
NOTES ON BERNOULLI NUMBERS AND EULER’S

SUMMATION FORMULA

MARK WILDON

1. Bernoulli numbers

1.1. Definition. We define the Bernoulli numbers Bm for m ≥ 0 by

(1)

m∑
r=0

(
m+ 1

r

)
Br = [m = 0]

Bernoulli numbers are named after Johann Bernoulli (the most prolific
Bernoulli, and the discoverer of the Bernoulli effect).

1.2. Exponential generating function. If f(z) =
∑
anz

n/n! and g(z) =∑
bnz

n/n! then f(z)g(z) =
∑
cnz

n/n! where the coefficients cn are given
by cn =

∑(
n
r

)
arbn−r. Thus if we put β(z) =

∑
Bnz

n/n! then

[zn]β(z) exp z =
1

n!

∑
Br

(
n

n− r

)
=

1

n!

n−1∑
r=0

(
n

r

)
Br +

Bn
n!

= [n = 1] +
Bn
n!

from which it follows that β(z) exp z = z + β(z). Therefore

(2) β(z) =
∑

Bn
zn

n!
=

z

exp z − 1
.

This shows that the radius of convergence of β(z) is π. So although it is
tempting to make a substitution in

logP (e−t) = −
∑
n

log(1− e−tn) =
∑
n

∑
m

e−tmn

m
=
∑
m

1

tm2

tm

etm − 1

this will not work, as tm is eventually more than π.

1.3. Some values. If we add z/2 to both sides of (2) we obtain

(3) β(z) +
z

2
=
z

2

exp z + 1

exp z − 1
= z/2 coth z/2,

which is an even function of z. So B0 = 1, B1 = −1/2 and Bn = 0 if n ≥ 3
is odd. Some further values are given below.

n 0 1 2 3 4 5 6 7 8

Bn 1 −1/2 1/6 0 −1/30 0 1/42 0 −1/30
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Note that the numerators need not be ±1. For instance B10 = 5/66.

1.4. Connection with FLT. Kummer proved that there are no positive
integral solutions of xp+yp = zp whenever p is an odd prime not dividing the
numerators of any of the Bernoulli numbers B2, B4, . . . , Bp−3. Such primes
are said to be regular. For instance as B12 = 691/2730, the prime 691 is not
regular.

1.5. Estimate for Bn. In [1] it is noted that B22 = 854513
138

> 6192; indeed
the Bernoulli numbers are unbounded. The authors explain that using Eu-
ler’s formula for cot z (which has a nice elementary proof via the so-called
Herglotz trick),

z cot z = 1− 2
∑
k≥1

z2

k2π2 − z2

one gets

β(2z) + z = z coth z

= 1 + 2
∞∑
k=1

z2

k2π2 + z2

= 1− 2
∞∑
k=1

∞∑
m=1

(
−z2

k2π2

)m
for |z| < π. Hence, comparing coefficients of z2n,

B2n = (−1)n−1
2(2n)!

(2π)2n
ζ(2n).

Thus

2

(2π)2n
≤ |B2n|

(2n)!
≤ 4

(2π)2n
.

Note this shows that |B2n|/(2n)! is a decreasing sequence. As these are
coefficients in the convergent generating function β(z), |B2n|/(2n)! tends
to 0 as n tends to ∞.

1.6. Connection with uniform distribution. Let X be distributed uni-
formly on [0, 1]. Then the moment generating function for X is

EezX =

∫ 1

0
eztdt =

1

x
(ex − 1) =

1

β(z)
.

The coefficients of 1/β(z) give us a recurrence satisfied by the Bernoulli
numbers – but as

1/β(z) =

∞∑
n=0

zn

(n+ 1)!

this is just the defining recurrence (1).
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1.7. Sums of powers. We derive from first principles a special case of the
Euler summation formula. Let

Sm(n) = 0m + 1m + . . .+ (n− 1)m =
n−1∑
k=0

km.

Consider the following generating function where m varies and n is fixed:
Ŝ(z) =

∑∞
m=0 Sm(n) z

m

m! . We have

Ŝ(z) =
∞∑
m=0

(
n−1∑
k=0

km

)
zm

m!
=

n−1∑
k=0

∞∑
m=0

(kz)m

m!
=

expnz − 1

exp z − 1

= β(z)
expnz − 1

z
=

( ∞∑
n=0

Bn
n!
zn

)( ∞∑
m=0

nm+1

(m+ 1)!
zm

).
Comparing coefficients of zm/m! gives

(4) Sm(n) = m!
m∑
r=0

Br
r!

nm−r+1

(m− r + 1)!
=

m∑
r=0

Br
m+ 1

(
m+ 1

r

)
nm+1−r.

1.8. Bernoulli polynomials. Define

Bm(z) =
∑
k

(
m

k

)
Bkz

m−k.

The first few Bernoulli polynomials are B0(z) = 1, B1(z) = z − 1
2
, B2(z) =

z2 − z + 1
6
, B3(z) = z3 − 3

2
z + 1

2
, on so on. Note that Bm(0) = Bm and that

Bm+1(n) =
∑
k

(
m+ 1

k

)
Bkn

m+1−k = (m+ 1)Sm(n) +Bm+1

so

Sm(n) =
Bm+1(n)−Bm+1(0)

m+ 1

which is the obvious definition for Sm(z).
Some useful properties:

Bm(1) =
∑
k

(
m

k

)
Bk =

m−1∑
k=1

(
m

k

)
Bk +Bm = [m = 1] +Bm

so Bm(1) = Bm(0) = Bm unless m = 1 in which case B1(1) = − 1
2

= −B1.
For m ≥ 1 we have

Bm(z)′ =
∑
k

(
m

k

)
Bk(m− k)zm−k−1 = m

∑
k

(
m− 1

k

)
Bkz

m−k−1

= mBm−1(z).

2. The Euler summation formula

From now on let f : R → R be a function with as many derivatives as
needed. Euler’s summation formula is:
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Theorem 2.1 (Euler). Let m ≥ 1 and let a < b be integers. Then

(5)
∑
a≤k<b

f(k) =

∫ b

a
f(x)dx+

m∑
k=1

Bk
k!
f (k−1)(x)

∣∣∣b
a

+Rm

where the remainder Rm is given by

Rm = (−1)m+1

∫ b

a

Bm({x})
m!

f (m)(x)dx.

2.1. Application to sums of powers. Set f(x) = xr and take m > r.

Then f (m) = 0 so the remainder term vanishes. Putting a = 0 and b = n we
obtain

n−1∑
k=1

kr =
nr+1

r + 1
+

r+1∑
k=1

Bk
k!
rk−1nr+1−k =

r+1∑
k=0

Bk
r + 1

(
r + 1

k

)
nr+1−k

which agrees with (4).

2.2. First proof. As all the terms telescope nicely it is sufficient to prove
the formula when a = 0 and b = 1. This has the advantage that we can
use Bm(x) rather than Bm({x}). We proceed by induction on m. The case
m = 1 states that

f(0) =

∫ 1

0
f(x)dx− 1

2
(f(1)− f(0)) +

∫ 1

0
(x− 1

2
)f ′(x)dx.

This follows from a simple integration by parts:∫ 1

0
(x− 1

2
)f ′(x)dx = f(1)−

∫ 1

0
f(x)dx− 1

2
(f(1)− f(0)).

For m > 1 we can write the right-hand-side as∫ 1

0
f(x)dx+

m−1∑
k=1

Bk
k!

(f (k−1)(1)− f (k−1)(0))

+
Bm
m!

(f (m−1)(1)− fm−1(0)) + (−1)m+1

∫ 1

0

Bm(x)

m!
f (m)(x)dx

Applying the inductive hypothesis gives:

f(0) + (−1)m+1

∫ 1

0

Bm−1(x)

(m− 1)!
f (m−1)(x)

+
Bm
m!

(f (m−1)(1)− f (m−1)(0)) + (−1)m+1

∫ 1

0

Bm(x)

m!
f (m)(x)dx

Integrating the final term by parts using the results in §1.8 gives

f(0) + (−1)m+1

∫ 1

0

Bm−1(x)

(m− 1)!
f (m−1)(x) +

Bm
m!

(f (m−1)(1)− f (m−1)(0))

+ (−1)m+1Bm(x)

m!
f (m−1)(x)

∣∣∣1
0

+ (−1)m
∫ 1

0

Bm−1(x)

(m− 1)!
f (m−1)(x)dx.

The outermost two terms obviously cancel. And so do the inner two, as if
m is odd, then as m > 1, Bm = 0. �
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2.3. An alternative proof. There used to be a section here claiming an
alternating proof by taking a sequence of polynomials converging uniformly
to f on the interval [a, b] and using uniform convergence to interchange the
integral with the limit of the polynomials: this reduces to the case where
f(x) = xr. However it is no longer possible to reduce to the case where a = 0
and b = 1, and the main inductive step in the proof is not substantially
simplified from the previous section.

It is however worth noting that if m > r and we take a = 0 and b = N
then the result comes out very easily. In this case Euler’s formula says that

∑
0≤k<N

kr =
N r+1

r + 1
+

r∑
k=1

Bk
k!
rk−1N r−(k−1)

Using the identity 1
k

(
r

k−1
)

= 1
r+1

(
r+1
k

)
, the right-hand side can be rewritten

as

N r+1

r + 1
+

r∑
k=1

Bk
r + 1

(
r + 1

k

)
N r+1−k

which is equal to
∑

0≤k<N k
r by (4).

2.4. Estimates for error term. We can state Euler’s summation formula
in the following form

(6)
∑
a≤k<b

f(k) =

∫ b

a
f(x)dx− 1

2
(f(b)−f(a))+

m∑
k=1

B2k

(2k)!
f (2k−1)(x)

∣∣∣b
a
+R2m.

It can be shown that |B2m({x})| ≤ B2m so a rough estimate for the error
term is given by §1.5:

|R2m| ≤
B2m

(2m)!

∫ b

a
|f (2m)(x)|dx.

If f (2m) is positive then this shows that the magnitude of the error term is
at most the magnitude of the final term in the sum.

Note that very often the remainder term R2m will not tend to 0 as the
upper limit in the summation, b tends to ∞. However it will often have
some non-zero limit. In this case we have

R2m = R2m(∞)−
∫ ∞
b

B2m({x})
(2m)!

f (2m)(x)dx

where the right-hand-side tends to R2m(∞) as b→∞.

It is proved in [1] p475 that if f (2m+2) and f (2m+4) are positive for x ∈ [a, b]
then

R2m = θm
B2m+2

(2m+ 2)!
f2m+1(x)

∣∣∣b
a

where 0 ≤ θm ≤ 1. So the remainder term lies somewhere between 0 and
what would have been the next term in the sum.
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3. Examples of Euler summation

3.1. First example. We shall attempt to use Euler summation to find

Sn =

n−1∑
k=0

tk

where 0 ≤ t < 1. Of course we already know the answer, Sn = (1−tn)/(1−t),
and in fact Euler summation turns out to be a very ineffective way of finding
it! Still there are some points of interest.

If f(x) = tx then f (r)(x) = (log t)rtx so by equation (6) we have

n−1∑
k=0

tk =

∫ n

0
txdx− 1

2
(tn − 1) +

m∑
k=1

B2k

(2k)!
(log t)2k−1tx

∣∣∣n
0

+R2m

= (1− tn)

(
1

2
− 1

log t
−

m∑
k=1

B2k

(2k)!
(log t)2k−1

)
+R2m

for n ≥ 1 and m ≥ 1. Now something a little suprising happens: if t > e−π

then |log t| < π and so we can use the exponential generating function for
the Bernoulli numbers to obtain

∞∑
k=1

B2k

(2k)!
(log t)2k−1 =

1

t− 1
− 1

log t
+

1

2

and so

n−1∑
k=0

tk =
1− tn

1− t
+ (1− tn)

∞∑
k=m+1

B2k

(2k)!
(log t)2k−1 +R2m

As we know the answer, the last equation implies that R2m → 0 as m→∞.
Less artificially, we can attempt to prove this directly. We find

R2m = (log t)2m−1
∫ n

0

B2m({x})
(2m)!

txdx

≤ |(log t)|2m−2 B2m

(2m)!
(1− tn)

≤ |(log t)|2m−2 4

(2π)2m
(1− tn)

So the error term R2m → 0 as m → ∞, provided e−2π < t < e2π, which
holds as we have already assumed that e−π < t < 1.

The limiting behaviour with respect to n is also of interest. Knowing the
limit of Sn allows us to see that

lim
n→∞

R2m = −
∞∑

k=m+1

B2k

(2k)!
(log t)2k−1

This is an example of the point made earlier, that while the remainder term
will not usually tend to 0 as n tends to ∞, it may well have some limiting
value.
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3.2. Summing square roots. Let f(x) =
√
x. Note that

∫ n
0 f(x)dx =

2
3
(n

3
2 − 1) and that

f (r)(x) =

(
1
2

r

)
r! x

1
2
−r.

Euler’s summation formula gives
n∑
k=1

√
k = 2

3
(n

3
2 − 1) + 1

2

√
n+ 1

2
+

m∑
k=1

B2k

2k

(
1
2

2k − 1

)
(n

3
2
−2k − 1) +R2m.

Setting m = 1 we get
n∑
k=1

√
k = 2

3
(n

3
2 − 1) + 1

2

√
n+ 1

2
+ 1

12
(n−

1
2 − 1) +R2.

We can estimate R2 by using the bound |B2({x})| < B2 = 1
6
:

|R2| ≤
∫ n

1

1
6.8
x−

3
2 = 1

24
(1− n−

1
2 )

So we have
n∑
k=1

√
k = 2

3
(n

3
2 − 1) + 1

2

√
n+ C + O(n−

1
2 )

for some constant C. In general the remark on the previous page shows that
the error is given by

R2m = θm
B2m+2

2m+ 2

(
1
2

2m− 1

)
(n

1
2
−2m − 1) = C(m) + O(n

1
2
−2m)

where θm ∈ [0, 1] and C(m) does not depend on n, This gives
n∑
k=1

√
k = 2

3
(n

3
2 − 1) + 1

2

√
n+ C(m) +

m∑
k=1

B2k

2k

(
1
2

2k − 1

)
n

3
2
−2k + O(n

1
2
−2m).

There is a small simplification: C(m) can be determined by taking a limit
with respect to n, so

C = lim
n→∞

(
n∑
k=1

√
k − 2

3
(n

3
2 − 1)− 1

2

√
n

)
and so does not depend on m. (Exercise 9.27 in [1] reveals that C = ζ(− 1

2
);

in fact the definition of ζ(α) for α > −1.)

3.3. An estimate for P (x).

logP (e−t) =

∞∑
k=1

− log(1− e−kt)

=
∞∑
k=1

∞∑
m=1

e−tmk

m

=

∞∑
m=1

1

emt − 1
.

This suggests 2 ways we might apply Euler summation. (But they turn out
to be equivalent.)
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3.3.1. Taken from Knuth fascicle Exercise 25. Let

f(x) = − log(1− e−tx) =
∞∑
m=1

e−mtx

m
.

Then we have logP (e−t) =
∑∞

k=1 f(k). The integral of f is given by the Li2
function:∫ x

1
f(u)du =

∞∑
m=1

e−mtu

tm2

∣∣∣1
x

=
∞∑
m=1

e−mt

tm2
−
∞∑
m=1

e−mtx

tm2
=

Li2(e
−t)

t
− Li2(e

−tx)

t
.

The derivatives of f are connected with the Eulerian numbers: let
〈
n
m

〉
de-

note the number of permutations in Sn with exactly m ascents (or descents).
Then we claim

Lemma 3.1. For n ≥ 1 we have

f (n)(x) =
e−tx(−t)n

(1− e−tx)n

∑
k

〈
n− 1

k

〉
e−ktx.

Proof. By induction on m. If m = 1 then the formula is readily verified.
Suppose true for m. Then

f (m+1)(x) =
−me−2tx(−t)mt
(1− e−tx)m+1

∑
k

〈
n− 1

k

〉
e−ktx

+
e−tx(−t)n(−t)

(1− e−tx)n

∑
k

k

〈
n− 1

k

〉
e−ktx

=
e−tx(−t)n+1

(1− e−tx)n+1

(∑
k

n

〈
n− 1

k − 1

〉
+ (1− e−tx)

∑
k

k

〈
n− 1

k

〉
e−ktx

)

=
e−tx(−t)n+1

(1− e−tx)n+1

(
(n− k)

〈
n− 1

k − 1

〉
+ k

〈
n− 1

k

〉)
e−ktx

To finish we apply the identity1 (n−m)
〈
n−1
m−1

〉
+ (m+ 1)

〈
n−1
m

〉
=
〈
n
m

〉
. �

We are now ready to apply Euler summation. Taking m = 1 in (6) we
get

n∑
k=1

f(k) =
Li2(e

−t)

t
− Li2(e

−nt)

t
− 1

2
(log(1− e−nt) + log(1− e−t))

+ 1
12

e−tx(−t)
1− e−tx

∣∣∣n
1

+R2.

1This identity can be proved as follows. Let g ∈ Sn have exactlym ascents. If n appears
in a position . . . bna . . . or . . . n then removing n gives a permutation in Sn−1 with m− 1
ascents. Conversely, given such a permutation, there are n−m− 1 descents, and putting
n between any 2 numbers involved in a descent, or at the end, gives a permutation in Sn

with m ascents. Otherwise we have . . . anb . . . or n . . . in which case removing n does not
change the number of ascents. Conversely given a permutation in Sn−1 with m ascents,
putting n between the two 2 numbers involved in an ascent, or at the start, does not
change the number of ascents.
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where as the even derivatives are positive

R2 ≤ 1
12

e−tx(−t)
1− e−tx

∣∣∣n
1
≤ te−t

1− e−t
=

t

et − 1
≤ 1.

So letting n→∞ we get

logP (e−t) =
Li2(e

−t)

t
− 1

2
log(1− e−t) + O(1)

where O(1) stands for a quantity always lying in [0, 1]. If we use the identity
suggested by Knuth, namely

Li2(x) + Li2(1− x) = ζ(2)− log x log(1− x)

or, equivalently,

Li2(e
−t)

t
= −Li2(1− e−t)

t
+
ζ(2)

t
+ t log(1− e−t

we get

logP (e−t) =
ζ(2)

t
− Li2(1− e−t)

t
− 3

2
log(1− e−t) + O(1)

=
ζ(2)

t
− 1

2
log(1− e−t) +O(1) ; where O(1) ∈ [−1, 1]

=
ζ(2)

t
− log t

2
+ O(1) ; where O(1) ∈ [−1− log 2, 1− log 2].

As Li2(y) ≤ − log(1 − y) gives Li2(1 − e−t) ≤ t and log(1 − e−t) = log t +
log(1− t/2 + . . .) = log t+ O(1). In particular by being a little more careful
with the O(1) errors we can get a lower bound for logP (e−t):

π2

6t
+

log t

2
− 1− log 2 ≤ logP (e−t) ≤ π2

6t
+

log t

2
+ 1− log 2.

In fact the ‘right’ constant is − log(
√

2π) ≈ −0.9189; this follows from

logP (e−t) =
π2

6t
+

log t

2
− log

√
2π +O(t)

where the O(t) term is (by the functional equation), − t
24 + logP (e−4π

2/t).
Note that

−1.6931 < −0.9189 < .6931.

3.3.2. Alternative. We might also try to use Euler summation to sum
∞∑
k=1

− log(1− e−kt).

Perhaps surprisingly this turns out to be equivalent to the previous ap-
proach, since

d

dx
log(1− e−xt) =

te−xt

1− e−xt
=

t

ext − 1
which is essentially the function we summed earlier.
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