
UNBLINDED DRAFT FOR POPL’14

Categorical Organisation of the
Ornament–Refinement Framework

Hsiang-Shang Ko Jeremy Gibbons
Department of Computer Science, University of Oxford

{Hsiang-Shang.Ko, Jeremy.Gibbons}@cs.ox.ac.uk

Abstract
Dependently typed programming uses precise variants of data
structures to ensure program correctness in an economical way,
but designing reusable libraries for all possible variants of data
structures is a difficult problem. The authors addressed the problem
by extending McBride’s ornaments to a framework of ornaments
and refinements to support a modular structure for dependently
typed libraries. We use lightweight category theory to organise the
ornament–refinement framework and establish that parallel com-
position of ornaments, a key construction in the framework, gives
rise to certain pullback properties. Two important sets of isomor-
phisms in the framework are then reconstructed using the pullback
properties. This categorical organisation — which is completely
formalised in the dependently typed language Agda — helps to
separate the lower-level detail of the universes from the higher-
level constructions of the isomorphisms, and to gain an abstract
and effective understanding of the isomorphisms and the overall
structure of the framework.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Design, Languages, Theory

Keywords Dependent types, category theory, modularity

1. Introduction
Dependent types provide a type discipline with which we can em-
bed precise constraints in the types of data structures, thereby ex-
pressing more of our intentions in the type language, allowing
the typechecker to verify more sophisticated correctness proper-
ties and even offer helpful type information during program devel-
opment [14]. For example, instead of plain lists, depending on the
context we can use vectors (lists indexed with their length), ordered
lists, or ordered vectors to better express the properties a program
satisfies and requires. Since elements of these datatypes encode
correctness proofs in themselves, programs on these datatypes are
correct by construction, avoiding the burden of providing separate
proofs. This style, however, creates a serious problem for library
construction: an ad hoc library would need to provide more or less
the same set of operations for all possible variants of data struc-
tures and is hard to expand. For example, suppose that we have

[Copyright notice will appear here once ’preprint’ option is removed.]

constructed a library for lists that include vectors, ordered lists,
and ordered vectors, and now wish to add a new flavour of lists,
say, association lists indexed by lists of keys. Operations need to
be reimplemented not only for such key-indexed lists, but also for
key-indexed vectors, ordered key-indexed lists, and ordered key-
indexed vectors, even though key-indexing is the only new feature.
A better structure for such a library would be having a separate
module for each of the properties about length, ordering, and key-
indexing. These modules can be developed separately, and there
would be a way to assemble components in these modules at will,
so, for example, ordered vectors and related operations would be
synthesised from the components in the modules about length and
ordering.

McBride [15] proposed ornaments as a mechanism for relating
structurally similar datatypes (e.g., lists, vectors, and ordered lists),
which was extended to a framework of ornaments and refinements
in our previous work [10] to address the library structuring prob-
lem. Roughly speaking, an ornament from one datatype to another
specifies how the second datatype is a more precise version of the
first. For example, we have an ornament from lists to vectors which
specifies how vectors are lists indexed by length information, and
another ornament from lists to ordered lists which specifies what
additional information ordered lists have with respect to lists. Com-
patible ornaments can be composed in parallel, giving rise to new
datatypes and ornaments. For example, composing in parallel the
ornament from lists to vectors and the ornament from lists to or-
dered lists produces the datatype of ordered vectors and an orna-
ment from lists to ordered vectors. Ornaments induce refinements,
which consist of isomorphisms that can be used to upgrade func-
tions to more precise types. For example, an operation on vectors
and ordered lists (e.g., the function that inserts an element into a
list just before all larger elements, which increases the length of the
list by one and preserves ordering), if expressed in some particu-
lar form specified by relevant refinements, can be combined into
an operation on ordered vectors. Thus we get a way to fuse vari-
ants of datatypes and their operations into composite ones, which
is exactly the modular structure we need for libraries.

In our previous work [10], we gave a purely type-theoretical
presentation of the ornament–refinement framework in the depen-
dently typed language Agda [3, 17, 18], and constructed several
key isomorphisms in the framework by datatype-generic induction.
Although there are intuitions that explain why these isomorphisms
exist, these high-level intuitions are not manifested in the low-level
constructions of the isomorphisms. Type theory provides a precise
but basic mathematical language that has particular support for in-
ductive definitions; for more complicated constructions, however,
it is better to employ more abstract theories to properly express
the ideas. In the case of the ornament–refinement framework, a
categorical organisation would be helpful: categorical notions that
more closely correspond to the intuitions would emerge from the

1 2013/7/11

http://www.cs.ox.ac.uk/people/hsiang-shang.ko/
http://www.cs.ox.ac.uk/people/jeremy.gibbons/
http://www.cs.ox.ac.uk/
http://www.ox.ac.uk/
mailto:Hsiang-Shang.Ko@cs.ox.ac.uk
mailto:Jeremy.Gibbons@cs.ox.ac.uk

type-theoretic constructions, and these categorical notions would
form a foundation for alternative, higher-level constructions of the
key isomorphisms, providing more insight into their existence.

We present in this paper a categorical organisation of the
ornament–refinement framework (a type-theoretic summary of the
framework is given in Section 2), with the primary aim of providing
new constructions of the key isomorphisms. In more detail:
• A small part of category theory is formalised in Agda (Sec-

tion 3), so the type-theoretical constructions in the framework
and the categorical abstractions can be seamlessly presented in
one uniform language.

• Various constructions in the framework are organised under
certain categories and functors (Sections 4.1 and 4.2), giving
a clearer view of the overall structure of the framework.

• On top of the categorical organisation, we show that parallel
composition of ornaments gives rise to certain pullback proper-
ties (Section 4.3).

• These pullback properties then play essential roles in our new
constructions of the key isomorphisms in the framework (Sec-
tion 5).

At the end, we discuss what we have gained from the categorical
organisation, and compare our work to the categorical treatment of
ornaments offered by Dagand and McBride [7], concluding with a
remark on our style of presentation (Section 6).

2. The ornament–refinement framework
We begin with a condensed overview of the ornament–refinement
framework [10]. At the core of the framework are universe con-
structions [1, 11] for index-first datatypes [5] and their ornamental
relationships. (We use “datatype” as a synonym for “inductive fam-
ily” in this paper.) Rather than going into the detail of the universe
constructions, here we postulate the existence of the universes and
only present examples using high-level datatype declarations; these
datatype declarations can be elaborated into codes in the universes
by some mechanism like the one given by Dagand and McBride
[8].

2.1 Index-first datatypes and the universe of datatype
descriptions

In Agda, an inductive family is declared by listing all possible
constructors and their types, all ending with one of the types in
that inductive family. For index-first datatypes, however, the logical
order is just the opposite: we list all possible patterns of (the indices
of) the types in the inductive family, and specify for each pattern
which constructors it accepts. Because of this important change of
logical order, Dagand and McBride [6] proposed a new notation
for index-first datatypes, which was later adapted in our previous
work [10] to be slightly more Agda-like. In our adaptation of the
notation, an index-first datatype declaration is explicitly prefixed
by the keyword indexfirst. Index-first versions of simple datatypes
look almost like Haskell data declarations. For example, natural
numbers are declared by

indexfirst data Nat : Set where
Nat 3 nil

| cons (n : Nat)

The only possible pattern of the datatype is Nat, which accepts two
constructors nil and cons, the latter taking a recursive argument
named n. (We name the constructors nil and cons instead of the
more conventional zero and suc in order to make explicit later the
connections to list-like datatypes.) We declare lists similarly: Let
A : Set, which we will directly refer to in subsequent code as if it
were a module parameter. The datatype of lists is declared as

indexfirst data List A : Set where
List A 3 nil

| cons (x : A) (xs : List A)
The declaration of vectors, i.e., lists indexed with their length, is
more interesting, fully exploiting the power of index-first datatypes.

indexfirst data Vec A : Nat → Set where
Vec A nil 3 nil
Vec A (cons n) 3 cons (x : A) (xs : Vec A n)

Vec A is a family of types indexed by Nat, and we do pattern match-
ing on the index, splitting the datatype into two cases Vec A nil and
Vec A (cons n) for some n : Nat. The first case only accepts the
nil constructor, and the second case only accepts the cons construc-
tor. Because the form of the index restricts constructor choice, the
structure of a vector xs : Vec A n must follow that of n, i.e., the
number of cons nodes in xs must match that in n. Also note that
the index-first concept enables optimisation of the representation
of vectors — no information needs to be stored in a cons node
other than the head and the tail, so the representation of a vector is
as efficient as that of an ordinary list [4].

The ornament–refinement framework has a parametrised uni-
verse for index-first datatypes:

Desc : Set → Set1
The universe is an inductive family itself; we omit the details
from this paper. Elements in the universe are called (datatype)
descriptions. A description of type Desc I for some I : Set is an
encoding of a datatype indexed by I. That is, there is a least fixed-
point operator

µ : {I : Set} → Desc I → (I → Set)

which decodes descriptions into actual datatypes. The declarations
of Nat, List A, and Vec A are merely more readable presentations
of datatype descriptions:
• natural numbers are considered to be a type family trivially

indexed by the one-element set > (whose only element is tt),
so the type Nat is actually µ NatD tt for some description
NatD : Desc>;

• lists are also trivially indexed, but have a Set parameter, so
List A is actually µ (ListD A) tt where ListD : Set → Desc>
is a family of descriptions indexed by Set;

• vectors are indexed by Nat and have a Set parameter, so Vec A n
is actually µ (VecD A) n for some VecD : Set → Desc Nat.

Accompanying the universe are generic fold and induction opera-
tors parametrised by descriptions, so it is possible to write datatype-
generic inductive programs and proofs once and for all for all
datatypes encoded by the universe at once.

2.2 Ornaments
The three datatypes Nat, List A, and Vec A are obviously struc-
turally similar: a list is a natural number whose cons nodes store
elements of A, and a vector is a list whose type is enriched with
length information. Such a relationship between structurally simi-
lar datatypes is captured by ornaments, which encode differences
between datatype declarations. For example,
• compared to the declaration of Nat, the declaration of List A

has an extra field (x : A) in the cons constructor;
• compared to the declaration of List A, the declaration of Vec A

(i) has index set Nat rather than >, (ii) lacks the cons construc-
tor in the nil case and the nil constructor in the cons case, and
(iii) has a more refined index n rather than tt at the recursive
position.

An important property of any ornament is that it necessarily relates
a basic datatype to a more informative variant, so from the orna-
ment we can derive a forgetful function from the more informative

2 2013/7/11

datatype to the basic one, erasing information according to the or-
nament’s specification of datatype differences. For example, there
is a forgetful function from lists to natural numbers that discards
elements stored in cons nodes, so it computes the length of a list,
and there is another forgetful function from vectors to lists which
returns the list underlying a vector.

Ornaments constitute the second universe used in the ornament–
refinement framework:

Orn : {I J : Set} (e : J → I) (D : Desc I) (E : Desc J) → Set1

An ornament O : Orn e D E from the basic description D to the
more informative description E is parametrised by a function e from
the index set of E to that of D, and encodes structural differences
between D and E. From the ornament O we can derive a forgetful
function of type

forget O : µ E ⇒ (µ D ◦ e)
where ⇒ is defined by
⇒ : {I : Set} → (I → Set) → (I → Set) → Set

X ⇒ Y = ∀ {i} → X i → Y i
For example, there are families of ornaments

NatD-ListD : (A : Set) → Orn ! NatD (ListD A)
and

ListD-VecD : (A : Set) → Orn ! (ListD A) (VecD A)
(where ! = λ 7→ tt) that encode the structural differences be-
tween natural numbers, lists, and vectors described above. The
function

forget (NatD-ListD A) {tt} : List A → Nat

computes the length of a list, and the function
forget (ListD-VecD A) : ∀ {n} → Vec A n → List A

computes the list underlying a vector.

2.3 Ornamental descriptions
It is common to modify an existing basic description into a more in-
formative new description such that there is an ornament between
the two descriptions. For example, we might use the declaration
of natural numbers as a template and add a field to the cons con-
structor to get the declaration of lists. The ornament–refinement
framework has a third universe of ornamental descriptions that lets
us write a new description relative to a basic description such that
there is an ornament from the basic description to the new one:

OrnDesc : {I : Set} (J : Set) (e : J → I) (D : Desc I) → Set1

An ornamental description
OD : OrnDesc J e D

might be thought of as simultaneously denoting both a new descrip-
tion of type Desc J and an ornament from the basic description D
to that new description. We use floor and ceiling brackets b_c and
d_e to resolve ambiguity: the new description is
bODc : Desc J

and the ornament is
dODe : Orn e D bODc

For example, consider the following singleton datatype:
indexfirst data ListS A : List A → Set where

ListS nil 3 nil
ListS (cons x xs) 3 cons (s : ListS xs)

For each type ListS A xs, there is exactly one (canonical) element,
which has the same structure (i.e., number of cons nodes) as xs.
There is an ornament from List A to ListS A which does pattern
matching on the index, in each case restricts the constructor choice
to the one matched against, and in the cons case deletes the element

data −1 {I J : Set} (e : J → I) : I → Set where
ok : (j : J) → e −1 (e j)

und : {I J : Set} {e : J → I} {i : I} → e −1 i → J
und (ok j) = j

record ./
{I J K : Set} (e : J → I) (f : K → I) : Set where
field
{i} : I
j : e −1 i
k : f −1 i

pull : {I J K : Set} {e : J → I} {f : K → I} → e ./ f → I
pull = ./ . i

π1 : {I J K : Set} {e : J → I} {f : K → I} → e ./ f → J
π1 = und ◦ ./ . j

π2 : {I J K : Set} {e : J → I} {f : K → I} → e ./ f → K
π2 = und ◦ ./ .k

Figure 1. Definitions of inverse images and set-theoretic pull-
backs.

and sets the index of the recursive position to be the value of the tail
in the pattern. In general, for any description D : Desc I, there is
an ornamental description

singOrn D : OrnDesc (Σ I (µ D)) proj1 D
called the singleton ornament on D, which delivers a singleton
datatype and an ornament from D to that datatype, such that

forget dsingOrn De {i,x} s ≡ x
for all i : I, x : µ D i, and s : µ bsingOrn Dc (i,x) (where ≡
denotes propositional equality). For example, ListS A xs desugars
to µ bsingOrn (ListD A)c (tt,xs), and the forgetful function

λ{xs} 7→ forget dsingOrn (ListD A)e {tt,xs}
: ∀ {xs} → ListS A xs → List A

can be proved to satisfy
forget dsingOrn (ListD A)e {tt,xs} s ≡ xs

for all xs : List A and s : ListS A xs. Specifically for singleton
datatypes, there is a function that returns the sole element of any
singleton type:

singleton : {I : Set} {D : Desc I}
{i : I} (x : µ D i) → µ bsingOrn Dc (i,x)

We will shortly see that singleton datatypes play a key role in the
framework.

2.4 Composition of ornaments
The ornament–refinement framework offers two ways to compose
ornaments, sequential composition and parallel composition. Let
D : Desc I, E : Desc J, and F : Desc K. Sequential composition
collapses an ornament from D to E and another ornament from E
to F into one directly from D to F:
� : {e : J → I } → Orn e D E →

{f : K → J} → Orn f E F → Orn (e ◦ f) D F
Parallel composition is more interesting. Given two ornaments O :
Orn e D E and P : Orn f D F with a common basic description,
parallel composition of O and P produces a new description that is
a variant of D, i.e., it is an ornamental description relative to D:

O⊗ P : OrnDesc (e ./ f) pull D
The index set e ./ f is the set-theoretic pullback of e : J → I and
f : K → I, and pull : e ./ f → I is the usual projection of pullbacks.

3 2013/7/11

Their definitions are shown in Figure 1. Here we offer an intuitive
explanation of what parallel composition does: since both O and P
encode modifications to the same basic description D, we can
commit all the modifications to D to get a new description bO⊗ Pc,
and merge all the modifications into one ornament dO ⊗ Pe. For
example, let 6A : A → A → Set be an ordering on A and
declare a datatype of ordered lists indexed by a lower bound under
this ordering:

indexfirst data OrdList A 6A : A → Set where
OrdList A 6A a
3 nil
| cons (x : A) (leq : a6A x) (xs : OrdList A 6A x)

We use an ornamental description to express that OrdList A 6A
is a variant of List A:

OrdListOD A 6A : OrnDesc A ! (ListD A)
which inserts the field leq and refines the indices. Parallel composi-
tion of dOrdListOD A 6A e and ListD-VecD A then produces (i) a
new datatype of ordered vectors

indexfirst data OrdVec A 6A : A → Nat → Set where
OrdVec A 6A a nil 3 nil
OrdVec A 6A a (cons n)
3 cons (x : A) (leq : a6A x) (xs : OrdVec A 6A x n)

and (ii) an ornament from which we can derive a forgetful function
from ordered vectors to plain lists that retains only the elements.
It is conceivable, though, that there should also be ornaments that
give rise to “less forgetful” functions, converting an ordered vector
to an ordered list or a vector. Indeed, for any parallel composition
O⊗ P there are two difference ornaments

diffOrn-l O P : Orn π1 E bO⊗ Pc
diffOrn-r O P : Orn π2 F bO⊗ Pc

such that both
forget O ◦ forget (diffOrn-l O P)

and
forget P ◦ forget (diffOrn-r O P)

are extensionally equal to forget dO⊗ Pe.

2.5 Optimised predicates and ornamental promotion
isomorphisms

Let D : Desc I, E : Desc J, and O : Orn e D E. An important
construction for the ornament O is the parallel composition of
O and the singleton ornament on D. To see why it is important,
consider the ornament dOrdListOD A 6A e from lists to ordered
lists given above. Composing it with the singleton ornament on
ListD A in parallel results in the following datatype:

indexfirst data Ordered A 6A : A → List A → Set where
Ordered A 6A a nil 3 nil
Ordered A 6A a (cons x xs)
3 cons (leq : a6A x) (s : Ordered A 6A x xs)

A proof of Ordered A 6A a xs consists of a series of inequality
proofs which ensures that xs is ordered and bounded below by a, so
Ordered A 6A a is a predicate which characterises lists that are
ordered and bounded. The Ordered predicate is useful because of
the following family of isomorphisms

OrdList A 6A a ∼= Σ [xs : List A] Ordered A 6A a xs
for all a : A — an ordered list bounded below by a can be converted
to/from a plain list and a proof that it is ordered and bounded below
by a. In general, define the optimised predicates for the ornament O
as the parallel composition of O and the singleton ornament on D:

OptP O : {i : I} → e −1 i → µ D i → Set
OptP O {i} j x = µ bO⊗ dsingOrn Dec (j,(ok (i,x)))

(so Ordered A 6A a desugars to OptP dSListOD A 6A e (ok a))
then we have the (ornamental) promotion isomorphisms

ornPromIso O :
{i : I} (j : e −1 i) → µ E (und j) ∼= Σ [x : µ D i] OptP O j x

such that proj1 ◦ Iso.to (ornPromIso O (ok j′)) for any j′ : J is def-
initionally forget O {j′}. (For an isomorphism iso : X ∼= Y , we
denote its left-to-right direction as Iso.to iso : X → Y and its right-
to-left direction as Iso.from iso : Y → X. The full definition of
the record Iso will be given in Section 3.) The promotion isomor-
phisms are named as such because the right-to-left direction can
be interpreted as promoting an element of the basic type (e.g., a
list) to an element of the more informative type (e.g., an ordered
list) provided that there is a proof that the optimised predicate (e.g.,
Ordered) is satisfied.

2.6 Refinements
The ornament–refinement framework recognises the promotion
isomorphisms as a key abstraction, and axiomatises the existence
of promotion isomorphisms between two types as refinements:

record Refinement (X Y : Set) : Set1 where
field

P : X → Set
i : Y ∼= Σ X P

forget : Y → X
forget = proj1 ◦ Iso.to i

A type X is refined by a type Y if there is a promotion predicate P
on X and a promotion isomorphism from X to Y that uses P.
In a refinement r : Refinement X Y , we denote the part of the
promotion isomorphism proj1 ◦ Iso.to (Refinement.i r) : Y → X
by Refinement.forget r, since it is an abstraction of the forgetful
function derived from an ornament, demoting elements of the more
refined type Y to the basic type X. For example, for any a : A, there
is a refinement from List A to OrdList A 6A a whose promotion
predicate is Ordered A 6A a and whose promotion isomorphism
is the one derived from the ornament from lists to ordered lists:

List-OrdListR :
(a : A) → Refinement (List A) (OrdList A 6A a)

List-OrdListR a = record
{ P = Ordered A 6A a
; i = ornPromIso dOrdListOD A 6A e (ok a)}

and Refinement.forget (List-OrdListR a) is the ornamental forget-
ful function from OrdList A 6A a to List A. Refinements are a
key abstraction because they provide basic building blocks for up-
grading functions to more informative types. For example, given
a : A, to promote a function

f : List A → List A
to the more informative type

OrdList A 6A a → OrdList A 6A a
it suffices to provide a proof of type
∀ xs → Ordered A 6A a xs → Ordered A 6A a (f xs)

i.e., a proof that f preserves ordering (and the lower bound a). This
proof can then be combined with f into a function on ordered lists
using the promotion isomorphism from lists to ordered lists; the
procedure is captured in the following function:

upgrade :
{X Y Z W : Set}
(r : Refinement X Y) (s : Refinement Z W)
(f : X → Z) →
(∀ x → Refinement.P r x → Refinement.P s (f x)) →
Y → W

4 2013/7/11

upgrade r s f p =
Iso.from (Refinement.i s) ◦ (f ∗ p) ◦ Iso.to (Refinement.i r)

where the operator ∗ is defined by g ∗ h = λ (x,y) 7→ (g x,h y).
Following this path, we could reach a refinement-based function
upgrading mechanism (beyond the scope of this paper) that gen-
eralises Dagand and McBride’s “functional ornaments” [6]: the
refinement-based mechanism would be more flexible because re-
finements allow us to separate two constructions — (i) ornamental
relationships between inductive families, from which we can derive
particular promotion isomorphisms between corresponding types
in the inductive families, and (ii) how promotion isomorphisms
in general enable function upgrading — whereas functional orna-
ments unnecessarily couple these two constructions.

An ornament gives rise to a family of promotion isomorphisms
— and thus refinements — between corresponding types in two
inductive families. More specifically: if D : Desc I, E : Desc J,
and O : Orn e D E, then the refinements induced by O are between
µ D i and µ E (und j) for all i : I and j : e −1 i. We thus postulate
refinement families between two type families as

FRefinement : {I J : Set} (e : J → I)
(X : I → Set) (Y : J → Set) → Set1

FRefinement e X Y =

{i : I} (j : e −1 i) → Refinement (X i) (Y (und j))
Now we can summarise the roles of the optimised predicates and
the ornamental promotion isomorphisms in one construction:

RSem : {I J : Set} {e : J → I} {D : Desc I} {E : Desc J}
(O : Orn e D E) → FRefinement e (µ D) (µ E)

RSem O j = record { P = OptP O j
; i = ornPromIso O j}}

That is, every ornament induces a refinement family that uses the
optimised predicates and the ornamental promotion isomorphisms.
This is called the refinement semantics of ornaments in our previous
work [10].

2.7 Predicate swapping and the modularity isomorphisms
Between two types, we can have multiple refinements that use dif-
ferent promotion predicates. Moreover, we can replace the promo-
tion predicate of a refinement with a new predicate, resulting in a
new refinement between the same types that uses the new predicate,
provided that we can supply a proof that the original predicate and
the new one are pointwise isomorphic — so a promotion isomor-
phism can be derived for the new refinement. Formally, we have

swapR :
{X Y : Set} (r : Refinement X Y)
(Q : X → Set) (isos : ∀ x → Refinement.P r x ∼= Q x) →
Refinement X Y

such that the promotion predicate of a refinement swapR r Q isos
is definitionally Q. This is called predicate swapping and can be
easily extended to work for refinement families as well: we have

swapFR :
{I : Set} {X Y : I → Set} {e : J → I}
(rs : FRefinement e X Y)
(Q : {i : I} (j : e −1 i) → X i → Set)

(isos : {i : I} (j : e −1 i)
(x : X i) → Refinement.P (rs j) x ∼= Q j x) →

FRefinement e X Y

such that Refinement.P (swapFR rs Q isos j) is definitionally Q j
for all i : I and j : e −1 i.

One situation where predicate swapping is helpful is when we
try to use the refinement semantics of parallel composition. For
example, consider the datatype OrdVec A 6A of ordered vectors.

The refinement semantics of the parallel composition underlying
OrdVec A 6A uses the following monolithic datatype for its
promotion predicates:

data OrderedLength A 6A : A → Nat → List A → Set
where
OrderedLength A 6A a nil nil 3 nil
OrderedLength A 6A a (cons n) nil 63
OrderedLength A 6A a nil (cons x xs) 63
OrderedLength A 6A a (cons n) (cons x xs)
3 cons (leq : a6A x) (p : OrderedLength A 6A a n xs)

(A ‘63’ symbol following a case of a datatype means that the case
does not accept any construtor, i.e., the case is uninhabited.) How-
ever, if we are constructing a minimal library of list-like datatypes
and operations on them, OrderedLength should not have a place
in this library, since it can be modularly composed from simpler
datatypes: there are isomorphisms

OrderedLength A 6A a n xs
∼= Ordered A 6A a xs × Length A n xs (1)

for all a : A, n : Nat, and xs : List A, where Length A is the
optimised predicate datatype derived from the ornament from lists
to vectors:

data Length A : Nat → List A → Set where
Length A nil nil 3 nil
Length A (cons n) nil 63
Length A nil (cons x xs) 63
Length A (cons n) (cons x xs) 3 cons (l : Length A n xs)

The library would provide proofs of properties about operations
on Lists expressed in terms of Ordered and Length, and these
operations can be upgraded for OrdVec by the previously sketched
function upgrading mechanism. For example, suppose we have in
the library a list operation

f : List A → List A
and two proofs that this operation preserves ordering and length:

p : ∀ a xs → Ordered A 6A a xs →
Ordered A 6A a (f xs)

q : ∀ n xs → Length A n xs → Length A n (f xs)
then we can upgrade f to an operation on ordered vectors as fol-
lows:

f ′ : ∀ {a n} → OrdVec A 6A a n → OrdVec A 6A a n
f ′ {a} {n} = let r : Refinement (List A) (OrdVec A 6A a n)

r = { }0
in upgrade r r f (λxs 7→ p a xs ∗ q n xs)

where r is the refinement obtained by predicate swapping on the
refinement semantics of OrdVec with the isomorphisms (1), so
the promotion predicate of r is λxs 7→ Ordered A 6A a xs ×
Length A n xs. In general, if there are ornaments O : Orn e D E
and P : Orn f D F (which can be composed in parallel) where
D : Desc I, E : Desc J, and F : Desc K, then we have the modularity
isomorphisms

OptP dO⊗ Pe (ok (j,k)) x ∼= OptP O j x × OptP P k x

for all i : I, j : e −1 i, k : f −1 i, and x : µ D i. That is, the opti-
mised predicate for dO ⊗ Pe is pointwise isomorphic to (and thus
can be swapped with) the pointwise conjunction of the optimised
predicates for O and P. The isomorphisms (1) are just an instance
of the modularity isomorphisms.

The key constructions in the ornament–refinement framework
are the ornamental promotion isomorphisms and the modularity
isomorphisms, the former leading to the refinement semantics of
ornaments (which provides basic building blocks for function up-
grading) and the latter making modular library structure possible

5 2013/7/11

with parallel composition. In our previous paper [10], the two sets
of isomorphisms are constructed in an ad hoc manner, but the im-
plementations have some deep similarities and call for unification.
Indeed, a more unified treatment is possible: we will show in Sec-
tion 5 that both sets of isomorphisms stem from categorical pull-
back properties derived from parallel composition (to be stated in
Section 4.3).

3. Formalisation of categories
In this section we formalise some basic category-theoretic terms in
Agda, establishing vocabulary for Sections 4 and 5.

3.1 Definitions of categories and functors
We will define a category to be a set of objects and sets of mor-
phisms indexed by source and target, together with the usual laws.
Special attention must be paid to equality on morphisms, though,
which is usually coarser than definitional equality — for exam-
ple, in the category of sets and (total) functions, it is necessary to
identify functions up to extensional equality, so uniqueness of mor-
phisms in universal properties would make sense. One simple way
to achieve this in Agda’s intensional setting is to use setoids [2]
— i.e., sets with an explicitly specified equivalence relation — to
represent sets of morphisms. Subsequently, all operations on mor-
phisms should respect the equivalence.

In Agda, the type of setoids can be defined as a record which
contains a carrier set, an equivalence relation on the set, and the
three laws for the equivalence relation:1

record Setoid {c d : Level} : Set (suc (c t d)) where
field

Carrier : Set c
≈ : Carrier → Carrier → Set d

refl : ∀ {x} → x ≈ x
sym : ∀ {x y} → x ≈ y → y ≈ x
trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z

For example, we can define a setoid of functions that uses exten-
sional equality:

FunSetoid : Set → Set → Setoid
FunSetoid A B = record { Carrier = A → B

; ≈ =
.
=

; proofs of laws}
where .

= is defined by f .
= g = ∀ x → f x ≡ g x. Proofs of

the three laws are omitted from the paper.
Similarly, we can define the type of categories as a record

containing a set of objects, a collection of setoids of morphisms
indexed by source and target (so morphisms with the same source
and target — and only such morphisms — can be compared for
equality), the composition operator on morphisms, the identity
morphisms, and the laws of categories. The definition is shown
in Figure 2. Two notations are introduced to improve readability:
X ⇒ Y is defined to be the carrier set of the setoid of morphisms
from X to Y , and f ≈ g is defined to be the equivalence between
the morphisms f and g as specified by the setoid to which f and g
belong. The last two laws cong-l and cong-r require composition
of morphisms to respect the equivalence on morphisms; they are
given in this form to work better with the equational reasoning
combinators commonly used in Agda (see, for example, the AoPA
library [16]). Now we can define the category FUN of sets and
(total) functions as

1 The definition of setoids uses Agda’s universe polymorphism, so the
definition can be instantiated at suitable levels of the Set hierarchy as
needed. We will give the first few universe-polymorphic definitions with
full detail about the levels, but will later switch to writing just ‘Set ’ to
suppress the noise.

record Category {l m n : Level} : Set (suc (l t m t n)) where
field

Object : Set l
Morphism : Object → Object → Setoid {m} {n}
⇒ : Object → Object → Set m

X⇒ Y = Setoid.Carrier (Morphism X Y)
≈ : ∀ {X Y} → X⇒ Y → X⇒ Y → Set n
≈ {X} {Y} = Setoid. ≈ (Morphism X Y)

field
· : ∀ {X Y Z} → Y⇒ Z → X⇒ Y → X⇒ Z

id : ∀ {X} → X⇒ X
id-l : ∀ {X Y} (f : X⇒ Y) → id · f ≈ f
id-r : ∀ {X Y} (f : X⇒ Y) → f · id ≈ f
assoc : ∀ {X Y Z W}

(f : Z⇒W) (g : Y⇒ Z) (h : X⇒ Y) →
(f · g) · h ≈ f · (g · h)

cong-l : ∀ {X Y Z} {f g : Y⇒ Z} (h : X⇒ Y) →
f ≈ g → f · h ≈ g · h

cong-r : ∀ {X Y Z} (h : Y⇒ Z) {f g : X⇒ Y} →
f ≈ g → h · f ≈ h · g

Figure 2. Definition of categories.

FUN : Category
FUN = record { Object = Set

; Morphism = FunSetoid
; · = ◦
; id = λx 7→ x
; proofs of laws}

Another important category that we will make use of is FAM, the
category of families of sets and families of functions, which is
useful for talking about componentwise structures. An object in
FAM has type Σ [I : Set] I → Set, i.e., it is a set I and a family
of sets indexed by I; a morphism from (J,Y) to (I,X) is a function
e : J → I and a family of functions from Y j to X (e j) for each
j : J.

FAM : Category
FAM = record
{ Object = Σ [I : Set] I → Set
; Morphism =

λ (J,Y) (I,X) 7→ record
{ Carrier = Σ [e : J → I] Y ⇒ (X ◦ e)
; ≈ = λ (e,u) (e′,u′) 7→

(e .
= e′) × (∀ {j} → u {j} '̇ u′ {j})

; proofs of laws}
; · = λ (e,u) (f ,v) 7→ (e ◦ f),(λ{k} 7→ u {f k} ◦ v {k})
; id = (λx 7→ x),(λ{i} x 7→ x)
; proofs of laws}

Note that the equivalence on morphisms is defined to be compo-
nentwise extensional equality, which is formulated with the help of
McBride’s “John Major” heterogeneous equality ' [13] — the
equivalence '̇ is defined by g '̇ h = ∀ x → g x ' h x. (Given
y : Y j for some j : J, the types of u {j} y and u′ {j} y are not defini-
tionally equal but only provably equal, so it is necessary to employ
heterogeneous equality.)

We will also need functors, whose definition is shown in Fig-
ure 3: a functor consists of two mappings, one on objects and the
other on morphisms, where the morphism part respects equivalence
on morphisms and preserves identity and composition. For exam-

6 2013/7/11

record Functor
{l m n l′ m′ n′ : Level}
(C : Category {l} {m} {n}) (D : Category {l′} {m′} {n′}) :
Set (l t m t n t l′ t m′ t n′) where
field

object : ObjectC → ObjectD
morphism : ∀ {X Y} → X⇒C Y → object X⇒D object Y
≈-respecting :
∀ {X Y} {f g : X⇒C Y} →
f ≈C g → morphism f ≈D morphism g

id-preserving :
∀ {X} → morphism (idC {X}) ≈D idD {object X}

comp-preserving :
∀ {X Y Z} (f : Y⇒C Z) (g : X⇒C Y) →
morphism (f ·C g) ≈D (morphism f ·D morphism g)

Figure 3. Definition of functors.

ple, we have two forgetful functors from FAM to FUN, one sum-
ming components together

FAMF : Functor FAM FUN
FAMF = record { object = λ (I ,X) 7→ Σ I X

; morphism = λ (e,u) 7→ e ∗ u
; proofs of laws}

and the other extracting the index part.
FAMI : Functor FAM FUN
FAMI = record { object = λ (I ,X) 7→ I

; morphism = λ (e,u) 7→ e
; proofs of laws}

The functor laws should be proved for both functors alongside their
object and morphism maps. In particular, we need to prove that the
morphism part respects equivalence: for FAMF this means we need
to prove, for all e : J → I, u : Y ⇒ (X ◦ e), f : J → I, and
v : Y ⇒ (X ◦ f), that
(e .

= f) × (∀ {j} → u {j} '̇ v {j}) → (e ∗ u .
= f ∗ v)

and for FAMI we need to prove
(e .

= f) × (∀ {j} → u {j} '̇ v {j}) → (e .
= f)

both of which can be easily discharged.

3.2 Definition of pullbacks
We will define a pullback to be a product in the suitable slice
category, where a product is defined to be a terminal object in the
suitable span category. Below we give definitions of all these terms
in logical order. Let C : Category in what follows.

• A slice category based on C is parametrised by an object B; its
objects are those morphisms in C with target B and its morphisms
are mediating morphisms giving rise to commutative triangles —
diagrammatically,

objects
T

B

s and morphisms

T T ′

B

s s′

m

The slice objects and morphisms are defined in Agda as two
records; they are shown in the upper half of Figure 4 along
with the definition of slice categories. Note that the equivalence
on slice morphisms is defined as only the equivalence on the
mediating morphisms, essentially achieving proof-irrelevance.

record Slice C B : Set where
constructor slice
field

T : Object
s : T⇒ B

record SliceMorphism C B (s t : Slice C B) : Set where
constructor sliceMorphism
field

m : Slice.T s⇒ Slice.T t
triangle : Slice.s t · m ≈ Slice.s s

SliceCategory C B : Category
SliceCategory C B =

record
{ Object = Slice C B
; Morphism =

λ s t 7→ record
{ Carrier = SliceMorphism C B s t
; ≈ = λ f g 7→ SliceMorphism.m f ≈

SliceMorphism.m g
; proofs of laws}

; proofs of laws}
record Span C L R : Set where

constructor span
field

M : Object
l : M⇒ L
r : M⇒ R

record SpanMorphism C L R (s t : Span C L R) : Set where
constructor spanMorphism
field

m : Span.M s⇒ Span.M t
triangle-l : Span.l t · m ≈ Span.l s
triangle-r : Span.r t · m ≈ Span.r s

SpanCategory C L R : Category
SpanCategory C L R =

record
{ Object = Span C L R
; Morphism =

λ s t 7→ record
{ Carrier = SpanMorphism C L R s t
; ≈ = λ f g 7→ SpanMorphism.m f ≈

SpanMorphism.m g
; proofs of laws}

; proofs of laws}

Figure 4. Definitions of slice categories and span categories,
where C : Category and B, L, R are objects of C.

• Span categories are similar: parametrised by two objects L and R,
a span category has

objects L M R
l r

and morphisms

M

L R

M′

l r

l′ r′
m

The Agda definitions are shown in the lower half of Figure 4, and
are similar to those for slice categories.

7 2013/7/11

• An object X in C is terminal if it satisfies the universal property
that for every object Y there is a unique morphism from Y to X:

Terminal C : Object → Set
Terminal C X =
(Y : Object) → Σ [f : Y⇒ X] Unique (Morphism Y X) f

where uniqueness is defined relative to a setoid:
Unique : (S : Setoid) → CarrierS → Set
Unique S x = (y : CarrierS) → x ≈S y

• A product of two objects X and Y in C is then a Span C X Y that
is terminal in SpanCategory C X Y:

Product C X Y : Span C X Y → Set
Product C X Y = Terminal (SpanCategory C X Y)

• A pullback of two slices f , g : Slice C X is a product of f and g in
SliceCategory C X: Define the type of squares based on f and g
as

Square C f g : Set
Square C f g = Span (SliceCategory C X) f g

or diagrammatically,

X

Y Z

Wl r

f g

which is the same as

XX X

Y ZW

= =

l r
f g

In a square q, we will refer to the object Slice.T (Span.M q), i.e.,
the node W in the diagrams above, as the vertex of q. A pullback
of f and g is then a square based on f and g that satisfies

Pullback C f g : Square C f g → Set
Pullback C f g = Product (SliceCategory C X) f g

Equivalently, if we define the square category based on f and g
as

SquareCategory C f g : Category
SquareCategory C f g =

SpanCategory (SliceCategory C X) f g
then a pullback of f and g is a terminal object in the square cate-
gory based on f and g — indeed, Product (SliceCategory C X) f g
is definitionally equal to Terminal (SquareCategory C f g).
The most important category-theoretic fact that we will use in

this paper is that the vertices of any two pullbacks of the same
slices are isomorphic. Define the type of isomorphisms between
two objects X and Y in C as

record Iso C X Y : Set where
field

to : X⇒ Y
from : Y⇒ X
from-to-inverse : from · to ≈ id
to-from-inverse : to · from ≈ id

(The isomorphism relation ∼= we used in Section 2 is formally
defined as Iso FUN.) Then we can formulate the following lemma:
Lemma 1. If p, q : Square C f g are both pullbacks, then we have
an isomorphism

Iso C (Slice.T (Span.M p)) (Slice.T (Span.M q))

4. Categorical organisation of the
ornament–refinement framework

We proceed to organise the ornament–refinement framework un-
der several concrete categories and functors, aiming to clarify the
overall structure of the framework, and then derive useful pullback
properties from parallel composition of ornaments.

4.1 The category of type families and refinement families
We will see that the category FREF of type families and refinement
families has a very close relationship to the category FAM. An ob-
ject in FREF is an indexed family of sets as in FAM, and a mor-
phism from (J,Y) to (I,X) consists of a function e : J → I on the
indices and a refinement family of type FRefinement e X Y . As for
the equivalence on morphisms, it suffices to use extensional equal-
ity on the index functions and componentwise equivalence on re-
finement families, where the equivalence on refinements is defined
to be extensional equality on their forgetful functions (extracted by
Refinement.forget). In Agda:
FREF : Category
FREF = record
{ Object = Σ [I : Set] I → Set
; Morphism =

λ (J,Y) (I,X) 7→ record
{ Carrier = Σ [e : J → I] FRefinement e X Y
; ≈ =

λ (e,rs) (e′,rs′) 7→
(e .

= e′) ×
(∀ j → Refinement.forget (rs (ok j)) '̇

Refinement.forget (rs′ (ok j)))
; proofs of laws}

; proofs of laws}
Two facts support our choice of refinement equivalence: (i) under
this definition, if two refinements are equivalent, then their promo-
tion predicates are pointwise isomorphic, i.e., we have

forget-iso :
{X Y : Set} (r s : Refinement X Y) →
(Refinement.forget r .

= Refinement.forget s) →
∀ x → Refinement.P r x ∼= Refinement.P s x

and (ii) we get a forgetful functor FREFF : Functor FREF FAM
which is identity on objects and componentwise Refinement.forget
on morphisms, the latter respecting equivalence automatically.

FREFF : Functor FREF FAM
FREFF = record
{ object = λ (I,X) 7→ I,X
; morphism =

λ (e,rs) 7→ e,(λ{j} 7→ Refinement.forget (rs (ok j)))
; proofs of laws}

Note that a refinement family from X : I → Set to Y : J → Set
is deliberately cast as a morphism in the opposite direction from
(J,Y) to (I,X), so FREFF remains a familiar covariant functor
rather than a contravariant one. Think of this as suggesting the
direction of the forgetful functions of refinements.

The above discussion suggests that the essential ingredient of a
refinement is just its forgetful function. Indeed, from any function
we can construct a canonical refinement:

canonRef : {X Y : Set} → (Y → X) → Refinement X Y
canonRef {X} {Y} f = record
{ P = λx 7→ Σ [y : Y] f y ≡ x
; i = record { to = 〈f ,〈(λy 7→ y),(λy 7→ refl)〉〉

; from = proj1 ◦ proj2
; proofs of laws}}

(The operator 〈 , 〉 is defined by 〈g,h〉 = λx 7→ (g x,h x).) The
canonical promotion predicate is very simplistic: to promote some
x : X to type Y , we are required to supply a complete y : Y such
that x can be recovered from y (rather than only the necessary
information that augments x to an element of Y). Any refinement r :
Refinement X Y is equivalent to canonRef (Refinement.forget r),
so by forget-iso we have

Refinement.P r x ∼= Σ [y : Y] Refinement.forget r y ≡ x

8 2013/7/11

ORN FREF FAM FUN

Object Σ [I : Set] Desc I Σ [I : Set] I → Set Σ [I : Set] I → Set Set

⇒ λ (J,E) (I,D) 7→ λ (J,Y) (I,X) 7→ λ (J,Y) (I,X) 7→ λA B 7→ A → B
Σ [e : J → I] Orn e D E Σ [e : J → I] FRefinement e X Y Σ [e : J → I] Y ⇒ (X ◦ e)

RSEM

IND

FREFF

FREFC

FAMF

FAMI

Figure 5. Categories (whose sets of objects and morphisms are listed below) and functors for the ornament–refinement framework.

for all x : X. That is, a promotion predicate is always point-
wise isomorphic to the canonical promotion predicate. Thus all
the refinement mechanism provides is a convenient way of ex-
pressing intensional (representational) optimisations of the canoni-
cal promotion predicate — extensionally, FREF is no more pow-
erful than FAM. This is reflected in the existence of a functor
FREFC : Functor FAM FREF, whose object part is identity and
whose morphism part is componentwise canonRef :

FREFC : Functor FAM FREF
FREFC = record
{ object = λ (I,X) 7→ I,X
; morphism = λ (e,u) 7→ e,(λ (ok j) 7→ canonRef (u {j}))
; proofs of laws}

FREFC is strictly inverse to FREFF, forming an isomorphism (not
merely an equivalence) of categories between FREF and FAM.

4.2 The category of descriptions and ornaments
The category ORN has objects of type Σ [I : Set] Desc I, i.e.,
descriptions paired with index sets, and morphisms from (J,E) to
(I,D) of type Σ [e : J → I] Orn e D E, i.e., ornaments paired with
index erasure functions. We also need to devise an equivalence on
ornaments

OrnEq :
{I J : Set} {e e′ : J → I} {D : Desc I} {E : Desc J} →
Orn e D E → Orn e′ D E → Set

such that it implies extensional equality of e and e′ and that of
ornamental forgetful functions:

OrnEq-forget :
{I J : Set} {e e′ : J → I} {D : Desc I} {E : Desc J}
(O : Orn e D E) (P : Orn e′ D E) → OrnEq O P →
(e .

= e′) × (∀ {j} → forget O {j} '̇ forget P {j})
We omit the detail of OrnEq from the paper (which depends on
the detail of the universe of ornaments). Morphism composition is
sequential composition, and there is a family of identity ornaments

idOrn : {I : Set} {D : Desc I} → Orn (λ i 7→ i) D D
such that idOrn {I} {D} simply expresses that D is identical to
itself. Unsurprisingly, the identity ornaments serve as identity of
sequential composition. To summarise:
ORN : Category
ORN = record
{ Object = Σ [I : Set] Desc I
; Morphism =

λ (J,E) (I,D) 7→ record
{ Carrier = Σ [e : J → I] Orn e D E
; ≈ = λ (e,O) (e′,O′) 7→ OrnEq O O′

; proofs of laws}
; · = λ (e,O) (f ,P) 7→ (e ◦ f),(O� P)
; id = (λ i 7→ i), idOrn
; proofs of laws}

A functor IND : Functor ORN FAM can then be constructed, which
gives the ordinary semantics of descriptions and ornaments: the ob-
ject part of IND decodes a description (I,D) to its least fixed point
(I,µ D), and the morphism part translates an ornament (e,O) to the
forgetful function (e, forget O), the latter respecting equivalence by
virtue of OrnEq-forget.

IND : Functor ORN FAM
IND = record { object = λ (I,D) 7→ I,µ D

; morphism = λ (e,O) 7→ e, forget O
; proofs of laws}

4.3 Pullback properties for parallel composition
We are now ready to state the pullback properties for parallel com-
position of ornaments. With suitable choices of encoding for the
universes, we could attempt to establish that, for any two ornaments
O : Orn e D E and P : Orn f D F where D : Desc I, E : Desc J,
and F : Desc K, the following square in ORN is a pullback:

I,DJ,E

K,Fe ./ f ,bO⊗ Pc

e,O

f ,Ppull,dO⊗ Peπ1,diffOrn-l O P

π2,diffOrn-r O P

This square is encoded in Agda as
pc-square : Square ORN (slice (J,E) (e,O)) (slice (K,F) (f ,P))
pc-square = span (slice (e ./ f ,bO⊗ Pc) (pull,dO⊗ Pe))

(sliceMorphism (π1,diffOrn-l O P) { }1)
(sliceMorphism (π2,diffOrn-r O P) { }2)

where goal 1 has type OrnEq (O � diffOrn-l O P) dO ⊗ Pe and
goal 2 has type OrnEq (P � diffOrn-r O P) dO ⊗ Pe, both of
which can be discharged.2 The pullback property of pc-square, i.e.,
Pullback ORN pc-square, is not too useful by itself, though:
ORN is quite a restricted category, so a universal property estab-
lished in ORN has limited applicability. Instead, we are more in-
terested in the pullback property of the image of the above square
under IND in FAM, which is stated in the follow theorem.

2 Since the structure of Agda terms like pc-square can be reconstructed
from commutative diagrams and the categorical definitions, in the rest of
the paper we will present only the commutative diagrams and omit the
underlying Agda terms.

9 2013/7/11

Theorem 1 (pullback property for parallel composition in FAM).
If O : Orn e D E and P : Orn f D F where D : Desc I, E : Desc J,
and F : Desc K, then the following square in FAM is a pullback.

I,µ DJ,µ E

K,µ Fe ./ f ,µ bO⊗ Pc

e, forget O

f , forget Ppull, forget dO⊗ Peπ1, forget (diffOrn-l O P)

π2, forget (diffOrn-r O P)

The proof of the universal property boils down to, very roughly
speaking, construction of an inverse to
〈forget (diffOrn-l O P), forget (diffOrn-r O P)〉

which involves tricky manipulation of equality proofs but is achiev-
able. After the pullback property is established in FAM, since
FAMF is pullback-preserving, we also get a pullback square in
FUN.

Corollary 1 (pullback property for parallel composition in FUN).
If O : Orn e D E and P : Orn f D F where D : Desc I, E : Desc J,
and F : Desc K, then the following square in FUN is a pullback.

Σ I (µ D)Σ J (µ E)

Σ K (µ F)Σ (e ./ f) (µ bO⊗ Pc)

e ∗ forget O

f ∗ forget Ppull ∗ forget dO⊗ Peπ1 ∗ forget (diffOrn-l O P)

π2 ∗ forget (diffOrn-r O P)

To translate ORN to FREF, i.e., datatype declarations to refine-
ments, a naive way is to use the composite functor

ORN FAM FREF
IND FREFC

The resulting refinements would then use canonical promotion
predicates. However, the whole point of incorporating ORN in the
framework is that we can construct an alternative functor RSEM
directly from ORN to FREF. The functor RSEM is extensionally
equal to the above composite functor, but intensionally very dif-
ferent. Its object part still takes the least fixed point of a descrip-
tion, but its morphism part is the refinement semantics of ornaments
given in Section 2.6, whose promotion predicates have a more effi-
cient representation.

RSEM : Functor ORN FREF
RSEM = record
{ object = λ (I,D) 7→ I,µ D
; morphism =

λ (e,O) 7→ e,(λ (ok j) 7→ record { P = OptP O (ok j)
; i = { }3 })

; proofs of laws}
We will give goal 3, i.e., the ornamental promotion isomorphisms,
a new construction in the next section.

5. Reconstruction of the ornamental promotion
and modularity isomorphisms

The morphism part of the functor RSEM : Functor ORN FREF
translates ornaments into refinements that use the optimised pred-
icates, which are defined via parallel composition, so the pullback
properties for parallel composition hold for the optimised predi-
cates. The natural step to take, then, is to construct the ornamental
promotion isomorphisms using the pullback properties — this we
do in the proof of Theorem 2 below. Even more closely related are

the modularity isomorphisms, which are about parallel composi-
tion and optimised predicates. They, too, can be constructed from
the pullback properties for parallel composition, which is done in
the proof of Theorem 3.

We restate the ornamental promotion isomorphisms as the fol-
lowing theorem.

Theorem 2 (ornamental promotion isomorphisms). For any orna-
ment O : Orn e D E where D : Desc I and E : Desc J, we have

µ E j ∼= Σ [x : µ D (e j)] OptP O (ok j) x
for all j : J.

Proof. Since the optimised predicates OptP O are defined by paral-
lel composition of O and the singleton ornament S = singOrn D,
the conclusion of the theorem expand to

µ E j ∼= Σ [x : µ D (e j)] µ bO⊗ dSec (ok j,ok (e j,x)) (2)
How do we derive these isomorphisms from the pullback properties
for parallel composition? It turns out that the pullback property in
FUN (Corollary 1) can help.

First, observe that we have the following pullback square:

Σ I (µ D)Σ J (µ E)

Σ (Σ I (µ D)) (µ bSc)Σ J (µ E)

e ∗ forget O

proj1 ∗ forget dSee ∗ forget Oid

〈e ∗ forget O,singleton ◦ forget O ◦ proj2〉

(3)

If we view pullbacks as products of slices, since a singleton orna-
ment does not add information to a datatype, the vertical slice on
the right-hand side

s = slice (Σ (Σ I (µ D)) (µ bSc)) (proj1 ∗ forget dSe)
behaves like a “multiplicative unit”: any (compatible) slice s′ alone
gives rise to a product of s and s′. As a consequence, we have the
bottom-left type Σ J (µ E) as the vertex of the pullback. This pull-
back square is based on the same slices as the one in Corollary 1
with P substituted by dSe, so by Lemma 1 we obtain an isomor-
phism

Σ J (µ E) ∼= Σ (e ./ proj1) (µ bO⊗ dSec) (4)
To get from (4) to (2), we need to look more closely into the

construction of (4). The right-to-left direction of (4) is obtained
by applying the universal property of (3) to the square in Corol-
lary 1 (with P substituted by dSe), so it is the unique mediating
morphism m that makes the following diagram commute:

Σ J (µ E)

Σ J (µ E) Σ (Σ I (µ D)) (µ bSc)

Σ (e ./ proj1) (µ bO⊗ dSec)

id 〈e ∗ forget O,
singleton ◦ forget O ◦ proj2〉

π1 ∗ forget (diffOrn-l O P) π2 ∗ forget (diffOrn-r O P)

m

From the left commuting triangle, we see that, extensionally, the
morphism m is just π1 ∗ forget (diffOrn-l O P). This leads us to the
following general lemma:

Lemma 2. If there is an isomorphism
Σ K X ∼= Σ L Y

whose right-to-left direction is extensionally equal to some f ∗ g,
then we have

X k ∼= Σ [l : f −1 k] Y (und l)
for all k : K.

10 2013/7/11

Proof. For a fixed k : K, an element of the form (k,x) : Σ K X must
correspond, under the isomorphism, to some element (l,y) : Σ L Y
such that f l ≡ k, so the set X k corresponds to exactly the sum of
the sets Y l such that f l ≡ k.

Specialising Lemma 2 for (4), we get

µ E j ∼= Σ [jix : π1
−1 j] µ bO⊗ dSec (und jix) (5)

for all j : J. Finally, observe that a canonical element of type π1
−1 j

must be of the form ok (ok j,ok (e j,x)) for some x : µ D (e j), so
we perform a change of variables for the summation, turning the
right-hand side of (5) into

Σ [x : µ D (e j)] µ bO⊗ dSec (ok j,ok (e j,x))
and arriving at (2).

There is a twist, however, due to Agda’s intensionality: It is pos-
sible to formalise the above lemma and the change of variables in-
dividually and chain them together, but the resulting isomorphisms
would have a very complicated definition due to suspended type
casts. If we use them to construct the refinement family in the mor-
phism part of RSEM, it would be rather difficult to prove that the
morphism part of RSEM respects equivalence. We are thus forced
to fuse all the above reasoning into one step to get a clean definition
when we actually carry out this construction in Agda, but the idea
is still essentially the same.

The other important family of isomorphisms we should consider
is the modularity isomorphisms.

Theorem 3 (modularity isomorphisms). Suppose that there are
descriptions D : Desc I, E : Desc J and F : Desc K, and ornaments
O : Orn e D E, and P : Orn f D F. Then we have

OptP dO⊗ Pe (ok (j,k)) x ∼= OptP O j x × OptP P k x

for all i : I, j : e −1 i, k : f −1 i, and x : µ D i.

Proof. The conclusion of the theorem expands to
µ bdO⊗ Pe ⊗ dSec (ok (j,k),ok (i,x))
∼= µ bO⊗ dSec (j,ok (i,x)) × µ bP⊗ dSec (k,ok (i,x)) (6)

where again S = singOrn D. A quick observation is that they are
componentwise isomorphisms between the two families of sets

M = µ bdO⊗ Pe ⊗ dSec
and

N = λ (ok (j,k),ok (i,x)) 7→
µ bO⊗ dSec (j,ok (i,x)) × µ bP⊗ dSec (k,ok (i,x))

both indexed by pull ./ proj1 where pull has type e ./ f → I
and proj1 has type Σ I X → I. This is just an isomorphism in
FAM between (pull ./ proj1,M) and (pull ./ proj1,N) whose index
part (i.e., the isomorphism obtained under the functor FAMI) is
identity. Thus we seek to prove that both (pull ./ proj1,M) and
(pull ./ proj1,N) are vertices of pullbacks based on the same slices.

Let us look at (pull ./ proj1,N) first. For fixed i, j, k, and x,
the set N (ok (j,k),ok (i,x)) along with the cartesian projections
is a product, which trivially extends to a pullback since there is
a forgetful function from each of the two component sets to the
singleton set µ bSc (i,x), as shown in the following diagram:

µ bSc (i,x)µ bO⊗ dSec (j,ok (i,x))

µ bP⊗ dSec (k,ok (i,x))N (ok (j,k),ok (i,x))

forget (diffOrn-r O dSe)

forget (diffOrn-r P dSe)proj1

proj2

Note that this pullback square is possible because of the common x
in the indices of the two component sets — otherwise they cannot

project to the same singleton set. Collecting all such pullback
squares together, we get the following pullback square in FAM:

Σ I (µ D),µ bSce ./ proj1,µ bO⊗ dSec

f ./ proj1,µ bP⊗ dSecpull ./ proj1,N

π2, forget (diffOrn-r O dSe)

π2, forget (diffOrn-r P dSe),proj1

,proj2

(7)

Next we prove that (pull ./ proj1,M) is also the vertex of a
pullback based on the same slices as (7). This second pullback
arises as a consequence of the following lemma.

Lemma 3. In any category, consider the objects X, Y , their product
X ⇐ X �Y ⇒ Y , and products of each of the three objects X, Y ,
and X�Y with an object Z. (All the projections are shown as solid
arrows in the diagram below). Then (X �Y)�Z is the vertex of a
pullback of the two projections X�Z⇒ Z and Y �Z⇒ Z.

X Y

Z

X�Y

X�Z Y �Z

(X�Y)�Z

We again intend to view a pullback as a product of slices, and
instantiate Lemma 3 in SliceCategory FAM (I,µ D), substituting
all the objects by slices consisting of relevant ornamental forgetful
functions in (6). The substitutions are as follows:

X 7→ slice (, forget O)
Y 7→ slice (, forget P)

X�Y 7→ slice (, forget dO⊗ Pe)
Z 7→ slice (, forget dSe)

X�Z 7→ slice (, forget dO⊗ dSee)
Y �Z 7→ slice (, forget dP⊗ dSee)

(X�Y)�Z 7→ slice (, forget ddO⊗ Pe ⊗ dSee)
where X �Y , X � Z, Y � Z, and (X �Y)� Z indeed give rise to
products in SliceCategory FAM (I,µ D), i.e., pullbacks in FAM, by
instantiating Theorem 1. What we get out of this instantiation of
the lemma is a pullback in SliceCategory FAM (I,µ D) rather than
FAM. This is easy to fix, since there is a forgetful functor from
any SliceCategory C B to C whose object part is Slice.T , and it is
pullback-preserving. We thus get a pullback in FAM which is based
on the same slices as (7) and has vertex (pull ./ proj1,M).

Having the two pullbacks, by Lemma 1 we get an isomorphism
in FAM between (pull ./ proj1,M) and (pull ./ proj1,N), whose
index part can be shown to be identity, so there are componentwise
isomorphisms between M and N in FUN, arriving at (6).

6. Discussion
The categorical organisation of the ornament–refinement frame-
work effectively summarises various constructions in the frame-
work under the succinct categorical language. For example, the
functor IND from ORN to FAM is itself a summary of the following:
• the least fixed-point operation on descriptions (the object part

of the functor),
• the forgetful functions derived from ornaments (the morphism

part of the functor),

11 2013/7/11

• the equivalence on ornaments, which implies extensional equal-
ity on ornamental forgetful functions (since functors respect
equivalence),

• the identity ornaments, whose forgetful functions are extension-
ally equal to identity functions (since functors preserve iden-
tity),

• sequential composition of ornaments, and the fact that the for-
getful function for any sequentially composed ornament O� P
is extensionally equal to the composition of the forgetful func-
tions for O and P (since functors preserve composition).

Moreover, a categorical pullback structure emerges from the frame-
work, enabling new constructions of the ornamental promotion iso-
morphisms and the modularity isomorphisms on a more abstract
level. The new constructions of the isomorphisms offer more in-
sights and are easier to understand (compared to the implementa-
tions in our previous work [10] using datatype-generic induction):
after establishing the pullback properties of parallel composition, at
the root of the ornamental promotion isomorphisms is the intuition
that singleton ornaments do not add information, and the modu-
larity isomorphisms stem from the fact that the pointwise conjunc-
tion of optimised predicates trivially extends to a pullback. Also,
the categorical constructions are impervious to change of represen-
tation of the universes; modification of the universes only affects
constructions logically prior to Theorem 1. (This statement is em-
pirically verified: we really had to change the implementation of
the universes once after carrying out the categorical constructions.)

Dagand and McBride [7] provided a categorical treatment of or-
naments using fibred category theory, which is quite independent of
our work, though. They established correspondences between de-
scriptions and polynomial functors [9] and between ornaments and
cartesian morphisms, and sketched how several operations on or-
naments correspond to certain categorical notions (including pull-
backs), whereas we skip giving a functorial semantics to descrip-
tions and ornaments and directly translate them into inductive fam-
ilies and componentwise functions, which serves our purpose well.
A more significant methodological difference, however, is that Da-
gand and McBride distinguish “software” (e.g., descriptions) and
“mathematics” (e.g., polynomial functors) and then make a con-
nection between them, so they can use mathematical notions as
inspiration for software constructs. We believe that a further step
should be taken: rather than merely making a connection between
software artifacts that have the necessary level of detail and mathe-
matical objects that possess desired abstract properties, we should
design the software artifacts such that they satisfy the abstract prop-
erties themselves, so the detail of the artifacts can be effectively
managed by reasoning in terms of the abstract properties. Conse-
quently, we use category theory as an organising principle on top
of type theory — we think of category theory as providing a set
of abstractions that are internalised in type theory, rather than be-
ing an independent formalism. Our version of ornaments inherently
exhibit a categorical structure, and by reasoning in terms of this cat-
egorical structure, we are able to tame the complexity of ornaments,
which exists in order to provide representational optimisation.

Our presentation of the categorical organisation has its origin
in the old revelation that “software” and “mathematics” should be
treated uniformly as one and the same entity [12]. Hence Agda is
used throughout the paper as a uniform language for expressing
both programming constructs and categorical notions. In particu-
lar, all commutative diagrams are no more than compact forms of
equivalences that can be formally expressed in Agda. We believe
that basing all formal entities on type theory yields a clean and pre-
cise presentation, although Agda does not provide enough support
for this yet. Syntactically, Agda’s implicit parameters and mixfix
operators are already helpful in suppressing noise and introduc-

ing familiar notations, but more deeply, intensionality remains a
great obstacle to formulating straightforward and readable proofs.
For non-trivial proofs like the ones in Section 5, our presentation
has to deviate from the actual Agda proofs to hide the detail for
overcoming intensionality. We look forward to advances in theo-
retical foundations (such as the univalent foundations project [19])
and syntactic support for presenting type-theoretic proofs that are
readable by both human and machine, delivering both intuition and
precision at the same time.

References
[1] T. Altenkirch and C. McBride. Generic programming within depen-

dently typed programming. In IFIP TC2/WG2.1 Working Conference
on Generic Programming, pages 1–20. Kluwer, B.V., 2003.

[2] G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. Journal
of Functional Programming, 13(2):261–293, 2003.

[3] A. Bove and P. Dybjer. Dependent types at work. In Language
Engineering and Rigorous Software Development, volume 5520 of
Lecture Notes in Computer Science, pages 57–99. Springer-Verlag,
2009.

[4] E. Brady, C. McBride, and J. McKinna. Inductive families need not
store their indices. In Types for Proofs and Programs, volume 3085 of
Lecture Notes in Computer Science, pages 115–129. Springer-Verlag,
2004.

[5] J. Chapman, P.-É. Dagand, C. McBride, and P. Morris. The gentle
art of levitation. In International Conference on Functional Program-
ming, ICFP’10, pages 3–14. ACM, 2010.

[6] P.-É. Dagand and C. McBride. Transporting functions across or-
naments. In International Conference on Functional Programming,
ICFP’12, pages 103–114. ACM, 2012.

[7] P.-É. Dagand and C. McBride. A categorical treatment of ornaments.
To appear in Logic in Computer Science, 2013.

[8] P.-É. Dagand and C. McBride. Elaborating inductive definitions. In
Journées Francophones des Langages Applicatifs, JFLA’13. INRIA,
2013.

[9] N. Gambino and J. Kock. Polynomial functors and polynomial mon-
ads. arXiv:0906.4931, 2010.

[10] H.-S. Ko and J. Gibbons. Modularising inductive families. Progress
in Informatics, 10:65–88, 2013. doi:10.2201/NiiPi.2013.10.5.

[11] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
[12] P. Martin-Löf. Constructive mathematics and computer program-

ming. Philosophical Transactions of the Royal Society of London,
312(1522):501–518, 1984.

[13] C. McBride. Dependently Typed Functional Programs and their
Proofs. PhD thesis, University of Edinburgh, 1999.

[14] C. McBride. Epigram: Practical programming with dependent types.
In Advanced Functional Programming, volume 3622 of Lecture Notes
in Computer Science, pages 130–170, 2004.

[15] C. McBride. Ornamental algebras, algebraic ornaments. To appear in
Journal of Functional Programming, 2011.

[16] S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of Programming in
Agda: Dependent types for relational program derivation. Journal of
Functional Programming, 19(5):545–579, 2009.

[17] U. Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Chalmers University of Technology,
2007.

[18] U. Norell. Dependently typed programming in Agda. In Advanced
Functional Programming, volume 5832 of Lecture Notes in Computer
Science, pages 230–266. Springer-Verlag, 2009.

[19] The Univalent Foundations Program. Homotopy Type Theory: Uni-
valent Foundations of Mathematics. Institute for Advanced Study,
Princeton, 2013. URL http://homotopytypetheory.org/book/.

12 2013/7/11

http://dx.doi.org/10.2201/NiiPi.2013.10.5
http://homotopytypetheory.org/book/

	Introduction
	The ornament–refinement framework
	Index-first datatypes and the universe of datatype descriptions
	Ornaments
	Ornamental descriptions
	Composition of ornaments
	Optimised predicates and ornamental promotion isomorphisms
	Refinements
	Predicate swapping and the modularity isomorphisms

	Formalisation of categories
	Definitions of categories and functors
	Definition of pullbacks

	Categorical organisation of the ornament–refinement framework
	The category of type families and refinement families
	The category of descriptions and ornaments
	Pullback properties for parallel composition

	Reconstruction of the ornamental promotion and modularity isomorphisms
	Discussion

