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Abstract. A group K is said to be a B-group if every permutation

group containing K as a regular subgroup is either imprimitive or 2-

transitive. In the second edition of his influential textbook on finite

groups, Burnside published a proof that cyclic groups of composite

prime-power degree are B-groups. Ten years later in 1921 he published

a proof that every abelian group of composite degree is a B-group. Both

proofs are character-theoretic and both have serious flaws. Indeed, the

second result is false. In this note we explain these flaws and prove that

every cyclic group of composite order is a B-group, using only Burnside’s

character-theoretic methods. We also survey the related literature, prove

some new results on B-groups of prime-power order, state two related

open problems and present some new computational data.

1. Introduction

In 1911, writing in §252 of the second edition of his influential textbook [6],

Burnside claimed a proof of the following theorem.

Theorem 1.1. Let G be a transitive permutation group of composite prime-

power degree containing a regular cyclic subgroup. Either G is imprimitive

or G is 2-transitive.

An error in the penultimate sentence of Burnside’s proof was noted in

[7, page 24], where Neumann remarks ‘Nevertheless, the theorem is certainly

true and can be proved by similar character-theoretic methods to those that

Burnside employed’. In §3 we present the correct part of Burnside’s proof

in today’s language. In §4 we prove Theorem 1.1 by the method proposed

by Burnside, using the lemma on cyclotomic integers in §2 below to fix

Burnside’s error. In §5 we build on the correct part of Burnside’s proof in a

different way, obtaining an entirely character-theoretic proof of the following

variation on Theorem 1.1.

Theorem 1.2. Let G be a transitive permutation group of composite non-

prime-power degree containing a regular cyclic subgroup. Either G is im-

primitive or G is 2-transitive.
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In honour of Burnside, Wielandt [38, §25] defined a B-group to be a

group K such that every permutation group containing K as a regular sub-

group is either imprimitive or 2-transitive. Thus Theorems 1.1 and 1.2 imply

that cyclic groups of composite order are B-groups.

The early attempts to prove this result by character-theoretic methods

are rich with interest, but also ripe with errors. Our second aim, which

occupies §6, is to untangle this mess. We end in §7 with some new results on

abelian B-groups which require the Classification Theorem of Finite Simple

Groups. We state an open problem on when Cn2 is a B-group, present a

partial solution, consider B-groups of prime-power order and make some

further (much more minor) corrections to the literature.

At a late stage in this work, the author learned of [25], in which Knapp

gives another way to fix Burnside’s proof of Theorem 1.1, using essentially

the same lemma as in §2. The key step in Knapp’s proof is his Proposi-

tion 3.1. It uses two compatible actions of the Galois group of Q(ζ) : Q,

where ζ is a root of unity of order the degree of G: firstly on the set per-

muted by G, and secondly on the corresponding permutation module. The

proof of Theorem 1.1 given here uses only the second action (in a simple

way that is isolated in the second step), and is more elementary in several

other respects. The inductive approach in our third step is also new. Given

the historical importance of Theorem 1.1, the author believes it is worth

putting this shorter proof on record. Theorem 1.2 is not proved in [25].

2. Lemma on cyclotomic integers

The following lemma is essentially the same as Lemma 4.1 in [25]. A

proof is included for completeness. Recall that the degree of the extension

of Q generated by a primitive d-th root of unity is φ(d), where φ is Euler’s

totient function.

Lemma 2.1. Let p be a prime and let n ∈ N. For each r such that 1 ≤ r <
pn−1, let

R(r) = {r, r + pn−1, . . . , r + (p− 1)pn−1}.

Let ζ be a primitive pn-th root of unity and let ω = ζp
n−1

. If
∑pn−1

i=0 aiζ
i ∈

Q[ω] where ai ∈ Q for each i, then the coefficients ai are constant for i in

each set R(r).

Proof. By the Tower Law [Q(ζ) : Q(ω)] = [Q(ζ) : Q]/[Q(ω) : Q] =

φ(pn)/φ(p) = (p− 1)pn−1/(p− 1) = pn−1. Therefore Ψ(X) = Xpn−1 − ω is

the minimal polynomial of ζ over Q(ω). By hypothesis there exists γ ∈ Q[ω]

such that

f(X) = −γ +
∑

0≤i<pn
aiX

i
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has ζ as a root. Hence f(X) is divisible in Q(ω)[X] by Ψ(X). There is a

unique expression f(X) = f0(X) +
∑

0<r<pn−1 fr(X) where

fr(X) =
∑

0≤i<pn

i≡r mod pn−1

aiX
i

for 0 < r < pn−1. The remainder when Xd is divided by Ψ(X) has non-zero

coefficients only for those Xc such that c is congruent to d modulo pn−1.

Therefore each fr(X) is divisible by Ψ(X) and so fr(ζ) = 0 for each r.

Since the coefficients of fr for 0 < r < pn−1 are rational, it follows that each

such fr is divisible, now in Q[X], by the minimal polynomial of ζ over Q,

namely Φpn(X) = 1 +Xpn−1
+ · · ·+X(p−1)pn−1

. Since fr has degree at most

pn− 1, this implies that fr(X) = brX
rΦpn(X) for some br ∈ Q. The lemma

follows. �

3. Burnside’s method: preliminary results

We may suppose thatG acts on {0, 1, . . . , d−1}, where d ∈ N is composite,

and that g = (0, 1, . . . , d− 1) is a d-cycle in G. Let H be the point stabiliser

of 0. Let M = 〈e0, e1 . . . , ed−1〉C be the natural permutation module for G.

Let ζ be a primitive d-th root of unity and for 0 ≤ j < d let

(1) vj =
∑

0≤i<d
ζ−ijei.

We use this notation throughout §§3–5.

Since eig = ei+1, where subscripts are taken modulo d, we have vjg = ζjvj
for each j. Note that v0 =

∑
0≤i<d ei spans the (unique) trivial CG-module

of M . Let

(2) M = 〈v0〉 ⊕ V1 ⊕ · · · ⊕ Vt

be a direct sum decomposition ofM into irreducible CG-submodules. The vj
are eigenvectors of g with distinct eigenvalues. Therefore they form a basis

of M . Moreover, since the eigenvalues are distinct, each of the summands

V1, . . . , Vt has a basis consisting of some of the vj . Thus the decomposition

in (2) is unique. For each summand Vk, let Bk = {j : 0 < j < pn, vj ∈ Vk}.
Let φk be the character of Vk.

The following two lemmas are the key observations in Burnside’s method.

Lemma 3.1. For each k such that 1 ≤ k ≤ t, the vector
∑

j∈Bk
vj spans

the unique H-invariant submodule of Vk.

Proof. The permutation character π of G is 1G +
∑t

k=1 φk, where the sum-

mands are distinct and irreducible. By Frobenius reciprocity we have

1 = 〈π, φk〉G = 〈1H
xG, φk〉G = 〈1H , φk

y
H
〉H
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for each k. Therefore each Vk has a unique 1-dimensional CH-invariant

submodule. Since e0 = 1
pd

∑
0≤j<d vj is H-invariant, and the projection

of e0 into Vk is 1
pd

∑
j∈Bk

vj , this submodule is spanned by
∑

j∈Bk
vj . �

Lemma 3.2. If O is an orbit of H on {0, 1, . . . , d− 1} and 1 ≤ k ≤ t then

the sum
∑

i∈O ζ
ij is constant for j ∈ Bk.

Proof. Observe that
∑

i∈O ei is H-invariant. An easy calculation (which

may be replaced by the observation that the character table of Cd is an

orthogonal matrix) shows that ei = 1
pd

∑
0≤j<d ζ

ijvj for each i. Therefore∑
i∈O

ei =
∑

0≤j<d

(∑
i∈O

ζij
)
vj .

The projection of the left-hand side into Vk is
∑

j∈Bk

∑
i∈O ζ

ijvj . By Lemma 3.1

the coefficients are constant for j ∈ Bk. �

The following proposition is used in the final step of the proof of both

main theorems.

Proposition 3.3. If there is a prime p dividing d and a summand Vk whose

basis {vj : j ∈ Bk} contains only basis vectors vj with j divisible by p then

there exists a normal subgroup of G containing gd/p whose orbits form a

non-trivial block system.

Proof. Let N be the kernel of G acting on Vk. Since vjg = ζjvj , N con-

tains gd/p. By Lemma 3.1, Vk has 〈
∑

j∈Bk
vj〉 as an HN -invariant subspace.

Since Vk is not the trivial module, we have HN < G. Hence N is non-

trivial but intransitive. The orbits of the normal subgroup N are blocks of

imprimitivity for G. �

4. Proof of Theorem 1.1

We use the notation from §3.

First step. By hypothesis G has degree pn where p is prime and n ≥ 2. The

Galois group Gal(Q(ζ) : Q) of the field extension Q(ζ) : Q permutes the

basis vectors vj while preserving the unique direct sum decomposition (2).

Hence Gal(Q(ζ) : Q) permutes the sets B1, . . . , Bt. By Proposition 3.3, we

may assume that every Bk contains some j not divisible by p. Hence, given

any m such that 0 < m < n, there exists j not divisible by p such that the

set Bk containing pm also contains j. Let B` be the set containing 1. Since

the Galois group is transitive on {ζj : 0 < j < pn, p - j}, by conjugating ζj

to ζ, we see that pmc ∈ B` for some c not divisible by p.

Recall that H is the point stabiliser of 0. Let P be the partition of

{1, . . . , pn−1} into the orbits of H other than {0}. The previous paragraph
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and Lemma 3.2 imply that for all m such that 0 < m < n there exists

cm ∈ N, not divisible by p, such that

(3)
∑
i∈O

ζi =
∑
i∈O

ζp
mcmi

for each O ∈ P.

Second step. We shall show by induction on n that (3) implies that P is

the one-part partition. It then follows that H is transitive on {1, . . . , pn−1}
and so G is 2-transitive, as required.

Fix O ∈ P. Taking m = n − 1 in (3) and applying Lemma 2.1 with

ω = ζp
n−1cn−1 , we find that the coefficients in

∑
i∈O ζ

i are constant on the

sets R(r) = {r, r+pn−1, . . . , r+(p−1)pn−1} for 0 < r < pn−1. Hence O is a

union of some of these sets, together with some of {pn−1}, . . . , {(p−1)pn−1}.
The contributions from R(r) to (3) are∑

i∈R(r)

ζi = 0,(4)

∑
i∈R(r)

ζp
mcmi = pζp

mcmr.(5)

Case n = 2. Let ω = ζpc1 . Taking m = 1 in (3) and substituting the

relations in (4) and (5) we get∑
r∈O

0<r<p

0 +
∑
pi∈O

ωi =
∑
r∈O

0<r<p

pωr +
∑
pi∈O
0<i<p

1.

This rearranges to∣∣{O ∩ {p, 2p, . . . , (p− 1)p}
∣∣+

∑
0<i<p

(p[i ∈ O]− [pi ∈ O])ωi = 0,

where the Iverson bracket [P ] is 1 if the statement P is true, and 0 if false.

Since the minimal polynomial of ω, namely 1+X+· · ·+Xp−1, has degree p−1

and constant coefficients, it follows that
∣∣{O∩{p, . . . , (p−1)p}

∣∣ = p−1 and

i ∈ O for each i such that 0 < i < p. Thus O = {1, . . . , p2 − 1} as required.

Inductive step. Let n ≥ 3. Let T = {pn−1, . . . , (p−1)pn−1}. Substituting (5)

in the right-hand-side of (3) for first m = 1 and then a general m such that

0 < m < n, we have∑
r∈O

0<r<pn−1

pζpc1r + |O ∩ T | =
∑
r∈O

0<r<pn−1

pζp
mcmr + |O ∩ T |.

For each O ∈ P, define O? = O∩{1, . . . , pn−1−1}. Clearly {O? : O ∈ P} is

a set partition of {1, . . . , pn−1− 1}. Let ζ? = ζpc1 and, for each m such that
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0 < m < n, choose dm ∈ N such that c1dm ≡ cm mod p. We may suppose

that d1 = 1. Replacing r with i?, the previous displayed equation implies∑
i?∈O?

ζi? =
∑
i?∈O?

ζp
m−1dmi?
? .

Comparing with (3), we see that all the conditions are met to apply the

inductive hypothesis. Hence O? = {1, . . . , pn−1 − 1} and so O contains

{1, . . . , pn − 1}\T . By (4) and (5) we have
∑

i∈{1,...,pn−1}\T ζ
i = 0 and∑

0<i<pn−1

i6∈T

ζpc1i = p
∑

0<i<pn−1

ζi? = −p.

Substituting these two results in the case m = 1 of (3) we get∑
pn−1i∈O∩T

ζp
n−1i = −p+ |O ∩ T |.

It follows, as in the final step of the case n = 2, that |O ∩ T | = p− 1 and so

O ⊇ T and O = {1, . . . , pn − 1}, as required.

5. Proof of Theorem 1.2

We continue from the end of §3. Thus G acts on {0, 1, . . . , d − 1} and

has 〈g〉 ∼= Cd as a regular cyclic subgroup. Let ϑ : 〈g〉 → C be the faithful

linear character of 〈g〉 defined by ϑ(g) = ζ, where as before ζ is a primitive

d-th root of unity. For 1 ≤ k ≤ t, let πk be the character of Vk restricted to

〈g〉. Since 〈vj〉 affords ϑj , we have πk =
∑

j∈Bk
ϑj . Since the sets B1, . . . , Bt

are disjoint, the characters πk are linearly independent. Moreover, by the

remark at the top of page 648 of [25], the πk span a subalgebra of 〈ϑj : 0 ≤
j < d〉. (This subalgebra is the dual Schur ring of G in the sense of [35,

Theorem 1.9(d)].)

Let p be a prime dividing d. The character of V ⊗pk is πpk. Since (a+ b)p ≡
ap + bp mod p for all a, b ∈ Z, we have

(6) πpk =
∑

0≤r<d/p

∣∣{j ∈ Bk : jp ≡ rp mod d}
∣∣ϑrp + pπ

for some character π of 〈g〉. By the end of the previous paragraph, we may

write πpk − pπ = a1H +
∑t

`=1 a`π` where a, a1, . . . , at ∈ Z. By the linear

independence of the π`, it follows from (6) that if a` 6= 0 then π` contains

only characters of the form ϑrp with 1 ≤ r < d/p. Thus for any such `, B`
contains only basis vectors vj with j divisible by p and, by Proposition 3.3, G

is imprimitive. We may therefore assume that
∣∣{j ∈ Bk : jp ≡ rp mod d}

∣∣ is

a multiple of p for each r such that 1 ≤ r < d/p. Identifying {0, 1, . . . , d−1}
with Z/dZ, note that jp ≡ rp mod d if and only if j ∈ r+ 〈d/p〉. Therefore

for each prime p dividing d, each Bk is the union of a subset of 〈d/p〉 and

some proper cosets r + 〈d/p〉.
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Let q be a prime dividing d other than p. Since the subgroups 〈d/p〉 and

〈d/q〉 of Z/dZ meet in 0, each member of 〈d/p〉\{0} is in a proper coset

of 〈d/q〉, and similarly with p and q swapped. By the conclusion of the

previous paragraph, if Bk meets 〈d/pq〉 then Bk contains 〈d/pq〉\{0}. At

most one Bk has this property. If t = 1 then G is 2-transitive, so we may

assume that d > pq and there exists Bk not meeting 〈d/pq〉. For this Bk
there exist r1, . . . , rs such that 0 < r1 < . . . < rs < d/pq and

Bk =
s⋃
e=1

(re + 〈d/pq〉).

Thus |Bk| = spq and

(7) πkπk = s(ϑ0 + ϑd/pq + · · ·+ ϑ(pq−1)d/pq) + ψ

where the coefficient of ϑj in ψ is equal to the number of pairs (e, e′) such

that j ∈ −re + re′ + 〈d/pq〉. There are exactly s such pairs if and only if for

all e there exists a unique e′ such that re + j + 〈d/pq〉 = re′ + 〈d/pq〉, or,

equivalently, if and only if Bk + j = Bk, where the addition is performed in

Z/dZ. Let

J = {j ∈ Z/dZ : Bk + j = Bk}.

Since J is a subgroup of Z/dZ containing d/pq we have J = 〈m〉 for some m

dividing d/pq. Since 0 6∈ Bk, and so −r1, . . . ,−rs 6∈ J , we have m > 1.

Thus (7) may be rewritten as

πkπk = s
(
ϑ0 + ϑm + · · ·+ ϑn−m

)
+ φ

where 〈φ, ϑj〉 < s for all j not divisible by m. By the linear independence of

π1, . . . , πt, there exists πk such that if 〈πk, ϑj〉 > 0 then j is a multiple of m.

The result now follows from Proposition 3.3.

6. A historical survey of Burnside’s method and B-groups

6.1. Burnside’s work for prime-power degree. We begin in 1901 with

[3, §7], in which Burnside used character-theoretic arguments to prove the

following important dichotomy. (All of the papers of Burnside discussed

below appear in Volume II of his collected works [8].)

Theorem 6.1 (Burnside 1901 [3, §7]). A permutation group of prime de-

gree p is either 2-transitive or contains a normal subgroup of order p.

In the following §8 Burnside proves Theorem 1.1 for permutation groups

of odd degree p2 using character theory. He comments ‘It appears highly

probable that this result may be extended to any group of odd order which

contains a regular substitution of order equal to the degree of the group;

but I have not yet succeeded in proving this.’
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In the revised second edition of his textbook [6], Burnside added five en-

tirely new chapters on linear groups and characters. Most notably these in-

clude the well-known character-theoretic proof of the paqb-Theorem. In §251

he used the method of cyclotomic sums and basis sets, introduced in his

1906 paper [4, §7] but presented in his textbook with some simplifications,

to prove Theorem 6.1. The following §252, whose correct part was presented

in §3, attempts to prove Theorem 1.1. Burnside’s argument appears to have

been generally accepted, both at the time and later, until Neumann pointed

out the error in his essay in [39]. For example, it is cited without critical

comment by Wielandt in [38]. Its mistake is to assert that the only solutions

to (3) when m = n− 1 have |O| = pn− 1. This gives one solution, but there

are others.

Recall that if 1 ≤ r < pn−1 then R(r) = {r, r+pn−1, . . . , r+(p−1)pn−1}.
Define Z ⊆ {1, . . . , pn − 1} to be null if there exists s ∈ N0 and distinct

rij ∈ {1, . . . , pn−1 − 1} for 0 ≤ i ≤ p − 1 and 1 ≤ j ≤ s such that rij ≡ i

mod p for each i and j and Z =
⋃p−1
i=0

⋃s
j=1R(rij).

Proposition 6.2. Let n ≥ 2 and let ω be a primitive p-th root of unity. Let

O ⊆ {1, . . . , pn − 1}. Then ∑
i∈O

ζi =
∑
i∈O

ωi

if and only if either

(i) O is null; or

(ii) O = {pn−1, . . . , (p− 1)pn−1} ∪
⋃p−1
i=1 R(ri) ∪ Z where Z is null, the

ri are distinct elements of {1, . . . , pn−1 − 1}\Z and ri ≡ i mod p for each i.

The proof is similar to the inductive step in §4; we use (4) and (5) to

show that if Z is null then
∑

i∈Z ξ
i =

∑
i∈Z ω

i = 0, and Lemma 2.1 to

show that O\{pn−1, . . . , (p− 1)pn−1} is a union of the sets R(r). Note that

since r01 ≡ 0 mod p, and 1 ≤ r01 < pn−1, Case (i) is relevant only when

n ≥ 3. The smallest possible O has size p2 − 1, coming from Case (ii); this

shows Burnside’s claim is false whenever n ≥ 3. The lack of structure in the

solutions, beyond that captured by the sets R(r), suggests that any fix to

Burnside’s proof must involve significant further ideas.

6.2. Burnside’s 1921 paper. In [5], Burnside claimed a ‘remarkably sim-

ple’ proof that every abelian group that is not elementary abelian is a B-

group, as conjectured at the end of §252 of [6]. (Of course Burnside did not

use the term ‘B-group’.) The groups Sd o S2 in their primitive action for d

composite, seen in Example 6.3 below, show that this result is false. In [31,

§15], D. Manning raised this family of counterexamples and observed ‘the

first and most important part of the proof must contain a serious mistake’.

In today’s language, Burnside considers a permutation group G of degree

dd′ acting on {0, . . . , d− 1} × {0, . . . , d′ − 1}, containing a regular subgroup
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K = 〈gd〉 × 〈g′d′〉 where gd = (0, 1, . . . , d − 1) and g′d′ = (0, 1, . . . , d′ − 1).

The natural CG-permutation module M factorizes on restriction to K as

〈e0, . . . , ed−1〉⊗ 〈e′0, . . . , e′d′−1〉. Let ζd, ζd′ ∈ C be primitive roots of unity of

orders d and d′, respectively. The analogue of the vj basis element defined

earlier in (1) is

v(j,j′) =
∑

0≤i<d
ζ−ijd ei ⊗

∑
0≤i′<d′

ζ−i
′j′

d′ e′i′

where 0 ≤ j < d and 0 ≤ j′ < d′. As before, M has a unique decomposition

〈v(0,0)〉⊕V1⊕· · ·⊕Vt where each irreducible summand Vk has a basis {v(j,j′) :

(j, j′) ∈ Bk} for some subset Bk of {0, . . . , d − 1} × {0, . . . , d′ − 1}. Let φk
be the character of Vk. The analogue of Lemma 3.2 is that if O is an orbit

of the point stabiliser H of (0, 0), and 1 ≤ k ≤ t then

(8)
∑

(i,i′)∈O

ζijd ζ
i′j′

d′

is constant for (j, j′) ∈ Bk. Burnside proves this, and also proves (in a similar

way) the dual relation that the character value φk(g
i
dg
′i′
d′ ) =

∑
(j,j′)∈Bk

ζijd ζ
i′j′

d′

is constant for (i, i′) ∈ O. Hence∑
(i,i′)∈O

∑
(j,j′)∈Bk

ζijd ζ
i′j′

d′ = |Bk|
∑

(i,i′)∈O

ζijd ζ
i′j′

d′(9)

= |O|
∑

(j,j′)∈Bk

ζijd ζ
i′j′

d′(10)

provided (j, j′) ∈ Bk in the right-hand side of (9) and (i, i′) ∈ O in the

right-hand side of (10). Burnside chooses Bk to contain (d/q, 0) where q is a

prime factor of d and O to contain (1, 0). By taking (j, j′) = (d/q, 0) in (9)

and (i, i′) = (1, 0) in (10) he obtains |Bk|
∑

(i,i′)∈O ζ
id/q
d = |O|

∑
(j,j′)∈Bk

ζjd =

|O|φk(gd), and so

(11) φk(gd) =
|Bk|
|O|

∑
(i,i′)∈O

ωi

where ω = ζ
d/q
d is a primitive root of unity of order q.

The fourth displayed equation on page 484 of [5] claims that φk(g
q
d) = |Bk|,

and so gqd is in the kernel of φk. It appears that Burnside substitutes gqd
for gd in (11), and replaces ω with ωq. If (11) expressed φk(gd) as a sum

of eigenvalues, as in (10), this would be legitimate. However this is not the

case, and the following example shows that Burnside’s claim is in general

false.

Example 6.3. Let d ∈ N. Let S be the symmetric group on the set

{0, 1, . . . , d− 1}. Let N = S × S and let G ∼= S o C2 be the wreath product

No〈τ〉 where τ has order 2 and acts on N by (g, g′)τ = (g′, g). In the action

of G on {0, 1, . . . , d−1}2, the point stabiliser H of (0, 0), namely (T ×T )oτ
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where T is the symmetric group on {1, . . . , d − 1}, has two non-singleton

orbits:
{

(j, 0), (0, j) : 1 ≤ j < d
}

and
{

(j, j′) : 1 ≤ j, j′ < d
}

. Therefore G

is not 2-transitive. Provided d ≥ 3, H is a maximal subgroup of G, so G

is primitive. Let gd = g′d = (0, 1, . . . , d − 1). Since 〈gd〉 × 〈g′d〉 ≤ N acts

regularly, Cd × Cd is not a B-group whenever d ≥ 3.

Let d ≥ 3. The natural permutation character of S is 1S + χ where χ is

irreducible. By the branching rule (see [21, Ch. 9] or [20, Lemma 2.3.10]),

χ is the unique non-trivial character of S whose restriction to T contains

the trivial character. By the classification of irreducible characters of wreath

products [20, Theorem 4.3.34], it follows that the irreducible characters of G

that contain the trivial character on restriction to H are 1G, φ and χ×̃2,

where φ = (χ×1S)↑GN and χ×̃2 is the unique character of G whose restriction

to N is χ × χ. By Frobenius reciprocity, the permutation character of

M is 1G + φ + χ×̃2. Considering restrictions to 〈gd〉 × 〈g′d〉, we get M =

〈v(0,0)〉 ⊕ 〈v(j,0), v(0,j′) : 1 ≤ j < d, 1 ≤ j′ < d〉 ⊕ 〈v(j,j′) : 1 ≤ j, j′ < d〉.
The second summand has character φ and contains v(1,0) and v(0,1), so is

a faithful CG-module. Thus, contrary to Burnside’s claim, no non-identity

power of gd is in the kernel of φ. Burnside’s conclusion, that G has a proper

normal subgroup containing gqd holds, since we may take the base group N ,

but clearly Burnside intends the normal subgroup to be the kernel of φ, so

that Proposition 3.3 can be applied, and the kernel of φ is trivial.

The penultimate paragraph of Burnside’s paper considers the case where d

and d′ are distinct primes. This is the hardest part of the paper to interpret:

the claims are correct, but the argument has a significant gap. Burnside has

already assumed that G is not 2-transitive. If a basis set Bk is contained in

{(1, 0), . . . , (d− 1, 0)} then, identifying (j, j′) with d′j + dj′ mod dd′, Propo-

sition 3.3 implies that G has a normal intransitive subgroup N containing

〈gd〉. This gives the first of Burnside’s claims. While not stated explicitly,

it seems that Burnside then assumes, as he may, that no Bk is contained

in {(1, 0), . . . , (d − 1, 0)}. He makes two further claims, equivalent to the

following:

(i) If Bk meets {(1, 0), . . . , (d− 1, 0)} then Bk is a union of sets each of

the form
{

(j, 0), (j, 1), . . . , (j, d′ − 1)
}

where 1 ≤ j < d.

(ii) there is a set B` contained in {(0, 1), . . . , (0, d′ − 1)}.
Clearly (i) implies (ii), and by Proposition 3.3, (ii) implies that G has

a normal intransitive subgroup N containing 〈g′d′〉. To prove (i), we use

the italicised conclusion of the second paragraph in the proof of Theo-

rem 1.2 in §5: taking p = d′, this implies that Bk is the union of a sub-

set of {(0, 1), . . . , (0, d′ − 1)} and some sets of the required form. Since

[Q(ζdd′) : Q(ζd)] = φ(dd′)/φ(d) = φ(d′) = [Q(ζd′) : Q], the stabiliser

of ζd in the Galois group Gal(Q(ζdd′) : Q) acts transitively on the roots

ζd′ , . . . , ζ
d′−1
d′ . By the hypothesis in (i) there exists (j, 0) ∈ Bk. For each r′
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such that 1 ≤ r′ < d′ there exists σ′ ∈ Gal(Q(ζdd′) : Q) such that ζσ
′

d = ζd
and ζσ

′
d′ = ζr

′
d′ . Since vσ

′

(j,0) = v(j,0) and vσ
′

(0,1) = v(0,r′), we see that if Bk
meets {(0, 1), . . . , (0, d′ − 1)} then it contains this set; a similar argument,

taking σ ∈ Gal(Q(ζdd′) : Q) such that ζσd = ζrd and ζσd′ = ζd′ now shows

that Bk = {0, . . . , d− 1} × {0, . . . , d′ − 1}\{(0, 0)}, and so G is 2-transitive,

contrary to assumption. Therefore (i) holds.

Having proved (i), we instead follow Burnside’s argument for (i) and (ii).

Burnside chooses O to contain (1, 1) and takes (m, 0) ∈ Bk. By (9) and (10),

|O|
∑d′−1

j′=0 cj′ζ
j′

d′ = |Bk|
∑

(i,i′)∈O ζ
im
d , where cj′ =

∑
j:(j,j′)∈Bk

ζjd for j′ ∈
{0, 1, . . . , d′−1}. According to Burnside, this implies that the coefficients cj′

are constant for all j′. It appears that Burnside assumes that every rational

relation between the powers of ζd′ is a multiple of 1+ ζd′+ · · ·+ ζd
′−1
d′ . But a

more general relation is a+ζd′+ · · ·+ζd
′−1
d′ = a−1, so we can only conclude

that the cj′ are constant for j′ ∈ {1, . . . , d′ − 1}. However, it is true that if∑
j∈J ζ

j
d =

∑
j∈K ζ

j
d for non-empty sets J , K ⊆ {0, 1, . . . , d−1} then J = K,

so this weaker conclusion implies that, for each j′ ∈ {1, . . . , d′ − 1}, either

{j : (j, j′) ∈ Bk} ⊇ {1, . . . , d− 1} or {j : (j, j′) ∈ Bk} ⊆ {0}. Hence

(i)′ If Bk meets {(1, 0), . . . , (d − 1, 0)} then Bk is a union of sets of the

form {(j, 0)} and {(j, 1), . . . , (j, d′ − 1)} where 1 ≤ j < d.

The Galois action of the automorphisms σ in our proof of (i) shows that (i)′

implies (ii). Therefore Burnside’s argument can be corrected.

The final sentence of the paragraph we have been reading is ‘It is clear that

the same method of proof will apply, when the transitive Abelian subgroup

has three or more independent generators’. Taking d = 4 in Example 6.3,

we see that the subgroup 〈(0, 1, 2, 3)〉 × 〈(0, 1)(2, 3), (0, 2)(1, 3)〉 ≤ G acts

regularly in the primitive action of G on {0, 1, 2, 3}2. Therefore C4×C2×C2

is not a B-group and Burnside’s claim is false. The use of the Galois action

in the previous paragraph required that both d and d′ are prime.

In §6.5 below we extend the correct part of Burnside’s proof to show that

if p is an odd prime and n ∈ N then C2n , C2np and C2pn are B-groups. A

proof of Conjecture 6.5 will rehabilitate Burnside’s method for cyclic groups.

6.3. Manning’s 1936 paper. In [31], D. Manning claimed a proof, using

Burnside’s method, that if p is prime and a > b then Cpa×Cpb is a B-group.

It is reported in [38, page 67] that she later acknowledged that the critical

Lemma II in [31] is false. We extend Example 6.3 to show this.

Example 6.4. Recall from Example 6.3 that S is the symmetric group on

{0, 1, . . . , d − 1} and G ∼= S o C2 acting primitively on {0, 1, . . . , d − 1}2.
We took gd = g′d = (0, 1, . . . , d − 1). By Example 6.3, the natural CG-

permutation module has a summand with basis set B = {(j, 0), (0, j′) : 1 ≤
j < d, 1 ≤ j′ < d}, with respect to the chosen generators (gd, 1) and (1, g′d)

of the regular subgroup K = 〈gd〉 × 〈g′d〉.
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We have

v(j,0)(gd, 1) = ζjv(j,0), v(0,j′)(gd, 1) = v(0,j′),

v(j,0)(gd, g
′
d) = ζjv(j,0), v(0,j′)(gd, g

′
d) = ζj

′
v(0,j′).

Therefore, with respect to the alternative generators (gd, 1) and (gd, g
′
d)

of K, the basis set becomes C = {(j, j) : 1 ≤ j < d} ∪ {(0, j′) : 1 ≤ j′ < d}.
Observe that, as it must be, C is invariant under the action induced by

Gal(Q(ζd) : Q). Manning’s Lemma II asserts the stronger property that,

given any (i, i′) ∈ {0, 1, . . . , d − 1}2 with i and i′ coprime to d, C is invari-

ant under the permutation (j, j′) 7→ (ij, i′j′), where the entries are taken

modulo d. Taking i = 1 and i′ = −1 we see that this is false whenever

d > 2.

6.4. Later proofs of Burnside’s and Manning’s claims. In 1908, Schur

introduced his method of S-rings and gave the first correct proof of Theo-

rem 1 [34]. In 1933 Schur extended his method to prove, more generally,

that any cyclic group of composite order is a B-group. As remarked in

[31], it appears that Schur was unaware of Burnside’s 1921 paper. In 1935,

Wielandt wrote ‘Der von Herrn Schur angegebene Beweis ist recht schw-

erig’, and gave a short proof of the still more general result that any abelian

group of composite order having a cyclic Sylow p-subgroup for some prime p

is a B-group [37]. Wielandt’s proof depends on several results on S-rings, in

particular property (6) in [37], that the stabiliser of an element of an S-ring

is itself in the ring. Wielandt’s result and proof appear, in translation but

essentially unchanged, in his 1964 textbook [38, Theorem 25.4]. The use of

complex conjugation at the end of the proof of Theorem 1.2 in §5 involves

some similar ideas to the proof of property (6) in Theorem 23.5 of [38], but

the proof here is substantially shorter and more elementary.

The first essentially correct proof of the result claimed by D. Manning

was given by Kochendörffer in 1937 using S-rings [26]; Wielandt comments

in [38] that it is ‘very complicated’ (Bercov’s translation). In his essay in [39],

Neumann reports that in an unpublished note D. Manning found some slips

in [26], but was able to correct them. Neumann’s essay includes a proof

of Theorem 1.1 that a reader, familiar with the prerequisites from modular

representation theory and permutation groups, will find spectacularly short

and beautiful.

Apart from [25], outlined in the introduction, the three papers [3, 5, 31]

surveyed in this section appear to exhaust the research literature on Burn-

side’s method. It is intriguing that all err in ultimately the same way, by

overlooking algebraic relations satisfied by roots of unity.

6.5. Burnside’s method in even degree. Again we continue from the

end of §3. There is an action of the Galois group Gal(Q(ζd) : Q) on the
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set {1, . . . , d − 1} under which σ ∈ Gal(Q(ζd) : Q) sends i to i′ if and only

if σ sends ζi to ζi
′
. In [25, Theorem 2.3(2)], Knapp extends Burnside’s

arguments to show that this action induces an action of the Galois group on

the orbits of the point stabiliser H. (This result may also be proved using

S-rings: see [38, Theorem 23.9].) Let D be the set of divisors of d. Set

O(1) = {0} and for r ∈ D with r > 1, set

O(r) = {md/r : 0 < m < r, hcf(m, r) = 1}.

Thus for each r ∈ D the set {ζid : i ∈ O(r)}, consisting of all primitive

r-th roots of unity, is an orbit of the Galois group on the powers of ζd.

If d is even then, since O(2) = {d/2} corresponds to ζ
d/2
d = −1 ∈ Q,

the H-orbit O containing d/2 is invariant under the Galois action. Hence

O =
⋃
r∈E O(r) for some subset E of D. Observe that G is 2-transitive if

and only if E = D\{1}.
For r ∈ D and j ∈ N we have

∑
i∈O(r) ζ

ij
d =

∑
α α

j where α ranges over

all primitive r-th roots of unity. If hcf(r, j) = j? then the map α 7→ αj is j?

to 1, and each αj is a primitive r/j?-th root of unity. It is well known that

the sum of the φ(s) roots of unity of order s is µ(s), where µ is the Möbius

function (see for instance [36, Exercise 2.8]). Therefore, if R is the matrix

with rows and columns indexed by D, defined by

(12) Rrc = µ
( r

hcf(r, c)

) φ(r)

φ( r
hcf(r,c))

then, for any r ∈ D and j ∈ N,

(13)
∑
i∈O(r)

ζijd = Rrc where c = hcf(d, j).

(HereR stands for Ramanujan, who considered these cyclotomic sums in [33];

this was published in the interval between Burnside’s 1901 and 1921 papers,

but there is no evidence that Burnside was aware of its relevance.) As an

aide-memoire, we note that Rrc is defined by taking c-th powers of r-th

roots of unity. An example of these matrices is given after Lemma 6.6.

Let ∼E be the relation on D\{d} defined by

(14) b ∼E c ⇐⇒
∑
r∈E

Rrb =
∑
r∈E

Rrc.

Let PE be the set of equivalence classes of ∼E . Given B ⊆ {0, 1, . . . , d− 1},
let Y (B) = {c ∈ D\{d} : B ∩ O(d/c) 6= ∅}. For example, 1 ∈ Y (B) if and

only if B contains a number coprime to d, and Y ({0}) = ∅. If Bk and B`
are distinct basis sets then necessarily Bk ∩B` = ∅, but if neither Bk nor B`
is invariant under the Galois action, we may still have Y (Bk) ∩ Y (B`) 6= ∅.

However the asymmetry between orbits and basis sets in the conclusion

of Lemma 3.2 works in our favour, to show that
∑

r∈E Rrc is constant for

c ∈ Y (Bk). It follows that Y (Bk) is contained in a single part of the partition
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PE of D\{d}. Hence, by Proposition 3.3, we may assume that the highest

common factor of the entries in each part of the partition PE of D\{d} is 1.

We say that such partitions are coprime.

For c ∈ D, an easy calculation from (13) shows that∑
r∈D

Rrc =

d−1∑
i=0

ζicd = c

d/c−1∑
i=0

ζid/c =

{
0 if c < d,

d if c = d.

Since R1c = 1 for all c ∈ D, it follows that if E = D\{1} then PE ={
D\{d}

}
. This proves the ‘if’ direction of the following conjecture.

Conjecture 6.5. Let E ⊆ D contain 2. The partition PE of D\{d} defined

by the relation ∼E in (14) is coprime if and only if E = D\{1} or E = D.

We have shown that if d is even then, defining E as above by the orbit O
containing d/2, the ‘only if’ direction of Conjecture 6.5 implies that E =

D\{1} and O = {1, . . . , d− 1}, and so Cd is a B-group.

The following lemma can be used to prove Conjecture 6.5 in several cases

of interest. Let R(d) denote the Ramanujan matrix defined for degree d.

Lemma 6.6.

(i) Let p be prime and let n ∈ N. We have

R(pn)pepf =


0 if f < e− 1,

−pe−1 if f = e− 1,

(p− 1)pe−1 if f ≥ e.

(ii) Let p1, . . . , ps be distinct primes and let n1, . . . , ns ∈ N. We have

R(d) = R(pn1
1 )⊗ · · · ⊗R(pns

s ).

Proof. Part (i) is immediate from (12). For (ii), it suffices to show that if d

and d′ are coprime and r | d, r′ | d′ and c | d, c′ | d′ then the entry in row

rr′ and column cc′ of R(dd′) is Rrc(d)Rr′c′(d
′). This follows from (12) using

the multiplicativity of µ and φ, noting that hcf(r, r′) = hcf(c, c′) = 1. �

For example, if p is an odd prime then R(2p3) is as shown below, with D

ordered 1, 3, 9, 27, 2, 6, 18, 54 and row 2 ∈ E highlighted. The division indi-

cates the tensor factorization R(p3)⊗R(2).

1 1 1 1 1 1 1 1

−1 p− 1 p− 1 p− 1 −1 p− 1 p− 1 p− 1

0 −p p(p− 1) p(p− 1) 0 −p p(p− 1) p(p− 1)

0 0 −p2 p2(p− 1) 0 0 −p2 p2(p− 1)

−1 −1 −1 −1 1 1 1 1

1 −(p− 1) −(p− 1) −(p− 1) −1 p− 1 p− 1 p− 1

0 p −p(p− 1) −p(p− 1) 0 −p p(p− 1) p(p− 1)

0 0 p2 −p2(p− 1) 0 0 −p2 p2(p− 1)


In particular R(p3) appears as the top-left block.
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Proposition 6.7. Let n ∈ N and let p be an odd prime. Conjecture 6.5

holds when (i) d = 2n, (ii) d = 2np and (iii) d = 2pn.

Proof. The ‘only if’ direction remains to be proved. Recall that the rows

and columns of R are labelled by the divisors of d. Since row 1 of R(d) is

constant, we may assume that 1 ∈ E.

Suppose, as in (i), that d = 2n. If n = 1 then E = {1, 2} and the con-

clusion is immediate. Suppose that n ≥ 2. Let R? be the matrix obtained

from R(2n) by deleting row 1 and replacing row 2 with the sum of rows 1

and 2. Observe that column 1 of R? has all zero entries, and the subma-

trix of R? formed by columns 2f for 1 ≤ f ≤ n is 2R(2n−1). Therefore∑
r∈E R(2n)rc = 1

2

∑
r∈E? R(2n−1)rc where E? = {1}∪{r/2 : r ∈ E\{1, 2}

}
.

By induction E? = {1, 2, . . . , 2n−1}, and so E = D.

Part (ii) follows by a small extension of this argument. Let R? be as

defined in (i). By Lemma 6.6, the entry of R? in row r and column c is

odd if and only if r ∈ {p, 2p} and c = 2m where 0 ≤ m ≤ n. Any coprime

partition has a part containing both 2m and p for some such m. Therefore,

by parity, either both p and 2p are contained in E, or neither are. Deleting

row p and replacing row 2p with the sum of rows p and 2p of R?, we obtain

2R(2n−1p), augmented by two zero columns. The inductive argument for (i)

now shows that E = D.

Finally suppose that d = 2pn. Let R(2pn) denote R(2pn) with entries

regarded as elements of Z/pnZ. Let

'

be the relation on D\{2pn} defined

as in (14), but working modulo pn. Let PE denote the set of equivalence

classes for

'

. We need this preliminary result: if PE is coprime then 2, 2p,

. . . , 2pn ∈ E and PE has a single part. Again the proof is inductive. If

n = 1 then, by Lemma 6.6,

R(2p) =


1 1 1 1

−1 −1 −1 −1

−1 −1 1 1

1 1 −1 −1


where the entries are in Z/pZ and D is ordered 1, p, 2, 2p. If 2p 6∈ E then,

since 1, 2 ∈ E, we have PE =
{
{1, p}, {2, 2p}

}
, which is not coprime.

Therefore 2p ∈ E and PE =
{
{1, p, 2, 2p}

}
, as required. Suppose that

n ≥ 2. Let R
?

denote R(2pn) with the entries taken in Z/pn−1Z. Observe

that columns pn−1 and pn of R
?

are equal, as are columns 2pn−1 and 2pn.

Moreover, rows pn and 2pn have all zero entries. By a very similar inductive

argument to (i), it follows that E contains 2, 2p,. . . , 2pn−1. Let R? be the

matrix obtained from R(pn) by removing these rows, replacing row 2 with

their sum, and adding pe−1 to each entry in row pe, for 1 ≤ e ≤ n. For
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example, if n = 3 then

R? =



1 1 1 1 1 1 1 1

0 p p p 0 p p p

p 0 p2 p2 p 0 p2 p2

p2 p2 0 p3 p2 p2 0 p3

0 0 −p2 −p2 0 0 p2 p2

0 0 p2 −p2(p− 1) 0 0 −p2 p2(p− 1)


where the row obtained by summation is highlighted. Since columns 1 and 2

of R? are equal, and any part of a coprime partition of D\{2pn} contains

either 1 or 2, we see that PE has a single part. The column of R? labelled

2pn−1 is greater, entry-by-entry, than every other column, except in rows pn

and 2pn. Since columns pn−1 and 2pn−1 of R? are congruent except in the

summed row and row 2pn, and the sum of entries in these columns is less

than pn, we have 2pn ∈ E. This proves the preliminary result.

We now prove (ii). Each part of PE is a union of parts of PE , so PE
is coprime only if PE is coprime. By the preliminary result, 2, 2p, . . . ,

2pn ∈ E. Let R?? be the matrix defined as R?, but now adding all the rows

2, 2p, . . . , 2pn−1, 2pn. The non-zero entries in the summed row for R?? are

−pn in column pn and pn in column 2pn. Since pn is in a non-singleton part

of PE , we see from column pn that E contains 1, p, . . . , pn, as required. �

Despite its elementary statement, the author has been unable to prove

Conjecture 6.5 in any significantly greater generality. We offer this as an

open problem.

The Haskell [32] program RamanujanMatrix on the author’s website1

has been used to verify Conjecture 6.5 for all degrees d ≤ 600. We mention

that

R(pn) =


1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1



−1
1 1 1 . . . 1

0 p p . . . p

0 0 p2 . . . p2

...
...

...
. . .

...

0 0 0 . . . pn

.

It follows that each R(d) is invertible; the determinant of R(pn) is pn(n+1)/2

and its inverse is R(pn)◦/pn where R(pn)◦ is obtained from R(pn) by rotation

by a half-turn. This leads to an alternative proof of Proposition 6.7(i) and

may be useful more widely.

7. Abelian B-groups

7.1. After CFSG. We now skip over many later developments, referring

the reader to Neumann’s essays in the collected works [7, 39] for some of the

missing history, and consider the situation after the Classification Theorem

of Finite Simple Groups. In an early application, it was used in [12] to deter-

mine all 2-transitive permutation groups. The resulting classification of all

1See www.ma.rhul.ac.uk/~uvah099/
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primitive permutation groups containing a regular cyclic subgroup is given

in [14, Theorem 4.1] and [24, page 164], and independently refined in [23]

and [28]. We state the version of this result relevant to Theorem 1.1 below.

(Here Sd and Ad denote the symmetric and alternating groups of degree d,

respectively; the other notation is also standard.)

Theorem 7.1. Let G be a permutation group containing a regular cyclic

subgroup 〈g〉 of composite prime-power order pn. Then either G is imprim-

itive, or G is 2-transitive and one of the following holds:

(i) G = Apn or G = Spn and g is a pn-cycle;

(ii) PGLd(Fq) ≤ G ≤ PΓLd(Fq) where pn = (qd − 1)/(q − 1);

(iii) p = 3, n = 2, G = PΓL2(F8) and g = sσ where s ∈ PGL2(F8)

is semisimple of order 3 and σ is the automorphism of PGL2(F8)

induced by the Frobenius twist.

Corollary 3 of [29] gives a rough classification of primitive permutation

groups containing a regular subgroup. This was sharpened by Li in [27,

Theorem 1.1] for regular abelian subgroups. Note that Case (2)(iv) of this

theorem, on groups with socle Sm × · · · × Sm or Am × · · · × Am, is missing

the assumption m ≥ 5. It is clear from Remark (b) following the theorem

and the structure of the proof in §5 that this assumption was intended; it

is required to exclude groups such as S2 o Sr and A3 o Sr with regular socle

whose product action is imprimitive. (Primitive groups such as S4 in its

natural action or S3 o S2 in its product action are of affine type, and so

already considered in Case (1) of the theorem.)

It will be useful to say that a group K is m-factorizable if there exists

r ≥ 2 and groups K1, . . . ,Kr such that |K1| = . . . = |Kr| = m and K ∼=
K1 × · · · ×Kr, and factorizable if it is m-factorizable for some m ≥ 3.

Proposition 7.2. If K is a regular abelian subgroup of a primitive but not

2-transitive permutation group G then either

(i) G = V oH where V ∼= Fnp is elementary abelian, the point stabiliser

H ≤ GL(V ) acts irreducibly on V but intransitively on V \{0} and

|K| = pn; or

(ii) K is m-factorizable for some m ≥ 5.

Proof. If Case (1) of Li’s theorem applies then G ≤ AGLd(Fp) where p is

prime and G acts on its socle V ∼= Fdp. It is easy to show (see for example [13,

Theorem 4.8]) that G = V oH where H ≤ GL(V ) is irreducible. Since G is

not 2-transitive, H is not transitive. In the remaining case of Li’s theorem, G

is of the form (T̃1 × · · · × T̃r).O.P where O ≤ Out(T̃1)× · · · ×Out(T̃r), P is

transitive of degree r and each T̃r is an almost simple permutation group of

degree m ≥ 5. Moreover K = K1×· · ·×Kr where Ki < T̃i and each Ki has

order m. Therefore, if r ≥ 2, then K is factorizable into m-subgroups with
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m ≥ 5. If r = 1 then, as Li remarks following his theorem, G is 2-transitive,

so need not be considered any further. �

Note that, as we discuss in §7.3, it is not necessarily the case that the

subgroup K in case (i) is elementary abelian.

Theorem 25.7 in [38] generalizes Example 6.3 to show that if m ≥ 3 and K

is m-factorizable with r factors then K is a regular subgroup of Sm o Sr in

its primitive action on {1, . . . , k}r. This action is not 2-transitive, so K is

not a B-group. We therefore have the following corollary, first observed in

[27, Corollary 1.3].

Corollary 7.3. No factorizable group is a B-group. Moreover, an abelian

group not of prime-power order is a B-group if and only if it is not factor-

izable.

It is an open problem to determine the non-factorizable abelian B-groups

of prime-power order. We end with some partial results and reductions.

7.2. Elementary abelian B-groups. Exercise 3.5.6 in [13] asks for a proof

that Cnp is never a B-group. This is true when p > 2 by Corollary 7.3

(clearly Cp in its regular action is primitive but not 2-transitive), but false,

in general, when p = 2.2 For example, the primitive permutation groups of

degree 8 containing a regular subgroup isomorphic to C3
2 are A8, S8 and the

affine groups F3
2oC7, F

3
2o (C7oC3) and F3

2oGL3(F2). All of these groups

contain a 7-cycle, and so are 2-transitive. Therefore C3
2 is a B-group.

These examples motivate the following lemma, whose proof requires Burn-

side’s dichotomy on permutation groups of prime degree. The significance

of Mersenne primes will be seen shortly.

Lemma 7.4. Let V = Fn2 where 2n − 1 is prime. A subgroup H ≤ GL(V )

is transitive on V \{0} if and only if H ∼= C2n−1, H ∼= C2n−1 o Cn or

H = GL(V ).

Proof. The ‘if’ direction is clear. By Theorem 6.1, ifH is transitive on V \{0}
then either H ∼= C2n−1 o Cr, for some r, or H is 2-transitive. Identifying

V \{0} with F×2n , we see that there exists h ∈ H of order 2n − 1. (Such

elements are called Singer cycles.) Let α be a primitive (2n − 1)-th root of

unity. Note that h is conjugate to hs in GL(V ) if and only if the map β 7→ βs

permutes the eigenvalues α, α2, . . . , α2n−1
of h. Thus NGL(V )(〈h〉) ∼= Cn is

generated by an element of prime order n conjugating h to h2, and either

r = 1 or r = n. If H is 2-transitive then V oH is 3-transitive. Such groups

were classified by Cameron and Kantor in [9]. By their Theorem 1 in the

case of vector spaces over F2, the only such groups are V oGL(V ) and, when

n = 4, V oA7. Since 24 − 1 is composite, only the former case arises. �

2This mistake is corrected in the errata available at people.math.carleton.ca/

~jdixon/Errata.pdf.
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It is worth noting that [9] predates the classification theorem; the methods

used are mainly from discrete geometry rather than group theory. More

generally, Hering [16, 17] has classified the linear groups H transitive on non-

zero vectors, under various assumptions on the composition factors of H.

Proposition 7.5. Let V = Fn2 . The elementary abelian group Cn2 is a

B-group if and only if 2n − 1 is a Mersenne prime and the only simple

irreducible subgroups of GL(V ) are C2n−1 and GL(V ).

Proof. Suppose that 2n−1 is composite. Let h ∈ GL(V ) be a Singer cycle. If

n 6= 6 then, by Zsigmondy’s Theorem [40], there exist a prime r such that r

divides 2n − 1 and r does not divide 2m − 1 for any m < n. Thus hn/r does

not permute the vectors of a non-zero proper subspace of V , and so 〈hn/r〉
acts irreducibly on V and intransitively on V \{0}. Therefore V o 〈hn/r〉 is

primitive but not 2-transitive, and so Cn2 is not a B-group. In the exceptional

case of Zsigmondy’s Theorem when n = 6, we simply take h3, of order 21.

Suppose that 2n− 1 is prime and that there is a simple irreducible group

T ≤ GL(V ) other than C2n−1 and GL(V ). By Lemma 7.4, T is intransitive

on V \{0}, and so V o T is not 2-transitive. Hence Cn2 is not a B-group.

Conversely, assume that no such simple group exists, and, for a contradic-

tion, that Cn2 is not a B-group. By Proposition 7.2, there exists a proper

irreducible subgroup H of GL(V ) such that H is intransitive on V \{0}.
Let M be a maximal subgroup of GL(V ) containing H. The maximal sub-

groups of classical groups were classified by Aschbacher in [1]. Of the 11

Aschbacher classes, the first consists of reducible groups, and the remain-

ing 10 of groups preserving a structure on V that can exist only when V has

composite dimension. Therefore M is an almost simple group. Since M is

a proper subgroup of GL(V ), Lemma 7.4 implies that M is intransitive on

V \{0}. Let T be the simple normal subgroup of M . By Clifford’s Theorem

([11, Theorem I]), the restriction of V to T decomposes as a direct sum of

irreducible representations of T of the same dimension. Since n is prime, T

acts irreducibly on V . Its orbits are contained in the orbits of M , so it acts

intransitively on V \{0}, contrary to our assumption. �

By Proposition 7.5, a solution to the following problem will imply that Cn2
is a B-group if and only if 2n − 1 is a Mersenne prime.

Problem 7.6. Show that if 2n − 1 is a Mersenne prime and n ≥ 3 then

no non-abelian finite simple group other than GLn(F2) has an irreducible

representation of dimension n over F2.

The two remarks below give some partial progress on Problem 7.6.

(1) The Atlas [22] data available in gap [15] shows that, with the pos-

sible exceptions of J4, Ly, Th, Fi24, B and M , no sporadic sim-

ple group has an irreducible representation over F2 of dimension n
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where 2n−1 is a Mersenne prime. Indeed, it appears to be rare for a

sporadic group or a finite group of Lie type to have a non-trivial irre-

ducible representation over F2 of odd dimension. The author knows

of no examples of such representations of alternating groups. Since

a self-dual representation has an invariant alternating form, whereas

an odd-dimensional orthogonal group over F2 has a 1-dimensional

invariant subspace, such a representation is necessarily not self-dual.

(2) Inspection of tables of small dimensional representations of quasisim-

ple groups [18, 19] and (for the groups deliberately excluded therein),

Chevalley groups in defining characteristic [30] show that no finite

simple group except for GLn(F2) has an irreducible representation

over F2 of dimension n ≤ 250 such that 2n− 1 is a Mersenne prime.

Thus if n ≤ 250 then Cn2 is a B-group if and only if

n ∈ {1, 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127}.

7.3. Non-elementary abelian B-groups. An interesting feature of the

affine groups in Proposition 7.2(i) is that they may contain regular abelian

subgroups other than Cnp . In Remark 1.1 in [27], Li gives the example

V oSn where V is the subrepresentation 〈e2−e1, . . . , en−e1〉 of the natural

permutation representation 〈e1, . . . , en〉 of Sn over Fp. To avoid a potential

ambiguity, let tv ∈ V oH denote translation by v ∈ V . If 2s < n then the

subgroup of V oH generated by

(2, 3)te1+e2 , . . . , (2s, 2s+ 1)te1+e2s , te2s+2 , . . . , ten

is regular and isomorphic to Cs4×C
n−2s−1
2 . Li claims that V oH is primitive.

However H acts irreducibly only when n is odd (and so dimV is even, as

expected by Remark (1) above). Thus if r ∈ N0 and s ∈ N then Cs4 × C2r
2

is not a B-group, but Li’s example sheds no light on when Cs4 × C2r+1
2 ,

which may be non-factorizable, is a B-group. This is a special case of the

following problem.

Problem 7.7. Classify non-elementary abelian B-groups of prime-power

order.

By Proposition 7.2, this problem reduces to classifying regular abelian

subgroups of affine groups V o GL(V ). The main result of [10] is a beauti-

ful bijective correspondence between such subgroups and nilpotent algebras

with underlying vector space V . To explain part of this correspondence, ob-

serve that if K is an regular abelian subgroup of V oH where H ≤ GL(V )

then, for each v ∈ V , there exists a unique hv ∈ H such that hvtv ∈ K.

From huhvtuhv+v = hutuhvtv = hvtvhutu = hvhutvhu+u for u, v ∈ V , we see

that {hv : v ∈ V } is an abelian subgroup of H and uhv + v = vhu + u for
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all u, v ∈ V . Replacing v with v + w, we obtain

uhv+w + (v+w) = (v+w)hu +u = vhu +whu +u = uhv + v+uhw +w−u

and so, cancelling v + w and subtracting u, we have

(15) hv+w − 1 = (hv − 1) + (hw − 1)

for all v, w ∈ K. This additivity property is highly restrictive.

Example 7.8. Let K = {hvtv : v ∈ V } be a regular abelian subgroup of

V oSn, where V is as in Li’s example. The matrix X representing hv in the

basis e2−e1, . . . , en−e1 of V is a permutation matrix if and only if 1hv = 1.

If 1hv = a and bhv = 1 then, since (ei − e1)hv = (eihv − 1)− (ea − 1), each

entry of X in column ea−e1 is −1, row ei−e1 has a 1 in column eihv−e1 for

each i 6= b, and X has no other non-zero entries. By (15), h2v = 2hv − 1, so

h2v is represented by 2X − I, where I is the identity matrix. But 2X − I is

not of either of these forms unless p = 2 or X = I. Therefore V is the unique

regular abelian subgroup of V o Sn if p > 2. Suppose that p = 2. If hv has

order 4 or more, the matrix representing hv +h−1v + 1 has multiple non-zero

entries in the columns for both ea− e1 and eb− e1, again contradicting (15).

Therefore each hv has order at most 2. It follows that K has exponent 2

or 4. Thus the examples given by Li are exhaustive.

When p divides n the representation V has an irreducible quotient U =

V/〈e1+ · · ·+en〉. Similar arguments show that UoSn has a non-elementary

abelian regular subgroup if and only if p = 2. Any such subgroup has

exponent 4, with the exception that when n = 6, U o S6 has an regular

abelian subgroup isomorphic to C8×C2. This does not contradict the result

first claimed by Manning (see §6.3) since in this case S6 acts transitively

on U\{0}; the related 2-transitive action of A7 on F4
2, coming from the

isomorphism A8
∼= GL4(F2), was seen in the proof of Lemma 7.4.

We end with some consequences of the following observation: if J is the

m ×m unipotent Jordan block matrix over Fp then Jp
r

= I if and only if

pr ≥ m and I + J + · · ·+ Jp
r−1 = 0 if and only if pr > m. (The latter can

be proved most simply using the identity I+J + · · ·+Jp
r−1 = (J − I)p

r−1.)

Proposition 7.9. Let V = Fnp and let K be a regular abelian subgroup of

V o GL(V ).

(i) If n < p then K ∼= Cnp .

(ii) If K ∼= Cpn then either n = 1 or p = 2 and n = 2.

Proof. For hvtv ∈ K we have (hvtv)
pr = hp

r

v tw where w = v + vhv + · · · +
vhp

r−1
v . Hence, using the observation just made, if n < p then (hv − 1)p = 0

and so hpv = 1 and (hvtv)
p = 1, giving (i). Now suppose that hvtv gener-

ates K. Since (hvtv)
pn−1 6= 1, we have v + vhv + · · ·+ vhp

n−1−1
v 6= 0. Hence
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d pn f(d) abelian B-groups of order d

4 22 0 C2
2 , C4

8 23 0 C3
2 , C4 × C2, C8

9 32 2 C9

16 24 9 C8 × C2, C16

25 52 17 C25

27 33 9 C9 × C3, C27

32 25 0 C5
2 , C4 × C3

2 , C
2
4 × C2, C8 × C2

2 , C8 × C4, C16 × C2, C32

49 72 29 C49

64 26 55 C16 × C2
2 , C16 × C4, C32 × C2, C64

81 34 125 C27 × C3, C81

121 112 43 C121

125 53 38 C25 × C5, C125

128 27 0 C7
2 , C4 × C5

2 , C
2
4 × C3

2 , C4 × C5
2 , C8 × C4

2 , C8 × C4 × C2
2 , C8 × C2

4 ,

C2
8 × C2, C16 × C3

2 , C16 × C4 × C2, C16 × C8, C32 × C2
2 , C32 × C4,

C64 × C2, C128

169 132 64 C169

243 35 30 C9 × C3
3 , C9 × C9 × C3, C27 × C2

3 , C27 × C9, C81 × C3, C243

Table 1. All abelian B-groups of composite prime-power

degree d where d ≤ 255; f(d) is the number of primitive

permutation groups of degree d that are not 2-transitive.

there is a m ×m unipotent Jordan block in hv with m ≥ pn−1. Therefore

n ≥ pn−1 which implies (ii). �

The subgroups K in Proposition 7.9(i) may be classified up to conjugacy

in the affine group using the theory in [10]. Using Proposition 7.9(i) to

rule out degrees, it follows from an exhaustive search through the library

of primitive permutation groups in magma [2] that the abelian B-groups of

composite prime-power degree d where d ≤ 255 are precisely those listed

in Table 1 overleaf. Finally we remark that Proposition 7.2 and Proposi-

tion 7.9(ii) together imply that Cpn is a B-group for all primes p and all

n ∈ N with n ≥ 2, giving one final proof of Theorem 1.1.
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