if g ∈ G has an infinite cycle then π(ga) and π(gb)

are incomparable whenever a and b are natural numbers such that neither

divides the other. Clearly this implies (1).

For (2), suppose that x and y are points in the orbit O of G such that

StabG(x) /= StabG(y). Then there exist elements g ∈ StabG(x)/StabG(y)

and h ∈ StabG(y)/StabG(x), and it is clear that π(g) and π(h) are incom-

parable. It follows that if π(G) is a chain then no such points x and y exist

in O, and so the action of GO on O is regular.

For (3), suppose that there exist distinct primes q and r such that π(g)

has a part Q of size divisible by q, and another part R of size divisible by r.

Let m be the order of the permutation induced by g on Q∪R. Then π(gm/r)

has singleton parts corresponding to the elements of Q, and R is a union of

parts of π(gm/r) of size at least 2. A similar remark holds for π(gm/q) with

Q and R swapped, and so π(gm/q) and π(gm/r) are not comparable; again

this is a contradiction. It follows that for each g ∈ G, there is a prime pg

such that every cycle of g has length a power of pg.

We now show that pg = ph for all non-identity permutations g, h ∈ G. We

may suppose without loss of generality that π(h) ≼ π(g), and so each orbit
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of ⟨g⟩ is a union of orbits of ⟨h⟩. But by (2), h acts regularly on each of its

orbits. There exists a ⟨g⟩-orbit O on which h acts non-trivially, and so ph

divides ∣O∣. But ∣O∣ is a power of pg, and so ph = pg.

For (4), we note that if G is transitive, then by (2) it acts regularly.

By Proposition 3.3, G is locally cyclic. By Lemma 3.2 it follows that G

is isomorphic to a section of Q. Now an element g ∈ G has only finite

cycles by (1), and since G acts regularly, all of the cycles of g have the same

length. Therefore g has finite order, and so G is not torsion-free. Hence G

is isomorphic to a subgroup of Q/Z. Write g as a/b +Z, where a and b are

coprime. Since every cycle of g has p-power length by (3), the denominator b

must be a power of p; hence G is isomorphic to a subgroup of the Prüfer

p-group. �

We note that any subgroup of P is either cyclic of p-power order, or equal

to P itself. Therefore (4) implies that any finite group whose orbit partitions

form a chain is cyclic of prime-power order.

There are interesting examples of groups G acting intransitively on an

infinite set, such that G is not locally cyclic, but π(G) is a chain. Let α be

an irrational element of the p-adic integers Zp, such that p does not divide α,

and define αi ∈ {0,1, . . . , pi−1} by αi = α mod pi. For instance, we may take

p = 2 and α = 1010010001000010 . . . ∈ Z2; the sequence (αi) here is

(1,1,5,5,5,37,37,37,37,549, . . .).

Let Ω be an infinite set and let {ci ∣ i ∈ N} be a set of mutually disjoint

cycles in Sym(Ω), such that ci has length pi. Let G ≤ Sym(Ω) be generated

by g and h, where g = ∏∞
i=1 ci and h = ∏∞

i=1 c
αi
i . Then g and h have the same

orbit partition, but it is easily seen that they are not powers of one another.

Hence G is not cyclic. However, the permutation group induced by G on

any finite set of its orbits is cyclic, since for any given j there exists βj ∈ N

such that αjβj ≡ 1 mod pj , and so hβj agrees with g on the orbits of all of

the cycles ci for i ≤ j. It follows easily that π(G) is a chain.

The group in this example falls under (2) in Theorem 1; to prove this

theorem we shall use Proposition 3.4 and the following lemma.3

Lemma 3.5. Let p be a prime and let I be a totally ordered set. For each

i ∈ I, let Pi be an isomorphic copy of the Prüfer p-group P. Let

{fji ∶ Pj → Pi ∣ i, j ∈ I, i ≤ j}

3The authors would like to thank Benjamin Klopsch and John MacQuarrie for helpful

conversations on this subject.
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be a set of non-zero homomorphisms, with the property that fkjfji = fki

whenever i ≤ j ≤ k. Let M be the inverse limit lim
←Ð

Pi, taken with respect

to the totally ordered set I and the homomorphisms fji. If all but finitely

many of the fji are isomorphisms then M ≅ P, and otherwise M ≅ Qp, the

additive group of p-adic rational numbers.

Proof. If f ∶ P → P is an endomorphism, then for each i ∈ N, there exists a

unique ai ∈ {0,1, . . . , pi − 1} such that

(⋆) (x/pi +Z)f = ai(x/p
i
+Z) for all x ∈ Z.

It is easily seen that if i ≤ j then aj ≡ ai mod pi. Therefore if a ∈ Zp is the

p-adic integer such that a ≡ ai mod pi for each i ∈ N, then f is the map

µ(a) ∶ P → P defined by (⋆) above. It follows that at most a countable

infinity of the maps fji are non-isomorphisms.

Observe that µ(a) is surjective unless a = 0, and an isomorphism if and

only if a is not divisible by p. If all but finitely many of the fji are iso-

morphisms, then it is clear that M is isomorphic to P. Otherwise there

exists an infinite increasing sequence (ik) of elements of I, such that if we

set Rk = Pik and

gk = fik+1ik ∶ Rk+1 → Rk

for k ∈ N, then each gk is a non-isomorphism, and M ≅ lim
←Ð

Rk.

For each k ∈ N, let ak ∈ Zp be such that gk = µ(ak). Let ak = p
ekbk where p

does not divide bk; by assumption ek ≥ 1 for each k. Let dk = ∏
k−1
i=1 bi for

each k ∈ N. Then in the commutative diagram

(†) R1 R2

µ(a1)oo

µ(d2)
��

R3

µ(a2)oo

µ(d3)
��

R4

µ(a3)oo

µ(d4)
��

⋯
µ(a4)oo

R1 R2
µ(pe1)

oo R3
µ(pe2)

oo R4
µ(pe3)

oo ⋯
µ(pe4)

oo

all of the vertical arrows are isomorphisms. It follows easily that the inverse

limits constructed with respect to the top and bottom rows are isomorphic.

Moreover, the inverse system

P1 P2

µ(p)
oo P3

µ(p)
oo P4

µ(p)
oo ⋯

µ(p)
oo

in which all of the maps are multiplication by p is a refinement of the bottom

row of the diagram (†), and so it defines the same inverse limit.

Finally we note that P ≅ Qp/Zp, and that after applying this isomorphism,

the map µ(p) ∶ P → P is induced by multiplication by p in Qp. Hence M ≅
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lim
←Ð

Qp/p
kZp. Since pkZp is an open subgroup of Qp, and since ⋂k p

kZp =

{0}, it follows that M ≅ Qp as required. �

We are now ready to prove Theorem 1, which we restate below for con-

venience.

Theorem 1. Let Ω be a set, and let G ≤ Sym(Ω) be such that π(G) is a

chain. There is a prime p such that the length of any cycle of any element

of G is a power of p. Furthermore, G is abelian, and either periodic or

torsion-free.

(a) If G is periodic then G is either a finite cyclic group of p-power order,

or else isomorphic to the Prüfer p-group.

(b) If G is torsion-free then G is isomorphic to a subgroup of the p-adic

rational numbers Qp. In this case G has infinitely many orbits on Ω,

and the permutation group induced by its action on any single orbit is

periodic.

Proof. By Proposition 3.4(4), there is a prime p such that G acts as a sub-

group of the Prüfer p-group P on each of its orbits. It follows that G is

abelian. Suppose that g ∈ G has infinite order, and h ∈ G has finite order pa.

Then π(h) ≺ π(gi) for any i ∈ N, since g has cycles of length greater than

ipa. But each cycle of g is finite, and so every element of Ω is fixed by

some power of g. Hence h is the identity of G. This shows that G is either

torsion-free or periodic.

Suppose that K1 and K2 are the kernels of the action of G on distinct

orbits. If there exists k1 ∈K1∖K2 and k2 ∈K2∖K1 then the orbit partitions

π(k1) and π(k2) are clearly incomparable. Hence the kernels of the action

of G on its various orbits form a chain of subgroups of G. Since G acts

faithfully on Ω, the intersection of all these kernels is trivial.

Suppose that G is periodic. Let g1, . . . , gr ∈ G be a finite collection of

elements, and let H = ⟨g1, . . . , gr⟩. Then H is finite. Since H satisfies the

descending chain condition on subgroups, there is an orbit O of G for which

the kernel KO of G acting on O intersects trivially with H. Therefore H is

isomorphic to a subgroup of G/KO. It now follows from Proposition 3.4(4)

that H is isomorphic to a subgroup of P. Hence any finitely generated

subgroup of G is cyclic, and so G is locally cyclic. Now by Lemma 3.2 we

see that G itself is isomorphic to a subgroup of P.

The remaining case is when G is torsion-free. Let Oi for i ∈ I be the set of

orbits of G, where I is a suitable indexing set, and let Ki be the kernel of G

acting on Oi. Order I so that for i, j ∈ I, we have i ≤ j if and only if Ki ≥Kj .

For i ≤ j let fji ∶ G/Kj → G/Ki be the canonical surjection. Fix for each
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i ∈ I an isomorphism G/Ki → Pi where Pi ≅ P. Since ⋂i∈IKi = {1G} and

each G/Ki is isomorphic to a subgroup of P, we see that G is isomorphic

to a subgroup of the inverse limit lim
←Ð

Pi, taken with respect to the totally

ordered set I and the homomorphisms fji. The theorem now follows from

Lemma 3.5. �

We end this section by remarking that if G ≤ Sym(Ω) is isomorphic to

a subgroup of P, then it has an orbit on Ω on which it acts faithfully and

regularly. For if G is non-trivial then the intersection of the non-trivial

subgroups of G has order p; now since G acts faithfully on Ω, it follows that

there is an orbit O on which G acts with trivial kernel. Since G is abelian,

its action on O is regular.

4. Direct products

Suppose that G and H are groups acting on sets X and Y respectively.

There are two natural actions of the direct product G × H, namely the

intransitive action on the disjoint union X ⋅∪ Y and the product action on

X × Y . For (g, h) ∈ G ×H the intransitive action is defined by

z(g, h) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

zg if z ∈X

zh if z ∈ Y ,

where z ∈X ⋅∪ Y , and the product action is defined by (x, y)(g, h) = (xg, yh)

where (x, y) ∈ X × Y . The product action is the subject of Theorem 2(a),

which we prove in this section. Both of these actions also arise in later parts

of the paper.

The intransitive action of a direct product is dealt with in the next propo-

sition.

Proposition 4.1. Let I be an indexing set. For each i ∈ I let Gi be a group

acting on the set Xi.

(1) The action of ∏i∈I Gi on ⋃̇i∈IXi is join-coherent if and only if the

action of Gi on Xi is join-coherent for each i ∈ I.

(2) The action of ∏i∈I Gi on ⋃̇i∈IXi is meet-coherent if and only if the

action of Gi on Xi is meet-coherent for each i ∈ I.

Proof. Let gi, hi, ki ∈ Gi for all i ∈ I, and let g = (gi)i∈I , h = (hi)i∈I and

k = (ki)i∈I be the corresponding elements of ∏i∈I Gi. It is clear that

π(g) ∨ π(h) = π(k)

if and only if π(gi) ∨ π(hi) = π(ki) for each i ∈ I, and similarly

π(g) ∧ π(h) = π(k)
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if and only if π(gi) ∧ π(hi) = π(ki), for each i ∈ I. The result follows. �

For the product action of a direct product we shall need the following

lemma.

Lemma 4.2. Let X and Y be sets. Let g ∈ Sym(X) and h ∈ Sym(Y ), and

let k = (g, h) ∈ Sym(X)×Sym(Y ). Suppose that g and h have finite coprime

orders. Then in its action on X × Y we have

π(k) = {P ×Q ∣ P ∈ π(g), Q ∈ π(h)}.

Proof. This is straightforward. �

We now prove Theorem 2(a). For convenience we restate this result as

the following proposition.

Proposition 4.3. Let X and Y be sets and let G ≤ Sym(X) and H ≤

Sym(Y ) be finite permutation groups. Then G×H is join-coherent on X×Y

if and only if G and H are both join-coherent, and have coprime orders.

Proof. It is obvious that if either G or H is not join-coherent, then neither

is G×H. So we suppose that G and H act join-coherently. If ∣G∣ and ∣H ∣ are

coprime then the join-coherence of G×H on X ×Y follows from Lemma 4.2.

Suppose conversely that there is a prime p which divides both ∣G∣ and ∣H ∣.

Let g ∈ G have order pa, and let h ∈ H have order pb, where these are the

largest orders of p-elements in each group. Then it is clear that π(g) has a

part of size pa, and π(h) a part of size pb. Now π(g,1) ∨ π(1, h) has a part

of size pa+b, and it follows that it cannot be in π(G ×H), since the greatest

order of a p-element in G×H is max(pa, pb). Hence if G×H is join-coherent

then G and H have coprime orders. �

The following result may be viewed as a partial converse to Proposi-

tion 4.3. It is used in the proof of Theorem 5 in Section 10 below.

Proposition 4.4. Suppose that G acts on finite sets X and Y , and that

these actions have kernels KX and KY respectively, where KX ∩KY = 1.

If G is join-coherent on X × Y then

(1) KY is join-coherent on X and KX is join-coherent on Y ;

(2) ∣KX ∣ and ∣KY ∣ are coprime;

(3) G =KYKX ≅KY ×KX .

Proof. Consider the partition B of X × Y into parts X × {y} for y ∈ Y .

Clearly KY is the largest subgroup of G which stabilizes the parts of B,

and its action on each part is that of KY on X. Since KX ∩KY = 1, this
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action is faithful. Hence, by Proposition 2.3(1), the action of KY on X is

join-coherent, and (1) follows.

Let p be a prime, and let pa and pb be the largest powers of p dividing

∣G/KX ∣ and ∣G/KY ∣ respectively. If P is a Sylow p-subgroup of G, then P

contains elements gX and gY such that gXKX has order pa in G/KX and

gYKY has order pb in G/KY . It follows that gX has an orbit OX on X of

size pa, and that gY has an orbit OY on Y of size pb. Now ⟨gX , gY ⟩ is a

subgroup of P , and so its orbits on X ×Y have p-power order. One of these

orbits contains OX ×OY , and so has order pc for some c ≥ a + b.

Since G is join-coherent on X × Y , it must contain an element g whose

orbits are those of ⟨gX , gY ⟩. It is clear that g must be a p-element of order at

least pa+b. Since G/KX and G/KY have p-exponents pa and pb respectively,

it follows that ga ∈KX , gb ∈KY and so

gmax(a,b)
∈KX ∩KY = 1.

Hence one of a or b is 0 and G/KX and G/KY have coprime orders.

Suppose that pr divides ∣G∣. Since at least one of G/KX or G/KY has

order coprime with p, we see that pr must divide one of ∣KX ∣ or ∣KY ∣, and

it follows that ∣G∣ divides ∣KX ∣ ⋅ ∣KY ∣. But since KX ∩ KY = 1 we have

∣KYKX ∣ = ∣KY ∣ ⋅ ∣KX ∣, and hence G = KYKX ; since KX and KY are both

normal, this implies that G ≅ KY ×KX , as stated in (3). Now (2) follows

from the final sentence of the previous paragraph. �

Necessary and sufficient criteria for the meet-coherence of G ×H in its

product action are harder to obtain. Since we shall not need any such results

in later parts of the paper, we merely offer the following partial result.

Proposition 4.5. Let X and Y be sets and let G ≤ Sym(X) and H ≤

Sym(Y ) be meet-coherent permutation groups. If G and H are finite of

coprime order, then G ×H is meet-coherent on X × Y .

Proof. This follows easily from Lemma 4.2. �

There are examples of groups G ≤ Sym(X) and H ≤ Sym(Y ), not of co-

prime order, such that G×H is meet-coherent on X×Y . For instance if both

G and H act semiregularly, then so does G ×H, and so by Proposition 3.1

we see that G ×H is meet-coherent regardless of the orders of G and H.

5. Wreath products

Given sets S and T , we write ST for the set of maps from T to S. As

usual, we shall write all maps on the right. If S is a group, then ST inherits
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a group structure as the direct product of ∣T ∣ copies of S; here ∣T ∣ may be

infinite.

Throughout this section we let G and H be groups acting on sets X

and Y respectively. The unrestricted wreath product G ≀H is defined to be

the semidirect product GY ⋊H, where the action of H on GY is given by

fh = h−1 ○ f for f ∈ GY and h ∈H.

There are two natural actions of G ≀H. In the first G ≀H acts on XY (see

[6, Section 4.3]); in this action the wreath product does not generally inherit

join- or meet-coherence from G and H: for instance C2 ≀C3 is neither join-

nor meet-coherent in this action. For this reason we shall not discuss it any

further here.

The second action of the wreath product is the imprimitive action on

X × Y . If f ∶ Y → G and h ∈H then this action is given by

(x, y)fh = (x(yf), yh) for x ∈X, y ∈ Y .

For y ∈ Y , let By =X × {y}. Then {By ∣ y ∈ Y } is a system of imprimitivity

for this action, in the sense defined after Proposition 2.3. In general G ≀H

does not inherit meet-coherence from G and H in the imprimitive action; for

instance S3 ≀C2 is not meet-coherent. Join-coherence, however, is inherited

in the case that Y is finite, and the proof of this fact is the object of this

section.

Definition. Let P be a partition of X × Y .

(1) We write P̃ for the partition of Y defined by

y1 ≡P̃ y2 ⇐⇒ (x1, y1) ≡P (x2, y2) for some x1, x2 ∈X.

(2) For y ∈ Y we write P[y] for the partition of X defined by

x1 ≡P[y] x2 ⇐⇒ (x1, y) ≡P (x2, y).

The following lemma provides a characterization of the orbit partitions

of the elements of a wreath product in its imprimitive action. For the

application to Theorem 2(b) we only need the case where Y is finite, which

permits some simplifications to the statement and proof.

Lemma 5.1. Let P be a partition of X × Y . Then P is the orbit partition

of an element of G ≀H if and only if the following conditions hold.

(1) There exists an element h ∈H with orbit partition P̃ on Y .

(2) For every y ∈ Y , there exists an element g ∈ G with orbit partition P[y]

on X.

(3) If y lies in an infinite part of P̃ then P[y] is the partition of X into

singleton sets.
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(4) Whenever elements y, z ∈ Y lie in the same part of P̃, there exists

c ∈ G such that

(x, y) ≡P (xc, z) for all x ∈X.

Proof. Let f ∈ GY , let h ∈ H, and let k = fh ∈ G ≀H. It is clear that if P is

the orbit partition of k on X × Y , then P̃ is the orbit partition of h on Y ,

and so (1) is necessary. Let t be a positive integer. A simple calculation

shows that kt = fth
t where ft ∈ G

Y is defined by

ft ∶ y ↦ (yf)((yh)f)⋯((yht−1)f).

Hence

(x, y)kt = (x(yft), yh
t
)

for all x ∈X, and it easily follows that (4) is necessary.

Suppose that y ∈ Y lies in a finite h-orbit of size m. In this case it is not

hard to see that yfm has the orbit partition P[y] on X, since yfam = (yfm)a

for all a ∈ Z. On the other hand, if y lies in an infinite orbit of h then P[y]

is the partition of X into singleton parts, which is the orbit partition of the

identity of G. So (2) and (3) are necessary.

Now suppose that the stated conditions hold. We shall construct a per-

mutation k ∈ G ≀H such that π(k) = P. By (1) there exists an element h of

H whose orbit partition is P̃. Let {yi ∣ i ∈ I} be a set of representatives for

the orbits of h, where I is a suitable indexing set. Let mi ∈ N ∪ {∞} be the

size of the orbit containing yi. By (4) there exists c(i,t) ∈ G for i ∈ I such

that

(⋆) (x, yih
t
) ≡P (xc(i,t), yih

t+1
)

for all x ∈X and t ∈ Z.

Suppose that mi < ∞. Then the element

bi = c(i,0)c(i,1)⋯ c(i,mi−1)

of G stabilizes the partition P[yi] of X. It is possible that π(bi) is a strict

refinement of P[yi]. However, by condition (2), there exists gi ∈ G such

that π(gi) = P[yi]; if we replace c(i,0) with gib
−1
i c(i,0), we then have bi = gi

and so π(bi) = P[yi]. Since gib
−1
i permutes the elements of X, the relation

(⋆) still holds. We may therefore suppose that the c(i,t) have been chosen

so that π(bi) = P[yi] for all i such that mi < ∞.

Let f ∈ GY be defined by (yih
t)f = c(i,t) for each i ∈ I, where t ∈

{0, . . . ,mi − 1} if mi < ∞ and t ∈ Z otherwise. Let k = fh ∈ G ≀ H. We

shall show that π(k) = P.
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We define

b(i,t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

c(i,0)⋯c(i,t−1) if t ≥ 0

c−1
(i,−1)⋯c

−1
(i,t) if t < 0

and note that

(x, yi)k
t
= (xb(i,t), yih

t
)

for all t ∈ Z. In particular, if mi < ∞, then since b(i,mi)
= gi, we have

(x, yi)k
mi = (xgi, yi). Observe also that, by (⋆), we have

(x, yi) ≡P (xb(i,t), yih
t
)

for all t ∈ Z.

Suppose that (x1, yih
s) ≡P (x2, yih

t). Then by the observation just made

we have

(x1, yih
s
) ≡P (x1b

−1
(i,s), yi)

(x2, yih
t
) ≡P (x2b

−1
(i,t), yi).

Hence

x1b
−1
(i,s) ≡P[yi]

x2b
−1
(i,t).

If mi < ∞, then since π(b(i,mi)
) = π(gi) = P[yi], the elements (x1b

−1
(i,s), yi)

and (x2b
−1
(i,t), yi) lie in the same orbit of kmi . Therefore

(†) (x1, yih
s
)k−s = (x1b

−1
(i,s), yi) ≡π(k) (x2b

−1
(i,t), yi) = (x2, yih

t
)k−t.

On the other hand, if mi = ∞, then by (3), P[yi] is the partition of X into

singleton sets and so x1b
−1
(i,s) = x2b

−1
(i,t). Therefore (†) also holds in this case.

It follows that

(x1, yih
s
) ≡π(k) (x2, yih

t
),

and so P ≼ π(k).

The argument of the previous paragraph in reverse, again using (†), im-

plies that π(k) ≼ P, and so we have equality as required. �

With Lemma 5.1, we are now in a position to prove the following result,

which combined with Proposition 2.4 completes the proof of Theorem 2(b).

Proposition 5.2. Suppose that G and H are join-coherent permutation

groups on X and Y respectively, and that Y is finite. Then G ≀H is join-

coherent in its imprimitive action on X × Y .

Proof. Let f1h1 and f2h2 be elements of G ≀H, and let K be the subgroup

they generate. Let P be the partition of X × Y into the orbits of K. It

suffices to show that the conditions stated in Lemma 5.1 are satisfied by P.

Notice that condition (3) is satisfied vacuously, since Y is supposed to be

finite.
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Since H is join-coherent, it has an element h whose orbit partition S on Y

is the same as that of the subgroup ⟨h1, h2⟩. It is easy to see that P̃ = S,

and so (1) is satisfied.

For y ∈ Y let By =X×{y}; as noted at the start of this section, {By ∣ y ∈ Y }

is a system of imprimitivity for G ≀H on X×Y . We write Ry for the set-wise

stabilizer of By in G ≀H. In the action of Ry on X inherited from the action

of Ry on By, an element fh ∈ Ry acts on X as yf ∈ G. Thus if ϑ ∶ Ry → G

is the homomorphism defined by (fh)ϑ = yf , then (K ∩ Ry)ϑ has orbit

partition P[y]. Now K ∩Ry is finitely generated, since it has finite index in

K. Since G is join-coherent, it follows that there exists an element cy of G

whose orbit partition is P[y]. This gives us (2).

Finally suppose that y and z lie in the same part of P̃. Then there exist

f ∈ GY and h ∈ H such that yh = z, and such that fh ∈ K. Let c = yf . We

see that (x, y) ≡P (xc, z) for all x ∈X, and so (4) is satisfied. This completes

the proof. �

Proposition 5.2 has the following interesting corollary.

Corollary 5.3. For each i ∈ N let Gi be a join-coherent permutation group

on the finite set Xi. Then the profinite wreath product ⋯ ≀G2 ≀G1 is join-

coherent on ∏i∈NXi.

Proof. Let G = ⋯ ≀ G2 ≀ G1, and let g, h ∈ G. For each ` ∈ N, let f` ∶ G →

G` ≀ ⋯ ≀G1 be the canonical surjection. By Proposition 5.2, the finite group

Gf` is join-coherent on X1 × ⋯ ×X` for each ` ∈ N. Hence, for each ` ∈ N,

there exists k` ∈ G such that π(gf`)∨π(hf`) = π(k`f`). The topological space

G is sequentially compact, and so the sequence (k`)`∈N has a convergent

subsequence, say (k`(m))m∈N. It is easy to check that if k = limm→∞ k`(m)

then π(g) ∨ π(h) = π(k). �

Let T be a rooted tree. We say that T is locally finite if each of its

vertices has finite degree, and spherically homogeneous if any two vertices

at the same distance from the root vertex have equal degree. The infinite

regular binary tree is an example of a locally finite, spherically homogeneous

tree. A branch in a rooted tree is an infinite path from the root vertex.

Corollary 5.4. The automorphism group of a locally finite, spherically ho-

mogeneous tree is join-coherent in its action on branches.

Proof. Let T be the rooted tree in which every vertex at level i has di+1 de-

scendants at level i+1. Then the branches of T are in natural correspondence

with ∏i∈NXi, where ∣Xi∣ = di, and

Aut(T ) ≅ ⋯ ≀ Sym(X2) ≀ Sym(X1).
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The result now follows by Corollary 5.3. �

6. Centralizers

This section contains the proof of Theorem 3. The structure of centralizers

in symmetric groups is well known.

Lemma 6.1. Let Ω be a set, let G = Sym(Ω), and let g ∈ G. For k ∈ N∪{∞},

let ∆k be the set of orbits of g of size k. Then as permutation groups, we

have

CentG(g) = ∏
k∈N∪{∞}

(Ck ≀ Sym(∆k)),

where C∞ is understood to be Z, the wreath products take the imprimitive

action, and the factors in the direct product act on disjoint sets.

With notation as in Lemma 6.1, suppose that g ∈ G has finitely many or-

bits of all sizes k ≥ 2, including k = ∞. Then the join-coherence of CentG(g)

follows immediately from Lemma 6.1 using Propositions 4.1(1) and 5.2. This

is sufficient to establish Theorem 3 so far as join-coherence is concerned.

However it tells us nothing about meet-coherence, for which we require an

account of orbit partitions in the centralizers of semiregular permutations.

Lemma 6.2. Let Ω be a set and let G = Sym(Ω). Let P be a partition

of Ω, and let g ∈ G be an element such that ⟨g⟩ acts semiregularly on Ω.

There exists h ∈ CentG(g) with orbit partition P if and only if the following

conditions hold:

(1) Pg = P;

(2) every part of P is countable;

(3) if P is an infinite part of P, then either P meets only finitely many g

orbits, or else the elements of P lie in distinct g orbits.

If m ∈ N ∪ {∞} is the order of the semiregular permutation g, and ∆ is

the set of orbits of g, then by Lemma 6.1, we have CentG(g) ≅ Cm ≀Sym(∆),

in its imprimitive action. Using this, it is possible to prove Lemma 6.2 by

showing the equivalence of its conditions with those of Lemma 5.1. However

we prefer to give an independent and more illuminating proof in which we

explicitly construct an element of CentG(g) whose orbit partition is P.

Proof. It is clear that the first two conditions are necessary. To see that the

third condition is also necessary, suppose that P is the orbit partition of

h ∈ CentG(g). Let P be a part of P, and let x ∈ P . Since h stabilizes the

orbit partition of g, the set A = {n ∈ Z ∣ xhn ≡π(g) x} is a subgroup of Z.

The index ∣Z ∶ A∣ is equal to the number of g-orbits represented in P ; if this
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number is infinite then A = {0}, since Z has no other subgroup of infinite

index.

Now suppose that the stated conditions hold. We shall construct an

element h ∈ CentG(g) whose orbit partition is P. Let {Pi ∣ i ∈ I} be a set

of orbit representatives for the action of g on the parts of P, where I is a

suitable indexing set. Let Si = ⋃j∈Z Pig
j . It is clear that the sets Si form a

partition S of Ω. In fact it is easy to see that S = P ∨ π(g).

Since h may be defined separately on the distinct parts of S, we may

suppose without loss of generality that S is the trivial partition of Ω into a

single part.

Let P be a part of P, and let X = {xj ∣ j ∈ J} ⊆ P be a set of represen-

tatives for the orbits of g on Ω, where J is a suitable indexing ordinal. If J

is infinite then it may be taken to be the smallest infinite ordinal ω. By

assumption P is countable, and either J is finite or else X = P . Let t be the

least positive integer such that Pgt = P , or 0 if no such integer exists. It is

clear that if t = 0 then X = P .

We have assumed also that g is a semiregular permutation. Let m be the

length of a cycle of g; here m may be infinite. For convenience we define

M = Z/mZ if m is finite, and M = Z if m is infinite. We shall allow g to

take exponents from M . Every element of Ω has a unique representation as

xjg
k for some j ∈ J and k ∈M .

Observe that xjg
k lies in P if and only if k is a multiple of t. Define h

on Ω by

xjg
kh =

⎧⎪⎪
⎨
⎪⎪⎩

xj+1g
k if j + 1 < J

x0g
k+t if j + 1 = J.

(The second line of the definition, of course, arises only when J is finite.)

Thus h fixes each part of P, and permutes the orbits of g.

We now show that h commutes with g. It suffices to show that xjg
k has

the same image under gh and under hg, for j ∈ J and k ∈M . Suppose that

j + 1 < J ; then

(xjg
k
)gh = xjg

k+1h = xj+1g
k+1

= xj+1g
kg = (xjg

k
)hg.

For the remaining case, we have

(xJ−1g
k
)gh = xJ−1g

k+1h = x0g
k+1+t

= x0g
k+tg = (xJ−1g

k
)hg.

It is clear that the points xj lie in a single orbit O of h and so X ⊆ O ⊆ P .

If J is infinite then clearly O = P , since X = P . If J is finite then O contains

xjg
k for each j ∈ J and each k ∈M such that k is a multiple of t; since every

element of P is of this form, we have O = P in this case too. Now since g
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and h commute, every other part of P is also an orbit of h, and so π(h) = P

as required. �

The following proposition establishes that the condition on the number

of orbits of the element g in Theorem 3(b) is necessary.

Proposition 6.3. Let Ω be a set and let G = Sym(Ω). Let g ∈ G be a

permutation which has an infinite number of cycles of length k, for some

k > 1, where k may be infinite. Then CentG(g) is not join-coherent.

Proof. We may assume that g is semiregular, and that all of its orbits have

size k. We suppose for simplicity that Ω is countable; the generalization to

higher cardinalities is straightforward. Let S be a set of representatives for

the orbits of g. We define S by

S = {Sg
i
∣ i ∈M}

where M = {0, . . . , k − 1} if k < ∞ and M = Z if k = ∞.

It is easy to see that Sg = S. By assumption each part of S is countable,

and it is clear that each part of S has a single element in common with

each orbit of g. Hence S satisfies the conditions of Lemma 6.2, and so

S ∈ π(CentG(g)). However π(g)∨S is the trivial partition of Ω into a single

part. Since k > 1, this partition does not satisfy condition (3) of Lemma 6.2,

and so π(CentG(g)) is not join-closed. �

We are now in a position to prove Theorem 3, which we restate for con-

venience.

Theorem 3. Let Ω be a set, let G = Sym(Ω), and let g ∈ G. For k ∈ N∪{∞}

let nk be the number of cycles of g of size k.

(a) CentG(g) is meet-coherent.

(b) CentG(g) is join-coherent if and only if nk is finite for all k ≠ 1,

including k = ∞.

Proof. By Lemma 6.1, we see that CentG(g) is the direct product of cen-

tralizers of semiregular permutations. By Proposition 4.1 it is sufficient to

prove the result in the case that g acts semiregularly on Ω. We therefore

suppose that g is a product of cycles of length k, where k ∈ N ∪ {∞}.

Let P and Q be partitions in CentG(g). By Lemma 6.2 we have Pg =

P and Qg = Q, from which it follows easily that (P ∨Q)
g
= P ∨ Q and

(P ∧Q)
g
= P ∧Q. It is clear that P ∧Q also satisfies conditions (2) and (3)

of Lemma 6.2, and so P ∧ Q ∈ π(CentG(g)). Hence π(CentG(g)) is meet-

closed.
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If g has infinitely many cycles of length k then it follows from Proposi-

tion 6.3 that G is not join-coherent. Suppose then that g has only finitely

many cycles of length k. Each part of P and each part of Q is countable,

and so the parts of P ∨Q are countable. Therefore the only case in which

a part S of P ∨Q can meet an infinite number of orbits is when k = 1, and

clearly in this case S meets each orbit in at most one point. Hence P∨Q also

satisfies conditions (2) and (3) of Lemma 6.2, and so P ∨Q ∈ π(CentG(g)).

Hence π(CentG(g)) is join-closed. �

It is worth noting that centralizers in a general join-coherent group are

not necessarily join-coherent. The simplest counterexample is the centralizer

of a reflection in the dihedral group of degree 4.

7. Frobenius groups

We recall that a Frobenius group is a transitive permutation group G

on a finite set Ω, such that each point stabilizer in G is non-trivial, but the

intersection of the stabilizers of distinct points is trivial. The fixed-point free

elements of G, together with the identity of G, form a normal subgroup K,

called the Frobenius kernel. The Frobenius kernel acts regularly, and it is

often useful to identify K with Ω by fixing an element ω ∈ Ω and mapping

ωk ∈ Ω to k ∈ G. The stabilizer H of a point ω ∈ Ω is called a Frobenius

complement, and acts semiregularly on Ω ∖ {ω}. Identifying Ω with K one

finds that any complement H embeds into Aut(K), and so G is isomorphic

as a permutation group to K ⋊ H, where K has the right regular action

on itself. (For further results on Frobenius groups the reader is referred to

Theorem 10.3.1 of [8].)

We give a complete account of join- and meet-coherence in Frobenius

groups. As well as being a natural object of study, these results will be

important in Sections 9 and 10.

Proposition 7.1. A Frobenius group is meet-coherent if and only if it is

dihedral of prime degree.

Proof. Let D be the dihedral group of prime degree p acting on a p-gon Π.

For any vertices α and β of Π, there is a unique reflection mapping α to β.

It follows that if P and Q are the orbit partitions of distinct reflections then

P ∧ Q is the discrete partition. Since the only non-identity elements of D

are reflections and full cycles, we see that D is meet-coherent.

For the converse, let G be a meet-coherent Frobenius group with Frobe-

nius kernel K, acting on a set Ω. If g and h lie in different point stabilizers,

then since π(g) ∧ π(h) has two singleton parts, we see that π(g) ∧ π(h) is
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the orbit partition of the identity. It follows that if Og is an orbit of g, and

Oh is an orbit of h, then ∣Og ∩Oh∣ ≤ 1.

Suppose that ∣G ∶ K ∣ > 2. Let α and β be distinct points in Ω. Since

the point stabilizers of α and β meet every coset of K, and since there

are at least three such cosets, we may choose elements g ∈ StabG(α) and

h ∈ StabG(β), such that gh /∈ K. Then gh fixes a point γ ∈ Ω, distinct from

α and β. Now clearly {γ, γg} is a subset of a g-orbit Og, and {γg, γgh} is

a subset of an h-orbit Oh. But since γgh = γ, we have found two points in

Oh ∩Og. This contradicts the observation above that ∣Og ∩Oh∣ ≤ 1.

Therefore ∣G ∶ K ∣ = 2, and if t ∈ G ∖K, then t acts on K as a fixed-point

free automorphism of order 2. It is well-known that this implies that K is

an abelian group of odd order, and that t acts by inversion (see [8, Ch. 10,

Theorem 1.4]).

Suppose that K has a non-trivial proper subgroup L. Since L has odd

order, we have [K ∶ L] ≥ 3. If k ∈K then the orbits of k are the cosets of K,

whereas t preserves K and acts non-trivially on the cosets K/L. It easily

follows that π(k) ∧ π(t) is not the orbit partition of any permutation in G;

this contradicts the assumption that G is meet-coherent. Therefore K is

cyclic of prime order p, and G is a dihedral group of order 2p. �

Since a transitive join-coherent permutation group G of finite degree con-

tains a full cycle, and since a full cycle has no fixed point, it is clear that if

G is a Frobenius group then its kernel is cyclic. For this reason, we provide

a description of Frobenius groups with a cyclic kernel.

Lemma 7.2. Let n ∈ N, and let H be a non-trivial finite group. There exists

a Frobenius group with cyclic kernel K ≅ Cn and complement H if and only

if H ≅ Cr, where r divides p − 1 for each prime divisor p of n.

Proof. Suppose that there exists such a Frobenius group. As mentioned at

the start of this section, we may consider H as a group of automorphisms

of K. Note that any non-identity element of H acts without fixed points on

the non-identity elements of K. It follows that n is odd, since an even cyclic

group has a unique element of order 2. Let p be a prime divisor of n and

let L ≅ Cp be the unique subgroup of K of order p. Then H acts faithfully

on L and since Aut(L) ≅ Cp−1, it follows that H is cyclic of order dividing

p − 1. Hence the order of H divides p − 1 for each prime divisor p of n.

Conversely, let n = pa11 . . . pamm , let K = ⟨x⟩ ≅ Cn, and let r divide pi − 1

for all i. The Chinese Remainder Theorem allows us to choose d ∈ N such

that d has multiplicative order r modulo paii for all i. The map h ∶ x↦ xd is
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an automorphism of K of order r, and it is easy to check that H = ⟨h⟩ is a

Frobenius complement for K. �

We are now in a position to prove the following.

Proposition 7.3. A Frobenius group is join-coherent if and only if it has

prime degree.

Proof. Let G be a Frobenius group with kernel K and complement H. We

identify the set on which G acts with K.

Suppose that G has prime degree p, and so K ≅ Cp. Let X be a subgroup

of G. If K ≤ X then X is transitive, and its orbit partition is that of

a generator of K. Otherwise X ∩ K is trivial, and since G/K is abelian

by Lemma 7.2, it follows that X is also abelian. If x is a non-identity

element of X, then x fixes a unique element a of K; since X centralizes x

we have X ≤ StabG(a). By Proposition 2.3(3) the point stabilizers in G act

join-coherently on K, and so there exists h ∈ StabG(a) such that the orbit

partition of X is π(h). Therefore G itself is join-coherent, as required.

We remarked before Lemma 7.2 that if G is join-coherent then K is cyclic.

Suppose for a contradiction that ∣K ∣ is composite. Then K has a charac-

teristic non-trivial proper cyclic subgroup ⟨k⟩. The orbit partition π(k) is

simply the partition of K into the cosets of ⟨k⟩. Let h be a non-identity

element of H. By Lemma 7.2 we see that ∣H ∣ is coprime with ∣K ∣, and hence

with ∣⟨k⟩∣. Since H acts semiregularly on K ∖ {1}, no proper coset of ⟨k⟩

in K can be a union of orbits of h. Now consider the partition π(k) ∨ π(h).

It has one part equal to ⟨k⟩ itself, and every other part is a union of two or

more cosets of ⟨k⟩. But this partition cannot be in π(G), since it has parts

of different sizes, but no singleton parts. Hence G is not join-coherent. �

8. Join-coherence in linear groups

In this section we let V be a vector space of dimension d over a field K.

We shall write Λ for the set of lines (i.e. one-dimensional subspaces) in V .

Let G be a group in the range SL(V ) ≤ G ≤ GL(V ). Then G has a natural

action on the non-zero points of V , and the quotient G/Z(G) acts on Λ.

Since the lines of V form a system of imprimitivity for the action of G, we

see by Proposition 2.4(1) that if G acts join-coherently then so does G/Z(G).

The main results of this section, Proposition 8.6 and Proposition 8.7, show

that if d > 1 then these actions are almost never join-coherent. These results

are used in our classification of join-coherent primitive groups in Section 9.

When d = 1 we see that G is a cyclic group acting semiregularly, and so

the action is join-coherent; of course the group G/Z(G) is trivial in this
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case. When d > 1 we shall see that it is possible to reduce to the case when

V is a 2-dimensional space; in this case we identify Λ with the set K ∪{∞},

by identifying the line through (a, b) ∈K2 with b/a when a ≠ 0, and with ∞

when a = 0. The group PGL2(K) acting on Λ may then be identified with

the group of fractional linear transformations

α ↦
aα + b

cα + d
, a, b, c, d ∈K, ad − bc ≠ 0.

The following fact is well known.

Lemma 8.1. The action of the group PGL2(K) on Λ is sharply 3-transitive.

We shall write K0 for the characteristic subfield of K, and Λ0 for the

subset K0 ∪{∞} of Λ. Our next proposition establishes that PGL2(K) and

PSL2(K) are join-coherent only in a few small cases.

Lemma 8.2. Let K be a field, and let G be in the range SL2(K) ≤ G ≤

GL2(K). Then G/Z(G) is join-coherent in its action on Λ if and only if

G = GL2(F2) or G = GL2(F3).

Proof. Suppose first of all that G contains elements of determinant −1. (This

is always the case if charK = 2.) Then PGL2(K) has a subgroup isomorphic

to S3, generated by elements g and h which act on Λ as g ∶ α ↦ 1/α and

h ∶ α ↦ 1 − 1/α. The parts of π(g) ∨ π(h) have the form

{α,1/α,1 − α,1 − 1/α,α/(α − 1), (α − 1)/α}

for α ∈ K. One part is {0,1,∞}. If charK = 3 then {−1} is a singleton

part, and if charK ≥ 5 then {−1,2,1/2} is a part of size 3. If K contains

primitive cube roots of 1 then they form a part of size 2. All other parts

have size 6. If k ∈ PGL2(K) has orbit partition π(g) ∨ π(h) then k3 has at

least 3 fixed points; since PGL2(K) is sharply 3-transitive, it follows that

k3 = 1. Therefore ∣K ∣ ≤ 3. The well-known isomorphisms PGL2(F2) ≅ S3

and PGL2(F3) ≅ S4 now give the join-coherent groups appearing in the

lemma.

To deal with the remaining case it will be useful to observe that if k ∈

PGL2(K) fixes Λ0 set-wise then there exist x, y, z ∈ Λ0 whose images under k

are 0,1,∞, respectively; since PGL2(K) is sharply 3-transitive it follows

that k is the map

α z→
(y − z)(α − x)

(y − x)(α − z)
,

and so k ∈ PGL2(K0).

Suppose that charK > 0 and that G has no elements of determinant −1. It

is clear that G/Z(G) acts transitively on Λ0. Suppose that t ∈ G has a single
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orbit on Λ0. Then t lies in the subgroup of GL2(Fp) generated by a Singer

element s ∈ GL2(Fp) of order p2 − 1. The determinant of s is a generator

of F×
p and hence (det s)(p−1)/2 = −1. By assumption G has no elements of

determinant −1, and so if p−1 = 2ac where c is odd, then t ∈ ⟨s2
a
⟩. However,

it is clear that s acts as a (p + 1)-cycle on Λ0, and so s2 has two orbits on

Λ0. Hence no such element t can exist, and so G is not join-coherent in its

action on Λ.

Finally suppose that charK = 0. It is easy to show that G contains

elements g and h such that αg = 4α, and αh = 9α for all α ∈ K. (Here 4

and 9 may be replaced with any two squares that generate a non-cyclic

subgroup of Q×.) Suppose that t ∈ G is such that π(t) = π(g) ∨ π(h). Since

t has both 0 and ∞ as fixed points, it easily follows that there exists x ∈ Q

such that αt = xα for all α ∈ K. The orbit of ⟨g, h⟩ on Q ∪ {∞} containing

1 is {4i9j ∶ i, j ∈ Z}, whereas the orbit of ⟨t⟩ on Q ∪ {∞} containing 1 is

{xi ∶ i ∈ Z}. It is clear that these sets are not equal for any choice of x ∈ Q.

Hence G/Z(G) is not join-coherent in its action on Λ. �

It is worth noting that PSL2(Q) does contain finitely generated subgroups

that are transitive on Q∪{∞}. For example, one such subgroup is generated

by the maps g ∶ α ↦ α + 1 and h ∶ α ↦ α/(α + 1) used to define the Calkin–

Wilf tree of rational numbers [4]. It can be shown, however, that no element

k ∈ PGL2(Q) acts transitively on Q ∪ {∞}; this gives an alternative way to

conclude the proof of Lemma 8.2.

Lemma 8.2 is the basis for the following more general statement.

Proposition 8.3. Let V be a vector space of dimension d over a field K,

where d ≥ 2. Let G be in the range SL(V ) ≤ G ≤ GL(V ). Then the action of

G/Z(G) on the lines of V is not join-coherent unless d = 2 and ∣K ∣ ≤ 3.

Proof. Let W be a subspace of V , and let GW be the set-stabilizer of W

in G. By Proposition 2.3(2), if G is join-coherent in its projective action on

the lines of V , then GW is join-coherent on the lines of W .

Take W to be a 2-dimensional subspace of V . By Lemma 8.2, applied to

GW , we see that G cannot be join-coherent unless ∣K ∣ ≤ 3. Suppose that

∣K ∣ ≤ 3 and d ≥ 3. Take W to be a 3-dimensional subspace of V . The

possibilities for GW /Z(GW ) are PGL3(F2) and PSL3(F3) and PGL3(F3).

A straightforward computation, using the software mentioned in the intro-

duction, shows that none of these groups is join-coherent. It follows that if

d ≥ 3 then G/Z(G) is not join-coherent. �
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Let Φ be a non-trivial group of automorphisms of the field K, and let G

be a group such that SL(V ) ≤ G ≤ GL(V ). Then G ⋅Φ acts on the non-zero

points of V , and (G ⋅Φ)/Z(G) acts on the set Λ of lines.

Lemma 8.4. Let Φ be a non-trivial group of automorphisms of a finite

field K. Let G be in the range SL2(K) ≤ G ≤ GL2(K). Then (G ⋅Φ)/Z(G)

is join-coherent on Λ if and only if K = F4, G = SL2(F4) or G = GL2(F4),

and Φ = Gal(F4 ∶ F2).

Proof. Let ∣K ∣ = pr where p is prime. Since K admits non-trivial automor-

phisms, we must have r > 1. Let H be the stabilizer in G⋅Φ of a distinguished

line ` ∈ Λ. Since the action of PSL2(K) on Λ is 2-transitive, the action of

H on Λ/{`} is transitive. If G ⋅Φ is join-coherent on Λ, then by Proposition

2.3(3), so is H. It follows that H must contain an element of order pr. Let

r = pam where p does not divide m. Let g ∈ G ⋅ Φ be a p-element. Since

the full automorphism group of K has order r, we see that gp
a
∈ G. But

a non-trivial unipotent element of GL2(K) has order p, and so gp
a+1

= 1.

Hence the order of g is at most pa+1. However, pa+1 is strictly less than pr,

except in the case when a = 1, r = 2 and p = 2, and so pr = 4.

When K = F4 we observe that since every element in F4 is a square,

PGL2(F4) = PSL2(F4). Moreover, PGL2(F4)⋅Gal(F4 ∶ F2) is isomorphic to

the symmetric group S5, in its standard action on 5 points, and is therefore

join-coherent. �

The principal difficulty in extending Lemma 8.4 to general fields comes

from simple transcendental extensions of Fp for small primes p. Let K =

Fp(x), where x is a transcendental element. We shall represent elements of

K ∪ {∞} as rational quotients P (x)/Q(x), where not both P (x) and Q(x)

are zero, taking the quotients in which Q(x) = 0 to represent ∞. Recalling

our earlier identification of K ∪ {∞} with the projective line Λ, this gives

a convenient representation for the points of Λ. In this representation, the

fractional linear transformation α ↦ (Aα +B)/(Cα +D) in PGL2(K) acts

by

P (x)

Q(x)
↦
AP (x) +BQ(x)

CP (x) +DQ(x)
.

It is straightforward to check that this is a well-defined action of PGL2(K)

on Λ.

Lemma 8.5. Let p be prime and let K = Fp(x), where x is a transcendental

element. Let Φ = Gal(K ∶ Fp) and let H = PGL2(K). There is an action of
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H ⋅Φ on Λ defined by

hϕ ∶
P (x)

Q(x)
→ (

P (xϕ)

Q(xϕ)
)h.

In this action, H ⋅Φ acts regularly on the orbit containing xp+1 + xp.

Proof. The remarks made immediately before the lemma show that the

action is well-defined. Let P (x) = xp+1 + xp. It suffices to show that if

P (x)h = P (xϕ) for h ∈H and ϕ ∈ Gal(K ∶ Fp), then h and ϕ are the identi-

ties in their respective groups. It is clear that ϕ is determined by its effect

on x, and it is well known that

xϕ =
ax + b

cx + d

for some a, b, c, d ∈ Fp with ad − bc /= 0. (In fact Gal(K ∶ Fp) ≅ PSL2(Fp),

and so we have two distinct projective linear groups, acting in different ways

on Λ.) Suppose that

P (xϕ) =
(ax + b)p+1

(cx + d)p+1
+

(ax + b)p

(cx + d)p
=
A(xp+1 + xp) +B

C(xp+1 + xp) +D
= Ph.

Then using the fact that (rx + s)p = rxp + s for any r, s ∈K0, we have

(axp + b)((a + c)x + (b + d))(Cxp+1 +Cxp +D)

= (cxp + d)(cx + d)(Axp+1 +Axp +B).

By comparing the coefficients of x on both sides of this equation, starting

with the constant and linear terms, it is now easy to show that h and ϕ are

the identity maps. �

We are now ready to prove our main result on the action of extended

linear groups on lines.

Proposition 8.6. Let Φ be a non-trivial group of automorphisms of a

field K. Let V be a d-dimensional space over K, and let G be in the range

SL(V ) ≤ G ≤ GL(V ). If (G ⋅Φ)/Z(G) is join-coherent on the lines of V ,

then K = F4, G = SL2(F4) or G = GL2(F4), and Φ = Gal(F4 ∶ F2).

Proof. LetW0 ⊆ V be a 2-dimensional vector space overK0. LetW =W0 ⊗K0 K.

Then Φ stabilizes W as a set. By Proposition 2.3(2), if (G ⋅Φ)/Z(G) is join-

coherent on the lines of V , then the set stabilizer of W is join-coherent on the

lines of W . Therefore, provided K /= F4, it is sufficient to prove the theorem

in the case d = 2. By a similar argument, it is sufficient in the case K = F4

to show that the groups PGL3(4) ⋅Gal(F4 ∶ F2) and PSL3(4) ⋅Gal(F4 ∶ F2)

are not join-coherent. This follows from a straightforward computation.

We shall therefore assume that V is 2-dimensional. We need the following

observation: if E is a subfield of K and HE is the set-stabilizer of the set ΛE
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of lines in Λ contained in W0 ⊗K0 E, then by Proposition 2.3(2), the action

of HE on ΛE is join-coherent.

We first use this observation in the case E = Fp. Then ΛE = Λ0, and

since Φ acts trivially on Λ0, we may apply Lemma 8.2 to the group HE ≤

GL2(Fp) to deduce that ∣K0∣ ≤ 3. Hence K0 = Fp where p ≤ 3. If K is

algebraic over Fp then K is a finite field, and so, by Lemma 8.4, we have

K = F4 and G = SL2(F4) or G = GL2(F4).

Now suppose that K is not an algebraic extension of Fp. In this case there

exists x ∈K such that x is transcendental over Fp. Applying the observation

to the purely transcendental extension E = Fp(x), we see that HE ⋅ Φ acts

join-coherently on ΛE . By Lemma 8.5, the group HE ⋅Φ has a regular orbit

in its action on K ∪ {∞}. However HE ⋅ Φ is not locally cyclic, and so, by

Proposition 3.3, the action of HE ⋅Φ is not join-coherent. �

Finally, we extend the results to the action of GL(V ) on the non-zero

points of V .

Proposition 8.7. Let V be a d-dimensional vector space over a field K,

where d > 1. Let Φ be a group (possibly trivial) of automorphisms of K, and

let G be in the range SL(V ) ≤ G ≤ GL(V ). If G ⋅ Φ is join-coherent in its

action on V ∖ {0} then K = F2 and d = 2.

Proof. The set of punctured lines {`∖ {0} ∣ ` ∈ Λ} form a system of imprim-

itivity for the action of G on V ∖ {0}. Hence, by Proposition 2.4(1), if G ⋅Φ

is join-coherent on points, then (G ⋅ Φ)/Z(G) is join-coherent on lines. It

follows from Propositions 8.3 and 8.6 that G ⋅Φ is one of GL2(F2), GL2(F3)

or GL2(F4) ⋅Gal(F4 ∶ F2). A computation shows that the only one of these

groups which is join-coherent on points is GL2(F2). �

9. Primitive join-coherent groups of finite degree

In this section we shall establish Theorem 4, that a primitive permutation

group of finite degree is join coherent if and only if it is a symmetric group

or a subgroup of the Frobenius group AGL1(Fp) in its action on p points.

If G is a primitive join-coherent group of finite degree n then it contains

an n-cycle. The following lemma, classifying such groups, is Theorem 3

in [9]. (The reader is referred to [9] for original references.) We shall write

PΓLd(Fq) for the group PGLd(Fq) ⋅ Φ, where Φ is the Galois group of Fq

over its prime subfield.

Lemma 9.1. Let G be a primitive permutation group on n points containing

an n-cycle. Then one of the following holds:

(1) G is Sn or An;
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(2) n = p is a prime, and G ≤ AGL1(Fp);

(3) PGLd(Fq) ≤ G ≤ PΓLd(Fq) for d > 1, where n = (qd − 1)/(q − 1), the

action being either on projective points or on hyperplanes;

(4) G is PSL2(F11) or M11 acting on 11 points, or M23 acting on 23

points.

It is straightforward to prove Theorem 4 using this lemma and the results

of Sections 7 and 8. Certainly Sn is join-coherent, and we have seen that An

is not join-coherent when n > 3. A transitive subgroup of AGL1(Fp) is a

Frobenius group, and is therefore join-coherent by Proposition 7.3.

Suppose that PGLd(Fq) ≤ G ≤ PΓLd(Fq). The actions of G on points and

on hyperplanes are dual to one another, and it therefore suffices to rule out

join-coherence for one of them. By Propositions 8.3 and 8.6, the only join-

coherent examples in the action on points are PGL2(F2), PGL2(F3) and

PΓL2(F4). As we have seen, these are isomorphic as permutation groups

to S3, S4 and S5 respectively, in their natural actions.

We have therefore reduced the proof to a small number of low degree

groups, namely PSL2(F11) in its action on 11 points, and the Mathieu groups

M11 and M23. Establishing that none of these groups is join-coherent is a

routine computational task.

10. Groups containing a proper normal cyclic subgroup acting

regularly

We have observed that a transitive join-coherent permutation group on a

finite set must contain a full cycle. We end this paper by investigating the

situation when this cycle generates a normal subgroup.

Let G act on Ω, a set of size n. Suppose that K is a transitive normal

cyclic subgroup of G of order n. Let H be the stabilizer of a point ω ∈ Ω.

Then clearly G = K ⋊ H, and by the argument indicated at the start of

Section 7, we may identify Ω with K by the bijection sending ωk ∈ Ω to

k ∈K. The action of H on Ω then defines an embedding of H into Aut(K).

Every subgroup of K is characteristic in K, and therefore invariant under

the action of H.

Suppose that G is join-coherent. If n = ab for coprime a, b then K ≅

Ca × Cb, and we see from Proposition 4.4 that G factorizes as G1 × G2,

where G1 is join-coherent on Ca, G2 is join-coherent on Cb, and the fac-

tors G1 and G2 have coprime orders. Therefore, to obtain a complete clas-

sification, it suffices to consider the case that n is a prime power.

One trivial possibility is that G = K; in this case the action of G is

semiregular, and join-coherent by Proposition 3.3. If K is assumed to be a
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proper subgroup, then we shall see that the classification divides into two

cases: the case that n = p is prime, and the case that n = pa for a > 1.

Proposition 10.1. Let p be prime and let a > 1. Let Γ(pa) be the extension

of the additive group Z/paZ by the automorphism f ∶ x ↦ rx, where r =

pa−1 + 1. Then Γ(pa) is join-coherent.

Proof. An element g of Γ(pa) may be represented as x ↦ rjx + i for non-

negative integers i < pa and j < p. It is clear that xg = (jpa−1+1)x+ i and so

xg = x if and only if jpa−1x + i = 0. Moreover, a straightforward calculation

shows that

xgt − x = tjpa−1x +
t(t − 1)

2
ijpa−1 + ti,

and so, if c ≥ 1, then

xgp
c

− x =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

pci if p is odd

2ci(2a−2(2c − 1)j + 1) if p = 2.

Since Γ(pa) is a p-group, and xgt−x = 0 if and only if the g-orbit containing x

has size dividing t, the preceding equation allows us to determine the sizes

of the orbit partitions of elements of Γ(pa). Let pb be the highest power of

p dividing i if i /= 0, and let b = a if i = 0.

(1) If b < a − 1, or if j = 0, then xg ≡ x mod pb for all x ∈ Z/pZ and each

orbit of g has size pa−b. Hence the orbits of g are the cosets of ⟨pb⟩ in

Z/paZ.

(2) If b ≥ a−1 and j ≠ 0, then x is a fixed point of g if and only if p divides

jx+ k, where i = pa−1k. Thus the fixed points of g form a coset of ⟨p⟩

in Z/paZ. The remaining orbits have size p and are cosets of ⟨pa−1⟩

in Z/paZ.

From this description of the orbit partitions of elements of Γ(pa), it is not

hard to show that π(Γ(pa)) is closed under the join operation. �

We remark that when p is odd, the group Γ(pa) is the unique extension

of Z/paZ by an automorphism of order p. When p = 2 there are three

such extensions, provided a ≥ 3, of which Γ(pa) is the one which is neither

dihedral nor quasidihedral. (There appears to be no widely accepted name

for this group.)

Proposition 10.2. Let p be prime, let a > 1, and let K be the additive

group Z/paZ. Let H be a non-trivial group of automorphisms of K. The

group K ⋊H is join-coherent if and only if it is the group Γ(pa) from Propo-

sition 10.1.
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Proof. Let G be the full group of affine transformations of Z/paZ. Then

K ⋊H ≤ G. Let L be the unique subgroup of K of order p.

We describe the elements of G which have an orbit equal to L. Suppose

that g ∶ x↦ rx + s is such an element. Then it is easy to see that s =mpa−1

for some m not divisible by p, since the image of 0 under g is a non-identity

element of L. Furthermore, since g has no fixed points in L, we see that

r ≡ 1 mod p. But these restrictions on r and s imply that the equation

x = rx+ s has a solution in Z/paZ, except in the case that r = 1, when g ∈ L.

Hence g must have a fixed point in K ∖L, except in the case that its orbits

are precisely the cosets of L in K.

Let g be a generator of L. The orbits of g are the cosets of L, and the

automorphism group H clearly stabilizes L set-wise. It follows that for any

h ∈H, the join π(g)∨π(h) has L as a part, and that every part is a union of

cosets of L. But such a partition has no singleton part, and so cannot be in

π(G) unless each of its parts is a single coset; this implies that if K ⋊H is

join-coherent, then the action of H on the cosets of L is trivial. It is easy to

see that this is the case only if H = ⟨f⟩, where f is as in Proposition 10.1. �

We are now in a position to prove Theorem 5. For convenience we restate

the theorem below.

Theorem 5. Let G be a permutation group on n points, containing a nor-

mal cyclic subgroup of order n acting regularly. Let n have prime factoriza-

tion ∏i p
ai
i . Then G is join-coherent if and only if there exists for each i a

transitive permutation group Gi on paii points, such that:

● if ai > 1 then Gi is either cyclic or the extension of a cyclic group of

order paii by the automorphism x↦ xr where r = pai−1i + 1,

● if ai = 1 then Gi is a subgroup of the Frobenius group of order p(p−1),

● the orders of the groups Gi are mutually coprime,

● as a permutation group, G is isomorphic to the direct product of the

groups Gi in its product action.

Proof. Let n = ∏i p
ai
i , and suppose that G is a join-coherent permutation

group on n points containing a regular normal cyclic subgroup K of order n.

Then we can regard G as acting on K. Let Ki be the unique subgroup of K

of order paii . Since K ≅ ∏iKi, it follows easily from Proposition 4.4 that G ≅

∏iGi, where Gi is the kernel of G in its action on the complement ∏j/=iKj

of Ki. Moreover Proposition 4.4 implies that the groups Gi and Gj have

coprime orders whenever i ≠ j, and that Gi acts join-coherently on Ki for

all i. If ai > 1, then by Proposition 10.2, either Gi is cyclic of order paii
or Gi is isomorphic to Γ(paii ), while if ai = 1 then Gi is a subgroup of the
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normalizer in Spi of a pi-cycle, and so is a subgroup of the Frobenius group

of order pi(pi − 1). This completes the proof in one direction.

For the converse, suppose that we have for each i a permutation group

Gi on paii points, containing a regular normal cyclic subgroup, and such

that if ai > 1 then Gi is either cyclic or isomorphic to Γ(paii ). If ai > 1 then

Proposition 10.1 tells us that Gi is join-coherent. If ai = 1 on the other hand,

then Gi is either cyclic or else a Frobenius group of prime degree, in which

case it is join-coherent by Proposition 7.3. If the orders of the groups Gi are

coprime, then their direct product is join-coherent by Proposition 4.3, and

this completes the proof. �

We end with a remark on the uniqueness of the decomposition in Theo-

rem 5. Since the groups Ki and Gi appearing in the proof of the theorem

are uniquely determined, it follows that any group which satisfies the hy-

potheses of this theorem has a unique decomposition into a direct product

of transitive groups of prime power degrees.
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