DIACONIS EXERCISE 13

1. PRELIMINARY DEFINITIONS

Let P and ) be probability distributions on a finite set €. The total
variation distance between P and @), denoted ||P — Q|| is defined by

1P = Qll = max| P(4) - Q(A4)

Note that since P(2\A) — Q(Q\A) = —(P(A) — Q(A)), an equivalent defi-
nition is
1P - Qll = max P(4) - Q(A)

This definition apparently requires us to consider all events A C 2 to find
the one on which P and () assign the most widely differing probabilities.
But a moments thought shows that

IP=Qll= > (Pl)-Qw)

and hence that

(1) 1P = Qll = 5 el Pw) — QW)

It still seems quite remarkable to me that (1) can serve as a definition of total
variation distance. This equation also shows that total variation distance is

essentially the same as the ¢; norm on RY.

2. EXPECTATION AND VARIANCE OF THE NUMBER OF FIXED POINTS

Suppose that we shuffle a pack of n cards by choosing uniformly at random
two numbers from {1,2,...,n}. If the numbers are the same, we do nothing;
otherwise we swap the cards in the indicated positions. The corresponding
probability distribution on the symmetric group S, is defined by P(lg, ) =
1/n and P(t) = 2/n? if t is a transposition. If we perform the shuffle k
times, then the probability that the cards are permuted according to the
permutation o € S, is P**(0). Here P** is the k-th convolution of P, as
defined by Q*' = Q and

P*o)y= > P V(gn ") P(r)
TESR

for each k > 2.
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The first part of Exercise 13 in Diaconis’ book outlines a proof that if
b> 0 and k = §logn — bn then the total variation distance between prk
and the uniform distribution U is non-negligible. Earlier, in Theorem 5, it
is shown that if ¢ > 0 and k = § logn + cn then

Hp*k o UH < ae—QC

for a constant a € R, so this result is sharp. Even the crude statement of
this ‘fast cut-off’, that for any £ > 0, a shuffle with (1/2 + ¢)nlogn steps
guarantees good mixing, while the shuffle obtained by (1/2 — &)nlogn steps
will (with overwhelming probability) be poor, seems striking.

Let F (o) denote the number of fixed points of o € S,,. Under the uniform
distribution permutations with no fixed points, i.e. derangements, occur
with probability about 1/e. If k is small then it is intuitively clear that the
probability distribution P** will favour permutations with relatively many
fixed points, and so derangements, and other permutations with few fixed
points, will be underrepresented. By making this precise we shall get a
bound in Corollary 9 on the variation distance ||P** — U]].

We shall in fact solve the more general version of the problem where
P(1g,) = pn for given p, € R, and P(t) = (1—p,)/(5) if t is a transposition;
this is required to solve the second part of the exercise. For notational

convenience, let ¢, =1 — p,.

Proposition 1. If k € N then

2 k
Ep(F) =1+ (n— 1)(1 - nfnl) :
In particular, if p, = 1/n then ¢, =1 —1/n and

Ep(F) =1+ (n— 1)(1 - g)k.

n
Proof. The n-dimensional natural representation of S,, decomposes as the
sum of an irreducible subrepresentation W of dimension n—1 and the trivial
representation. The trace of the permutation matrix representing o € .S, is
simply F(c), so we we have Tryy (o) = F(o) — 1 for all o0 € S,,.
Let
x_pn+(q,?) 3 (i) € Cs,
2/ 1<i<j<n
be the element encoding the probability distribution P. By the previous
paragraph we have Ep(F — 1) = Tryy(z). More generally, since the prod-
uct in the group algebra CS,, corresponds to the convolution product on

probability distributions, we have

(2) Ep.(F — 1) = Tryy (zF)
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It follows from Lemma 2 below that x acts as aly on W, where

_ (1_pn) n XW((12)) . L—g
1 2
N n—1

Note that in the particular case where p, = 1/n we have a =1 — % Hence
z¥ acts as (1 — -2:(1 —pn))klw on W and, by (2), we have

Ep(F—1) = (n— 1)(1 - n23"1>k

from which the result follows immediately. O

The following lemma, which can be easily proved using Schur’s Lemma,

was used in the proof of Proposition 1.
Lemma 2. Let W be an irreducible representation of Sy,. If x € CS,, is the
sum of all elements in the conjugacy class of o € Sy, then x acts on W as

|25 |xw (o)

xw (1) -

It is easily seen from (1) that if f : S, — R is any function such that
|f(0)] <1 forall o €5, then

1
1Q = Bll = 5]£(0)(Q(0) = R(0))]:
Taking f(o) = F(0)/n and applying Proposition 1 we get

1 2 k
*k‘_ > _ . _ :( _ qn )
[P —UJ| > 2n(EPk(F) 1) = (1 —)

In particular, if p, = 1/n then since (1 — 2)" — e~2

as n — 0o, it follows
that n steps do not suffice to get good mixing in this case. The same result
holds whenever p,, — 0 as n — oco. As Diaconis remarks, to get a stronger

result we need to use the variance of F.
Proposition 3. If k € N and n > 4 then

Varpu(F) =1+ (n— 1)<1 2 )k L n=3) (1 N %)k

n—1 2 n

(n—1)(n—2) (1_ 4qp, )k—(n—l)Q(l— 2¢n )2k

2 n—1 n—1

Proof. The variance of F is the same as the variance of ' — 1 so as in
Proposition 1, we may work with F' — 1. We keep the notation from this
proposition. To find the variance of F' — 1 we need the expected value of
(F—1)2. Since (F —1)(0)? is the trace of ¢ in its action on W @ W we have

(3) Ep*k (F — 1)2 == TI“W®W(.®).



4 DIACONIS EXERCISE 13

To compute this trace we decompose W QW into its irreducible constituents.
We begin by observing that
XWeWw = XW X XW

Sn

= (s, )15 = xw.

In the standard notation for irreducible characters of the symmetric group,

xw = x(hY
get

. Using the ordinary branching rule (see [1, Chapter 9]) we
xwlg = x4
and hence, provided n > 4,

Sn - B )
XWisn,lT —xw = x4+ LD 4y (22) 4 (n210)

Therefore W decomposes as a direct sum of four irreducible representa-
tions. By Lemma 2, the scalar by which x acts on an irreducible represen-

tation U is

xu ((12))
Pn + %T(l)-

The table below shows x*(1) and x*(12) for the irreducible characters
appearing above. These values are easily computed using the Murnagham-—
Nakayama rule: see [1, Chapter 21]. The calculations can be simplified by
using the identity (n —3)(n —4)/2=(n—2)(n —5)/2+ 1.

A (1) x*((12))
(n—1,1) n—1 n—3
(n—2,2) n(n —3)/2 (n—3)(n—4)/2

(n—2,1,1) (n-1)n-2)/2 (n—2)(n—>5)/2

It follows that there is a basis of W on which x acts as the matrix

L (1 - 2%1)1”4 ® (1 - %)Inm_g)/g i (1 - n4z"1)f<n—1)<n—2)/2~

Hence by (3), we have

2qn )k+

Ep*k(F—l)Qzl—l—(n—l)(l—n_l

n(n —3) (17%)k+(n—1)(n—2)(17 4qp, )k
2 n 2 n—1
The proposition now follows on subtracting

(Ep*k (F — 1))2 = (n— 1)2(1 - fﬁ”l)%

using the value given in Proposition 1. O

The following special case is worth noting.



DIACONIS EXERCISE 13 5

Proposition 4. If p, = 1/n then

Varp..(F) =1+ (n — 1)<1 _ %)k B W(l— %)%
TS A

2 n
Proof. Substituting ¢, = (n — 1)/n in Proposition we see that

n(n—3)(1_4&>k: n(n —3) (1 2>2k

2 n 2 n

and

2qn \ 2k 21 2k
(-1 (1= ) = -2 (1- 2
The difference of these expressions gives the third term above, and the others

come from direct substitution. |

To get the corollary of Proposition 1 and Proposition 4 when k& = & logn—

bn we need the following lemma.

Lemma 5. If f(n) is a polynomial of degree d with leading term an® and
(d—ry)logn — 0 as n — oo then

f(n) (1 - ?)glognbn = aede(l + O(loin)>

as n — oQ.

Proof. 1t is not hard to show that log f(n) = dlogn + loga + O(1/n) and
that

27, \ 5 logn—bn 2,
log(l— L)Q ¢ = (Elogn—bn) log<1—L)
n 2 n

= —(g logn — bn) (2% + 0(1/712))

= —rylogn + 2br, +O(loin).

The lemma now follows from the hypothesis that (d — r,)logn — 0 as
n — oo. (]

Note that the proof of the lemma makes it clear that the implied constant
in the O(1/n) term depends on b.

Corollary 6. Let k = 5 logn —bn. Then
Ep*k(F) —1 + 82b7
VarP*k (F) — 1 + eQb’

provided that p,logn — 0 as n — 00,
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Proof. By Lemma 5 in the case when 7, = ng,/(n —1) and f(n) = (n—1)?

we get

lim (n — 1)2<1 2 )k = e,

n—oo

To apply the lemma we need that

(1— "Vn )logn—>0 as n — oo;
n—1

this holds because

1
_0en < (1—%> logn < p,logn
n n—1

and by assumption p,logn — 0 as n — oco. Hence, by Proposition 1 we

have
lim Ep.(F) =1+ e?.
n—oo

The proof of the limit for Varp.(F) is similar using the lemma and

Proposition 2. O

3. BOouNDs

The following two propositions will be used to turn this corollary into a
bound on ||P** — U]|.

Proposition 7. Suppose that p,logn — 0 as n — oco. Let M € N. If
k= Zlogn — bn where b > 2 and M = |e?*/2] then

for all k sufficiently large.

Proof. Choose k sufficiently large so that Ep.(F) > e?* and Varp. (F) <
24-e?0. Since (1+¢€%)? > 24¢€2?, it follows from Chebychev’s inequality that

Ppix (F < e — t(1+ eb)) <

Putting t = 3(e’ — 1) we get
e 2
N (e P,
PE\T =) = (e —1)2
One can check that
(P —1)2 > e%/2

for all b > 2. Tt follows that if M = |e?*/2] then
e2b

2 2 2
Po(F <M <P*<F<—)< < kS
p(F s M) s Ppa(F s 3 S (b1 T2 M

as required. O

IN
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Proposition 8. Let M € N. Then
1

PU(F>M) < m

Proof. The probability that a particular M +1-subset of {1,2,...,n} is fixed
by a permutation in S, is (n — M — 1)!/n!; now sum over all M + 1-subsets

to get

PU(F>M)§< n >(”—M—1)! 1

pu— . D
M+1 nl (M +1)!

Corollary 9. Suppose that p,logn — 0 as n — oco. If k = Flogn — bn

where b > 2 then 6

k
”P* _U‘|21_e2b—2

provided k s sufficiently large.

Proof. Let M = |e*/2] and consider the event F' < M. We have
||P** —U|| > Py(F < M) — Ppu(F < M).

It follows from the previous two propositions that, provided k is sufficiently
large
1 2 3 6
P*_Ull>1-— - = >1- = >1—
] = (M+1)! M~ M~ e2b — 2

as required. O

This gives a non-trivial bound provided that b > 1.04. Therefore provided
pn = O(1/logn) we have shown that 4 logn — 2n steps do not suffice to get

good mixing.
4. SECOND PART OF EXERCISE 13

The second part of Exercise 13 claims that if p, = 1/(1 + (3)), so the
identity is equally likely to be chosen as any transpositions, then c¢(n)n? are
necessary to get a good shuffle, where ¢(n) — oo as n — oc.

It follows easily from Proposition 1 and the inequality 1 — x < e™* that

0< E (F — 1) < (n — 1)6_25(7’5)”‘1n

Ppre(n)n2
for all n € N. A similar bound will hold for the variance of F. So it
seems that if k = ¢(n)n? then F is not able to detect any significant differ-
ence between P** and U unless p, is at least 1/logn; certainly the smaller
value p, = 1/(1 + (})), as compared to 1/n, will not cause any unexpected
problems.

It is however possible to use similar ideas to get a slightly weaker result.
The key observation is that if we make much fewer than 1/p, steps then

there is a good chance that we have never chosen the identity. In this case,
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the sign of the resulting permutation is given the parity of the number of

steps. So if A,, C S, is the alternating group then
Ppu(An) > (1—po)k >1—kp,

whenever k is even. Since Py(A,) = 1/2 for all n, it follows from the

definition of total variation distance that
1P = Ul > 1/2 — kpn
whenever k is even. So in this particular case we have
|P* Ul >1/2-6
whenever k is even and k < 0n?/2. So n?/4 steps do not suffice.
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