CONJUGATE-SEMISTANDARD TABLEAU FAMILIES

This is a self-contained Haskell module for generating semistandard and conjugate
semistandard tableau and tableau families. It implements Algorithm 9.5 in [1], and may
also be used to verify Example 8.3.

1. PRELIMINARIES

module TableauFamilies where

import qualified Data.Map as M
import Data.List (delete, nub, sort, sortBy, transpose)

Partitions and compositions. Use sum to get the size of a partition.

type Part = Int
type Partition = [Part]
type SizeOfPartition = Int

type NumberOfRows = Int
type NumberOfColumns = Int

partitionsInBoz :: NumberOfRows — NumberOfColumns — SizeOfPartition — [Partition]
partitionsInBox _ _ 0 = [[]]
partitionsInBox 0 _ _ =[]
partitionsInBox r m n = [c:rest | ¢ + [1..m ‘min‘ n],
rest < partitionsInBozx (r — 1) ¢ (n — ¢)]

partitions :: SizeOfPartition — [Partition]
partitions n = partitionsInBoxr n n n

conjugatePartition :: Partition — Partition

conjugatePartition [] = []

conjugatePartition pQ(a: _)=[fj|j <« [1..a]]
where [j = length $ take While (= j) p

type Composition = [Part]
type SizeOfComposition = Int

compositions :: NumberOfRows — SizeOfComposition — [Composition]

Date: January 8, 2017.

compositions — 0 = [[]]
compositions 0 _ = []

compositions k n=[m:c|m <« [0..n],c < compositions (k —1) (n —m)]
Dominance order on compositions.

dominates :: Composition — Composition — Bool

p ‘dominates* ¢ = and $ zipWith (=) (partialSums p) (partialSums q)
Young Diagrams.

type Row = Int

type Column = Int

type Box = (Row, Column)
type YoungDiagram = [Box]

youngDiagram :: Partition — YoungDiagram
youngDiagram p = [(4,5) | (4,x) < zip [1..] p,j < [1..z]]

2. TABLEAUX

type Entry = Int
type TableauRow = [Int]
type Tableau = | TableauRow |

maximumBEntry :: Tableau — Int
mazimumEntry [] = error "maximumEntry: empty tableau"
mazimumEntry t = mazimum $ concat [es | es < t]

Mathematically a tableau is a function from the Young diagram to the set of entries.
This corresponds to a Haskell map.

type TableauM = M.Map Box Entry

tableauToTableaul :: Tableau — Tableaul
tableauToTableauM t = M .fromList $ concat $ [pairsForRow i xs | (i,xs) < zip [1..] t]
where pairsForRow i zs = [((4,7),z) | (j,z) < zip [1..] zs]

tableauM ToTableau :: TableauM — Tableau
tableauM ToTableau tM = [row i | i < [1..k]]
where row i = [tMM.!(i,7) | j < [1..lengthOfRow 1i]]
lengthOfRow i = mazimum [j | (¢',7) < M.keys tM,i' = i]
k| M.null tM =0
| otherwise = mazimum [i | (i,_) + M.keys tM|

changeFEntry :: TableauM — Box — Entry — TableauM

changeEntry tM (i,7) ¢ = M.adjust (\- —) (i,j) tM

insertMany :: TableauM — [(Boz, Entry)| — TableauM

insertMany tM [] = tM

insertMany tM ((b, z) : rest) = insertMany tM’ rest
where tM' = M.insert b x tM

3. TOTAL COLUMN COLEXICOGRAPHIC ORDER ON TABLEAUX

Let © be totally ordered under <. Let X = {z1,...,z4} and Y = {y1,...,y4} be
multisubsets of €2, written so that z; < ... < z4 and y; < ... < yg. The colexicographic
order on multisubsets of (2 is defined by X <Y if and only if for some ¢ we have z, < y,
and 11 = Yg41,--.,Tq4 = Yq- 1t is a total order.

colexGreater :: (Ord a) = [a] — [a] — Bool
colexGreater ys s = comparePairsLex (>) $ zip (reverse ys) (reverse xs)

comparePairsLez :: (Eq a) = (a — a — Bool) — [(a, a)] — Bool
comparePairsLex _ [| = True
comparePairsLex ord ((z,y) : abs)
| £ = y = comparePairsLex ord abs
| otherwise = z ‘ord‘ y
We define a total order on column semistandard tableau as follows: let s and ¢ be distinct

such tableaux, take the rightmost column where they differ, and compare these columns
under the colexicographic order.

columnGreater :: Tableau — Tableau — Bool

columnGreater t s = comparePairsLex colexGreater $ zip (reverse t') (reverse s')
where t' = transpose t; s’ = transpose s

For use in sortBy convert columnGreater to type Ordering (see §10 below).

totalOrdering :: Tableau — Tableau — Ordering
totalOrdering t s

|t=s=FEQ

| t ‘columnGreatert s = GT

| otherwise = LT

4. MAJORIZATION ORDER

Let X ={z1,...,2.} and Y = {y1,...,yr} be subsets of a totally ordered set €2, with
the notation chosen so that 1 < z9 < ... <z, and y3 < y2 < ... < y,. We say that Y
majorizes X, and write X <Y, if &1 < y1, 2o <y, ..., Tr < Yp.

magorizesList :: (Ord a) = [a] — [a] — Bool
magjorizesList ys xs = and $ zipWith (=) ys xs

If s and ¢ are conjugate-semistandard tableaux then we say that ¢ majorizes s if each
row of ¢ majorizes the corresponding row of s.

magjorizes :: Tableau — Tableaw — Bool
majorizes t s = and $ zip With majorizesList t s

incomparable s t = = (majorizes s t) A = (magorizes t s)

Neighbours in the majorization order. The neighbours of a conjugate-semistandard
tableau are obtained by considering each position in turn, and decrementing the entry
in this position when this gives a conjugate-semistandard tableau.

type ConjugateSemistandard Tableau = Tableau

downNeighbours :: ConjugateSemistandardTableau — [ConjugateSemistandard Tableau

downNeighbours t =
[tableauM To Tableau tM | tM < downNeighboursM $ tableauTo Tableaull t]

downNeighboursM :: TableauM — [TableauM |
downNeighboursM tM = [tM' | (i,7) < M .keys tM,
Just tM' < [decrement tM (i,7)]]

decrement :: TableauM — Box — Maybe TableauM
decrement tM (i,7) | e Z 1 A rowCheck N columnCheck = Just tM’
| otherwise = Nothing
where e = tMM.! (i,7)
rowCheck =7 =1V e>tMM.!(i,j —1)+1
columnCheck =i =1V e>tMM.!(i—1,7)
tM'" = changeEntry tM (i,7) (e — 1)

Closed families. A closed conjugate-semistandard tableauz family is a set of conjugate-
semistandard tableau downwardly closed under the majorization order. We say such sets
are downsets; any downset is determined by its maximal elements.

Take a list T of conjugate-semistandard tableaux, with head t. We take t if it is
maximal in 7 and, in either case, continue with the tableaux not majorized by ¢. This
ensures that if s is not maximal, or appears multiple times in 7, then either s is thrown
out because it is majorized by some earlier tableau, or it thrown out when it reaches the
head of the list, and is majorized by some later tableau.

type Maximal = ConjugateSemistandardTableau

maximals :: [ConjugateSemistandard Tableau] — [Mazimal]
mazximals [| =[]
mazimals (z : z8) | xMazimal = z : mazimals s’
| otherwise = mazimals xs’'
where zMazimal = and [— (y ‘majorizes‘ x) | y + zs,y Z# x]

xzs' = [y | y xs,— (z ‘majorizes‘ y)]

Given a list of incomparable conjugate-semistandard tableaux M, the downset having
these tableaux as its maximal elements may be constructed as follows:

(1) Put all tableaux in M in the family;
(2) Let T be the list of tableaux one step below a maximal s € M, in the majoriza-
tion order. Repeat (1) with the maximal elements of 7.

Note that if tableaux t, u € T satisfy ¢ = u then we will see u in the downset on t,
so it is safe to discard w. Indeed, this ensures that no conjugate-semistandard tableau
can appear twice, because whenever we put tableaux into the family, they are all in-
comparable, and (except in the first step) each is majorized by a tableau already in the
family

type TableauFamily = [ConjugateSemistandard Tableau]

downSetSorted :: [Mazimal| — TableauFamily
downSetSorted ss = sortBy totalOrdering (downSetOnMazimals ss)

downSetOnMazximals :: [Mazimal] — TableauFamily

downSetOnMazximals [] = []

downSetOnMazximals ss = ss H downSetOnMazimals ss”
where ss’ = concat [downNeighbours s | s + ss]

ss" = mazximals ss’

downSet :: ConjugateSemistandard Tableau — TableauFamily
downSet t = downSetOnMazimals [t]

This gives a convenient way to generate all conjugate-semistandard tableau of a given
shape that is not much slower than more sophisticated methods using iterated Pieri’s
rule removal of boxes (see §9.2 below).

type MaximumPermittedEntry = Int

conjugateSemistandard TableauxByMaj :: Partition — MaximumPermitted Entry

— [ConjugateSemistandard Tableau
conjugateSemistandard TableauzByMaj] — = [[]]
conjugateSemistandard TableauxByMaj pQ(a: _) k

|a>k=1]
| otherwise = downSet [[k —a+1..k]| a < p]

totalOrderCSSYTs :: Partition — MazimumPermitted Entry
— [CongugateSemistandard Tableau
totalOrderCSSYTs p m = sortBy totalOrdering (conjugateSemistandardTableauzr p m)

numberOfCSSYTs :: Partition — MaximumPermittedEntry — Int
numberOfCSSYTs p m = length $ conjugateSemistandard Tableauz p m

For example, printTableauz $ totalOrderCSSYTs [2,2] 4 evaluates to

112 112 112 113 12 113
12]7 [1]3]" [2[3] [2]3] [|3[4] [2]4]

5. CONSTRUCTING CONJUGATE-SEMISTANDARD TABLEAU FAMILIES

We use a refinement of the algorithm used to generate the downset on a conjugate-
semistandard tableau. Start with a list of candidate maximal tableaux M and the empty
family. If s is at the head of M then either

e declare that s is not in the family, or
e insert the downset on s into the family and remove all candidate maximal tableau
t from M that are comparable to s.
Then repeat with the tail of M.
type N = Int
type SizeOfFamily = Int
type CandidateMazimal = ConjugateSemistandard Tableau

tableauFamiliesMS :: N — ([CandidateMazimal], | Mazimal), Size OfFamily)
— [[Maximal]]
tableauFamiliesMS n ([], ts, 1)
| I =n = [ts]
| otherwise = []
tableauFamiliesMS n ((s : ms), ts, 1)
[1>n=1]
|l =n = [ts]
| otherwise = tableauFamiliesMS n (ms', ts',l") +# tableauFamiliesMS n (ms, ts,)
where ms’' = [s' | 8’ + ms, s ‘incomparable’ s']
ts' =s:ts
' =1+ length [u | u < downSet s, and [u ‘“incomparable‘ t | t < ts]]

tableauFamiliesM :: Partition — N — MaximumPermittedEntry — [[Maximal]]

tableauFamiliesM p n k = tableauFamiliesMS n (ms,[],0)
where ms = conjugateSemistandardTableaux p k

tableauFamilies :: Partition — N — MaximumPermittedEntry — [TableauFamily]
tableauFamilies p n k = [downSetSorted ss | ss < tableauFamiliesM p n k]

6. WEIGHTS AND TYPES OF TABLEAU AND TABLEAU FAMILIES

type Weight = [Multiplicity|
type Multiplicity = Int

weightT :: Tableau — [Multiplicity]
weightT t = [numberOf x | z < [1.. mazimumEntry t|]
where numberOf x = sum [countR x r | r < t]
countR z r = length [y | y < r,y = z]

weight :: [ConjugateSemistandard Tableau] — Weight
weight ts = sumWeights [weightT t | t « ts]

weightM :: [Mazimal] — Weight
weightM ss = weight $ downSetOnMazimals ss

addWeights :: Weight — Weight — Weight
addWeights u v | length u < length v = addWeights v u
| otherwise = zipWith (+) u v H drop (length v) u

sumWeights :: [Weight] — Weight
sum Weights ps = foldrl addWeights ps

type PType = Partition

ptype :: | ConjugateSemistandard Tableau] — Partition
ptype ts = conjugatePartition $ weight ts

ptypeM :: [Mazimal] — Partition
ptypeM ss = ptype $ downSetOnMazimals ss
7. TABLEAU FAMILIES OF MAXIMAL WEIGHT (EQUIVALENTLY, MINIMAL TYPE)

A tableau family of maximal weight (equivalently minimal type) is closed. To se-
lect the closed families of maximal weight we use a similar trick to mazimals to throw

8

out families of non-maximal weight, with a small change because there may be several
different families with the same maximal weight

type Mu = Partition

type Nu = Partition

closedWeightsM :: Mu — N — MaximumPermittedEntry — [(Weight, | Mazimal])]
closedWeightsM p n k = sort [(weightM ss, ss) | ss < tableauFamiliesM p n k|

mazximal WeightsM :: Mu — N — MazimumPermittedEntry — [(Weight, [Mazimal])]
mazimal WeightsM p n k = takeMazimalWeights $ closedWeightsM p n k

mazximal Weights :: Mu — N — MazimumPermittedEntry — | Weight]
mazimalWeights p n k = [w | (w,) <= mazimalWeightsM p n k|

takeMazimal Weights :: [(Weight, [Maximal])] — [(Weight, [Mazimal])]
takeMazimal Weights [] = []
takeMazimal Weights ((u, ss) : uss)
| pMazimal = (u, ss) : takeMazimal Weights uss’
| otherwise = takeMazimal Weights uss'
where pMazimal = and [— (v ‘dominates‘ u) | (v, —) < uss, v # u]
uss’ = [(v,ts) | (v,ts) < uss,u = v V = (u ‘dominates‘ v)]

minimalTypes :: Mu — N — MazimumPermittedEntry — [PType]
minimalTypes p n k = sort [conjugatePartition q | q < mazimalWeights p n k]

The greatest entry in a conjugate-semistandard tableau family of shape p” is m+mn — 1.

minimal TypesA :: Mu — N — [PType]
minimalTypesA p n = minimalTypes p n (sum p +n — 1)

mazimal WeightsA :: Mu — N — [PType]
mazimal WeightsA p n = mazimalWeights p n (sum p +n — 1)

minMazs :: Mu — N — [PType]
minMazs p n = minimalTypesA p n ‘meet* mazimal WeightsA (conjugatePartition p) n

Case p = (3). Identify conjugate-semistandard (3)-tableau with 3-subsets of N. The
downset on {a, b} where a < b consists of all {1,2},...,{1,a}, ..., {a,a+1},...,{a,b}.
The sets with common least element m contain 2(b — m) elements, so the type of the
downset is a partition of > " _; 2(b—m) = a(2b—a —1). It follows that the downset on
{r,a,b} contains (a — r)(2b — a — r — 1) sets with least element r. Therefore {r,a,b} is
a candidate maximal in a set family of size n only if (a —7)(20 —a —r — 1) < 3n.

threeFamiliesCandidateMaximals n = ms’
where ms = conjugateSemistandardTableauz [3] (n + 2)
ms = [t | tQ[[r,a,b]] < ms,(a—71)*(2xb—a—1—1) < 3%n]

threeFamilies n =
tableauFamiliesMS n (threeFamiliesCandidateMazimals n,[],0)

three Types n = collectSorted $ sort § [ptypeM ms | ms < threeFamilies n]
three TypesMultiple n = [(p, m) | (p, m) < threeTypes n, m > 2]

three TypesClosedNonMinimal n = [(conjugatePartition w, ms) | (w, ms) < vs ‘diff ¢ vs’]
where vs = [(weightM ms, ms) | ms < threeFamilies n]
vs' = takeMazimal Weights vs

7.1. Closed non-maximal families. It is an open question whether every closed
conjugate-semistandard tableau family corresponds to a summand of a generalized Foulkes
module.

closedNonMaximalWeightsM :: Mu — N — MaximumPermitted Entry
— [(Weight, [Mazimal))]
closedNonMazimalWeightsM p n k
= closedWeightsM p n k ‘diff* mazimalWeightsM p n k

closedNonMazimalWeights :: Mu — N — MazimumPermittedEntry — [Weight]
closedNonMazimalWeights p n k
= [w | (w,) < closedNonMazximal WeightsM p n k]

7.2. Unique families. Corollary 9.10 in [1] characterizes the partitions p and n € N
such that there is a unique conjugate-semistandard tableau family of shape u™.

uniqueFamily pQ(a: _)n=1=1
where [= length $ mazimalWeights p n (n+ a — 1)

8. EXAMPLE 8.3 IN [1]

Define

112] . [213] .. _[1[3] . _[1[4]
N P E A P

These tableaux are incomparable in the majorization order.
w=[[1,2], [4]};v = [[2,3], [2]]; w = [[1, 3], [3]]; = = [[1, 4], [2]]

The tableaux majorized by one of u, v, w, x are constructed below.

u =

10

ts = sortBy totalOrdering $ downSetOnMazimals [u, v, w, x|
(1,12, 13, L), 15,16, 7, 18,19, t10] = ts
checkLabels = (u = t4) N (v =t7) A (w = t8) A (z = t10)

It is convenient to have these tableaux printed in this notation.

showEkxT :: ConjugateSemistandardTableau — String
showExT s | s = u="u"

|s=v="v
|s=w="u"
| s =z ="x"

| s € ts = "t" H show (position s ts + 1)
| otherwise = error $ "showExT: " 4 show s

The conjugate-semistandard tableau families and conjugte-semistandard tableau family
tuples defined in Example 8.3 are as follows.

sm = ts ‘diff* [u, v, w, x]

add ss ys = sortBy totalOrdering $ ss H ys

ss1 = sm ‘add‘ [u,v]; ss2 = sm ‘add’ [w, z]; ss8 = sm ‘add’ [u, x]

ss4 = sm ‘add‘ [v,w]; ss5 = sm ‘add‘ [u, w]; ss6 = sm ‘add’ [v, z]

tft1 = [ss1,ss2]; tft2 = [ss3, ss4 |; tft3 = [ss5, ss6); tft4 = [ss1, ss5]; tftd = [ss0, ss2]
We claim that these are all closed conjugate-semistandard tableau family tuples of shape
(2,2)3®) and type (4%,3%,25,17).

example Weight = conjugatePartition [4,4,4,4,3,3,3,3,3,2,2,2,2,2,1,1,1,1,1,1,1]

closedWeightsM88 = closedWeightsM [2,1] 8 4

example TuplesM = [((p, ms), (p’, ms")) | (p, ms) < closed WeightsM88,
(p’, ms’) < closedWeightsM88,

p<p,
p ‘addWeights‘ p' = example Weight |

example TuplesF
= [(downSetSorted ms, downSetSorted ms’)
| (=, ms), (=, ms")) < example TuplesM |

example TuplesF'T
= [(identifyFamily ts, identifyFamily ss, ts, ss) | (ts, ss) < example TuplesF |

example TupleLabels = [(i,7) | (Just i, Just j, _, _) < example TuplesFT']

11

identifyFamily ss | ss € sss = Just $ 1 + position ss sss
| otherwise = Nothing
where sss = [ss1, 552, 883,554,555, ss6 |

exampleTupleLabels evaluates to [(4,3),(6,5),(6,2),(1,5),(1,2)]. Thus the first
tableau family tuple found by Haskell is (ss4, ss3), which is up to the order of the
two families, the same as tft2 above, and so on.

9. TABLEAU FAMILIES OF LEXICOGRAPHICALLY MINIMAL TYPE

In this section we implement Algorithm 9.5 in [1].

9.1. Entry order on conjugate-semistandard tableau. A further order will be use-
ful: we first compare the multisets of entries colexicographically, then use the total
column colexicographic order to break ties.

entryGreater :: Tableau — Tableau — Bool
entryGreater t s | xs = ys = columnGreater t s
| otherwise = colexGreater ys s
where xs = sort (concat s)
ys = sort (concat t)

entryOrdering :: Tableau — Tableau — Ordering
entryOrdering t s

|t=s=EQ

| t ‘entryGreater' s = GT

| otherwise = LT

entryOrderCSSYTs :: Partition — MazimumPermitted Entry
— [ConjugateSemistandardTableau
entryOrderCSSYTs p k
= sortBy entryOrdering (conjugateSemistandardTableauz p k)

9.2. Young and Pieri removal of boxes.

type NumberOfBozesToRemove = Int
type PartitionChain = [Partition |
type ReversedComposition = Composition

youngRemove :: NumberOfBozesToRemove — Partition — [Partition |
youngRemove 0 p = [p]
youngRemove r [] =[]
youngRemove r [z] | x> r = [[z — r]]
| r

=z =[[]]

12

| otherwise = []
youngRemove T (z : y: 2s)
=[(x—=r"):p|r «[0..(x—y) ‘min‘r],p < youngRemove (r — ') (y: 2s)]

pieriRemove :: NumberOfBoxesToRemove — Partition — PartitionChain

pieriRemove T p = [conjugatePartition q | q¢ < youngRemove r $ conjugatePartition p]

pieriRemoveMany :: ReversedComposition — Partition — [PartitionChain |
pieriRemoveMany [] p = [[p]]
pieriRemoveMany (c: cs) p =

[p:qs| q < pieriRemove c p, qs < pieriRemoveMany cs]

To construct tableaux it is most useful to have the boxes removed at each step.

type BoxChain = [[Boz]]

partitionChainToBoxChain :: PartitionChain — BozChain
partitionChainToBoxChain qs = differences [youngDiagram q | q < qs]

differences :: [YoungDiagram] — [[Box]]

differences [=[]

differences [d] = []

differences (d : d': es) = d ‘diff* d’ : differences (d’: es)

Conjugate semistandard tableau of given weight. Pieri removal gives a faster way to
generate all conjugate semistandard tableaux then the method seen in §4. Note that
the weight is reversed in the second function below: boxes removed first get the greatest

number.

cssytsWithWeight :: Weight — Partition — [ConjugateSemistandard Tableau |
cssyts WithWeight w p =
[partitionChainTo Tableau bss | bss <— pieriRemoveMany (reverse w) p]

boxChainToTableauM :: BoxChain — TableauM
boxChainTo TableauM bss = insertMany (M.empty) bzs
where bxs = concat [[(b, k) | b < bs] | (bs, k) < zip bss (reverse [1..k])]
k = length bss

partitionChainTo Tableau :: PartitionChain — Tableau
partitionChainTo Tableau = tableauM To Tableaw o boxChainTo TableauM
o partitionChainToBoxChain

13

conjugateSemistandardTableaux :: Partition — MaximumPermitted Entry
— [ConjugateSemistandard Tableau
conjugateSemistandard Tableauz p k
= concat [cssytsWithWeight w p | w < compositions k (sum p)]

9.3. k statistic. At step j we have (ki,...,kj—1) = ({7*,...,¢5*) and the target is to
find d more conjugate-semistandard tableaux. We choose the maximum k such that

> ICSSYT (@, k)| < d
where the the sum is over all chains
M _>Cl 191 _>CQ T _>Ce,1 ﬂf*l _>Cg 19

ending in the partition 1J; here the notation indicates that we perform a Pieri removal
of ¢; boxes from pu, then ¢z boxes from the resulting partition ¥;, and so on. (The first
step when j = 1 is distinguished in the description of Algorithm 9.5 in [1], but simply
corresponds to the case when the only chain considered is the trivial one, ending in p.)

chains WithSizes :: Mu — [NumberOfBoxesToRemove| — MazimumPermitted Entry

— [(PartitionChain, Int)]
chains WithSizes p ¢s k =
[(¢Chain, numberOfCSSYTs (last qChain) k) | ¢qChain < pieriRemoveMany cs p]

chainSize :: Mu — [NumberOfBozesToRemove| — MazimumPermittedEntry — Int
chainSize p c¢s k = sum [t | (_, t) < chainsWithSizes p cs k]
For example, chainsWithSizes [2,2] [] 3 evaluates to [([[2,2]],6)], corresponding to the
6 conjugate-semistandard (2, 2)-tableaux with maximum entry 3 (these can be produced
using printTableauzr $ totalOrderCSSYTs [2,2] 3), and chains WithSizes [2,2] [1,1] 2
evaluates to [([[2,2],[2,1],[1,1]],3),([[2,2],[2,1],[2]],1)], corresponding to the tableaux
of the two forms

* |z * | %
* |y x|y
where x < y and * denotes an unspecified entry not exceeding 2. There are 3 tableaux
of the first form, and a unique tableau of the second.

type K = Int

type NumberOfNewTableaur = Int

type Target = Int

9

kPair :: Mu — [NumberOfBozesToRemove| — Target
— Maybe (K, NumberOfNewTableauz)
kPair p cs target = maybeLast $ take While (A(—, b) — b < target)
[(k, chainSize p cs k) | k < [0..]]

14

9.4. Chains to tableau families. Each box removed in the step ¥,_1 —, ¥, is filled
with ¢, + 1. For example partitionChainToFamily [[4,2],[3,1],[2,1]] 3 [5, 3] evaluates
to

112]4]6] [1]2]4]6] [1]3]4]6] [1][2]4]6] [1]3]4]6] [2][3]4]6] [1]3]4]6] [2]3]4]6]
1]6 " [2]6 " [1]6 " [3]6 " [2]6 " [2]6 " [1]6 " [3]6 '

with 5+ 1 = 6 placed in the boxes of (4,2)/(3,1), 3 + 1 placed in the unique box of
(3,1)/(2,1); the remaining boxes form a conjugate-semistandard tableau with maximum
entry 3.

type L = Int

partitionChainToFamily :: PartitionChain — K — [L] — [Tableau]
partitionChainToFamily qs k ls = sortBy entryOrdering [putInPlusEntries lbss t | t < ts]
where ts = entryOrderCSSYTs (last gs) k
bss = partitionChainToBoxChain qs
lbss = zip ls bss

putInPlusEntries :: [(L,[Box])] — Tableau — Tableau
putInPlusEntries lbss t = tableauMToTableau $ putInPlusEntriesM lbss
$ tableauTo TableauM t

putInPlusEntriesM [] tM = tM
putInPlusEntriesM ((1, bs) : rest) tM = putInPlusEntriesM rest tM’
where tM' = insertMany tM [(b,1+ 1) | b + bs]

9.5. Examples.

(1) In Example 9.6 in [1], we find the lexicographically minimal conjugate-semistandard
tableau family of shape (3,1)7. At Step 4, we have k; = 3, ks = 2, k3 = 1 and
we require just one more tableau, and there are three partition chains:

(3:1) =1 (3) =1 (2) =1 (1),
(3,1) =1 (2,1) =1 (2) =1 (1),
(3,1) =1 (2,1) =1 (1,1) =1 (1).

Taking k4 = 1 they give the three tableau below:

1[2]3] [1]2]4] [1][3]4]
4 R T2 ‘

This is one too many, so k4 = 0, and correspondingly kPair [3,1] [1,1,1] 2 evalu-
ates to Just (0,0). Exactly the same tableaux correspond to the chains (3,1) —1
-+ —1— &, and since there is a unique empty conjugate-semistandard tableau,

15

even taking k5 = 0 gives too many tableau. Therefore kPair [3,1] [1,1,1,1]
evaluates to Nothing. (This is the only ‘failure’ case.)

(2) We give a further example to show the case when k; = ks; then the partition
chains at Step 3 are given by the Pieri removal of two boxes from p, reflecting
that both will get the entry k; + 1. Take u = (2,1) and n = 7. In Step 1, since
there are 8 conjugate-semistandard tableau with maximum permitted entry 3,
we take k1 = 2, getting

2]

2]

1 1

L 2]
In Step 2 the chains (2,1) —1 (2) and (2,1) —; (1,1) correspond to tableaux of
the forms

x| x| [x]3]
E1 R .
(Here 3 = k1 + 1 is inserted by the code immediately above.) Since k1 = 3 was

too big on Step 2, we have ko < 2, and taking ko = 2 gives

1[2] [1]3] [1]3] [2]3]
3] 0 1] [2] 2] ¢

One more tableau is required, and in Step 3 we remove a Pieri chain of 2 boxes,
and take ks = 1, getting

1[3]
1]
The algorithm, as coded below, continues with k4 = 0 (and no tableaux are taken
in the final step). After Step 2, the function newCLS below updates the tuple
(k1) = (2) = (¢7") = (21) to (k1, ko) = (2,2) = (E’fll) = (22). The full output of

the algorithm can be seen using printAlg $ lexMinimalFamilyAll [2,1] 7.

9.6. Algorithm 9.5.

oneStep :: Partition — [(NumberOfBozesToRemove, L)| — Target — (K, [Tableau))
oneStep p cls target =
case kPair p cs target of
Just (k,a) — (k, combine [partitionChainToFamily qs k s
| (gs,) < chainsWithSizes p cs k)
Nothing — (—1, combine [partitionChainToFamily qs (—1) Is
| (gs,—) < chainsWithSizes p cs (—1)])
where cs = [c¢ | (¢,) « cls]
Is =1l (1)« cls]
combine = sortBy entryOrdering o concat

newCLS :: [(NumberOfBoxesToRemove, L)] — K — [(NumberOfBozesToRemove, L)]
newCLS [k= [(1,k)]

16

newCLS cls k | Il =k = dropLast 1 cls + [(¢ + 1, k)]
| otherwise = cls + [(1, k)]
where (¢,) = last cls

oneStepFull :: Partition — [(NumberOfBozesToRemove, L)| — Target
— ([(NumberOfBozesToRemove, L)|, Target, [Tableau])
oneStepFull p cls target = (newCLS cls k, target — length ts, ts)
where (k, ts) = oneStep p cls target

type NumberOfSteps = Int

sSteps :: Partition — [(NumberOfBoxesToRemove, L)| — Target — NumberOfSteps
— ([(NumberOfBozesToRemove, L)], Target, [[Tableau]])
sSteps _ cls t 0 = (cls, t,[])
sSteps p cls t s = (cls”, t", ts : ts')
where (cls’, t', ts) = oneStepFull p cls t
(cls” 1", ts") = sSteps p cls’ t' (s — 1)

lexMinimalFamilyAll :: Partition — Target
— ([(NumberOfBoxzesToRemove, L)|, [NumberOfNewTableauz |, [[Tableau]], [Tableau)])
lexMinimalFamilyAll p target =
let (cls, target’, tss) = sSteps p [] target (sum p)
(, ts") = oneStep p cls target’
as = map length tss 4 [target’]
in (cls, as, tss, ts)

allLexMinimalFamilies :: Partition — Target — [[Tableau]]
allLexMinimalFamilies p t = let (_, as, tss, ts') = lexMinimalFamilyAll p t
in [concat tss 4+ ts | ts « subsequencesOfLength (last as) ts']

finalChoices p t = subsequencesOfLength (last as) ts’
where (_, as, tss, ts') = lexMinimalFamilyAll p t

leastLexMinimalFamily :: Partition — Target — [Tableau]
leastLexMinimalFamily p t = let (_, as, tss, ts') = lexMinimalFamilyAll p t
in concat tss 4+ take (last as) ts'

17

For example, printFamilies $ allLexMinimalFamilies [2,1] 10 evaluates to

1]2] [1
2] 7 [1]
1]2] [1]3]
72 71)

2]

I

3]

)

2] 3] 3] [2]3] 3] [1]4] [1]2]
Y 9y Y 9 Y Y

2] 2]

)

3]

)

3]

Y

3]

)

3]

)

4]

)

4]

1

[1]
1

1]

1

3]
1

3]

[eo]=] [ee]=

|C»3[\D|C»J[\.’)

1

4]
1

2]

[=]=] =]~

2

2]
2

2]

|[\3,_. |[\>>—\

The first of these is the least family (the tie in the entry order is broken by the total
column order). The two tableau in the final position that complete the families are the
output of Step F of Algorithm 9.5, and can be constructed using finalChoices [2,1] 10.

9.7. Printing output of Algorithm 9.5.

printSteps :: ([(NumberOfBozesToRemove, L)|, [[Tableau]]) — 10 ()
printSteps (cls, tss) =
do putStrLn $ show cls
sequence_ [printTableaux ts | ts < tss]

printAlg :: ([(NumberOfBoxesToRemove, L)], [NumberOfNew Tableaux],
[[Tableau]], [Tableau]) — IO ()
printAlg (cls, as, tss, ts') =
do putStrLn $ show cls
putStrLn $ show as H "\n"
sequence_ | printTableaux ts > putStrLn "" | ts < tss, ts # []]
printTableauz ts'

Pretty printing of tableaux.
printList :: (Show a) = [a] — 10 ()
printList xs = putStrLn $ unlines $ map show s

printListMagma :: (Show a) = [a] — 10 ()
printListMagma xs = putStrLn $ " [" + (dropLast 2 $ unlines $ [show z + "," | + zs]) H# "1\n"

showTableau :: Tableau — String
showTableau t = concat [showTableauRow es + "\n" | es < t]

showTableauRow :: [Entry| — String
showTableauRow es = concat [f e | e + es]H#" "
where f 0= "." f 10 = "T"; f 11 = "J"; f 12 = "Q"; f 13 = "K";
fla="a"f15="F";f e = show e

printTableauzNoLn :: [Tableau] — 10 ()
printTableauzNoLn ts = putStr $ showTableauz ts

18

printTableauz :: | Tableau] — 10 ()
printTableaux ts = putStrLn $ showTableauz ts

showTableauz :: [Tableau] — String
showTableauz [] = ""
showTableauz ts | length ts < 10 = Is
| otherwise = Is H# "\n" H showTableauz (drop 10 ts)
where Is = unlines (linesTableauxB (take 10 ts))

linesTableauPadding t = [pad (s — length 1) 1 | | + Is]
where [sQ(]: _) = lines (showTableau t)
s = length | + 2

linesTableauzB ts = [concat | | | < Is']
where Is’ = transpose [linesTableauPadding t | t < ts]

pad s | = | H take s spaces
where spaces = repeat *

printFamilies tss = sequence_ [printTableauzx ts > putStrLn "" | ts < tss]

10. UTILITY FUNCTIONS

zs‘diff ys =[x | x < xs,— (z € ys)]
xs ‘meet‘ ys = [z | © < xz8, T € ys]

partialSums :: (Num a) = [a] — [a]
partialSums = scanll (+)

fromJust (Just x) = x
fromJust Nothing = error "fromJust: Nothing"

maybeLast [] = Nothing
maybeLast xs = Just (last xs)

position & xs = fromJust $ lookup x (zip zs [0..])
dropLast k xs = reverse $ drop k $ reverse xs
subsequencesOfLength 0 _ = [[]]

subsequencesOfLength _ [] =[]
subsequencesOfLength k (y : ys) =

19

[y:ys | ys < subsequencesOfLength (k — 1) ys] + subsequencesOfLength k ys

collectSorted [] =[]
collectSorted (z :[]) = [(z,1)]
collectSorted (x : ys) = (z, m) : collectSorted ys’
where m = 1 + length (take While (=) ys)
ys' = drop While (= z) ys

REFERENCES

Rowena Paget and Mark Wildon, Generalized Foulkes modules and maximal and minimal con-
stituents of plethysms of Schur functions, arXiv:1608.04018 (2016), 42 pages.

