
Open Research Online

Citation

Hall, Jon G.; Mannering, Derek and Rapanotti, Lucia (2007). Arguing safety with Problem
Oriented Software Engineering. Technical Report 2007/04; Department of Computing, The
Open University.

URL

https://oro.open.ac.uk/90215/

License

(CC-BY-NC-ND 4.0) Creative Commons: Attribution-Noncommercial-No Derivative Works
4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

Policy

This document has been downloaded from Open Research Online, The Open University's
repository of research publications. This version is being made available in accordance
with Open Research Online policies available from Open Research Online (ORO) Policies

Versions

If this document is identified as the Author Accepted Manuscript it is the version after peer
review but before type setting, copy editing or publisher branding

https://oro.open.ac.uk/90215/
https://www5.open.ac.uk/library-research-support/open-access-publishing/open-research-online-oro-policies
https://creativecommons.org/licenses/by-nc-nd/4.0/

ISSN 1744-1986

T e c h n i c a l R e p o r t N o 2 0 0 7 / 0 4

Arguing safety with Problem Oriented Software
Engineering

Jon G Hall

Derek Mannering
Lucia Rapanotti

30th March 2007

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

Arguing safety with Problem Oriented Software
Engineering

J.G. Hall
Centre for Research in

Computing
The Open University
Milton Keynes, UK

J.G.Hall@open.ac.uk

D.Mannering
General Dynamics UK Ltd.
St Leonards on Sea, UK
Derek.Mannering@

generaldynamics.uk.com

L.Rapanotti
Centre for Research in

Computing
The Open University
Milton Keynes, UK

L.Rapanotti@open.ac.uk

ABSTRACT
Standards demand that assurance cases support safety crit-
ical developments. It is widely acknowledged, however, that
the current practice of post-hoc assurance—that the prod-
uct is built and only then argued for safety—leads to many
engineering process deficiencies, extra expense, and poorer
products. This paper shows how the Problem Oriented Soft-
ware Engineering framework supports the concurrent design
of a safe product and its safety case, by which these deficien-
cies can be addressed.

The basis of the paper is a real development, undertaken
by the second author of this paper, of safety-related sub-
systems of systems flying in real aircraft. The case study
retains all essential detail and complexity.

Keywords
Software Engineering, Safety critical systems, Safety case,
Concurrent design, Problem Oriented Software Engineering

1. INTRODUCTION
System engineering processes by necessity include the iden-

tification and clarification of system requirements, the un-
derstanding and structuring of the context into which the
system will be deployed, the specification of a design for a
solution that can ensure satisfaction of the requirements in
context, and the construction of arguments, convincing for
all validating stake-holders, that the system will provide the
functionality and qualities that are needed.

In critical contexts, such as the safety-critical systems
found in civil and military aircraft, standards and regula-
tions typically constrain designs at a number of different
system levels, ranging from the integrated system operat-
ing in its design environment through to specific constraints
on the choice of software languages and component type for
achieving the requisite confidence in the product. Impor-
tantly, they introduce a requirement for safety cases to be
built.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE 2007 Dubrovnik Croatia
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

A safety case [7, 3] is a documented body of evidence
providing a compelling, comprehensive and valid argument
that a system is adequately safe for a given application in a
given environment. Safety standard DS 00-56 ([7]) mandates
that a safety case should address:

• the management of risk commensurate with the po-
tential risk posed by the system and its complexity. In
this context, risk management is the activity through
which hazards and potential accidents are identified,
and appropriate mitigation strategies chosen, e.g., haz-
ard elimination or risk reduction. It is assumed that
the ALARP principle applies: a risk is ALARP (for
“As Low As Reasonably Practicable”) if the cost of
any further risk reduction is demonstrably grossly dis-
proportionate to its benefits.

• the validity of the safety requirements, i.e., that they
are derived through thorough analysis and are trace-
able with respect to the system as designed and imple-
mented, together with evidence of their satisfaction.

• the well-foundedness of assumptions about the system,
its operating environment or modes of use upon which
the safety argument is based, with a justification that
such assumptions are realistic and reasonable.

The standard also recommends that the safety case should
contain not just evidence about the product, but also process
evidence—attesting to good practice in development, main-
tenance and operation—and evidence on good engineering
judgement and design.

Although the most convincing possible safety case is one
which is valid and sound, Kelly and Weaver observe [13]
that, due to the nature of the evidence in safety cases, a
provably valid and sound case is unobtainable. In practice,
there is wide-spread reliance on (necessarily) subjective ex-
pert judgement and claims of adherence to standards. The
basis of conviction is simply a belief that a claim is true,
argued and evidenced by strong chains of reasoning from
believably adequate grounds. Again, this is recognised in
current safety standards, which require only that the safety
argument should be structured and based on evidence.

There remain acknowledged difficulties in the construction
of safety cases. Here we characterise them as:

• The difficulty of Disparate Descriptions: that of com-
bining disparate pieces of the evidence, such as nar-
rative, requirements, claims, plans, activities or goals
[4];

• The difficulty of Post-Hoc Assurance: that tradition-
ally, safety cases are developed post-design and testing
with known drawbacks including: expensive re-design
when the current design is indefensible; expensive sys-
tem over-engineering so that the design can be de-
fended; and loss of the rationale for the safety aspects
of the design [12].

In previous work [16, 17], we have shown how POSE can
be used to link disparate descriptions, arguments and ev-
idence in a safety-critical context, by which the first diffi-
culty can be addressed. In this paper, we argue that POSE
also provides a framework in which the second of these dif-
ficulties can be addressed. As evidence we apply POSE to a
real-world case study, for which we produce and manage the
safety case alongside and with influence on the safety-critical
design of a safe solution. In addition, we also address those
elements of a safety case mandated by [7] mentioned above,
i.e., risk, validity, and the well-foundedness of assumptions.

The paper is structured as follow. Section 2 provides a
brief introduction to POSE. Section 3 discusses related work.
Section 4 discusses POSE for safety-critical development and
assurance. Section 5 presents the case study. Section 6
concludes the paper with a discussion and conclusions.

2. PROBLEM ORIENTED SOFTWARE EN-
GINEERING

The Problem Oriented Software Engineering framework
of [9] is a Gentzen-style sequent calculus [15] for ‘solving’
software problems. The basis of a Genzten-style sequent
calculus is a sequent : a well-formed formula, traditionally
representing a logical proposition. The purpose of a se-
quent is to provide a vehicle for the representation of a log-
ical proposition and for its transformation into other logical
propositions in truth-sense preserving ways. In traditional
Gentzen-style sequent calculi, if we can transform a logical
proposition to the axioms of the system, we have shown its
universal truth; the collection of transformations used form
a proof that stands as definitive record of the demonstration.

In POSE, sequents represent software problems, i.e., prob-
lems that have a software solution (see below). The trans-
formations defined in POSE transform software problems as
sequents into others in ways that preserve solutions (in a
sense that will become clear). When we have managed to
transform a problem to ‘axioms’ we have solved the problem,
and will have a software solution to show for our efforts.

The Gentzen-style sequent calculus used in POSE has fea-
tures that extend its traditional form. The most important
of these is the guarding of transformations by justification
obligations, the discharge of which establishes the ‘sound-
ness’ of the application with respect to some developmental
stake-holder. This is a radical departure from the univer-
sality of truth that an unguarded traditional Genzten-style
sequent calculus can show, and it is unique to POSE. As
to the benefits of such guarding, freed from the need to
demonstrate that a solution is universally correct, we can
think about the forms of justification that are needed dur-
ing design to convince the actual stake-holders of the ade-
quacy of the solution. For instance, perhaps a development
with rigorous or formal proofs of correctness and one with
a testing-based justification of adequacy would both suffice
for the resource constrained corporate buyer; our point is
that the one based on testing will be more affordable and

deliverable, as long as formal correctness is not amongst the
needs of the customer.

We do not eschew formality; indeed, POSE is a formal sys-
tem for working with non-formal and formal descriptions.
Moreover, formality may sometimes be appropriate when
strict stake-holders—such as regulatory bodies governing
the development of the most safety-critical of software—are
involved. However, as we know from the real world, only
when focused is formality appropriate.

Our claim is that POSE offers a practical approach to
engineering design in which the possible roles of formality
are separated out, and made clear.

2.1 Software problems
A software problem has three elements: a real-world con-

text, W , a requirement, R, and a solution, S .
The problem context is a collection of domains (W =

D1, ..., Dn) described in terms of their known, or indicative,
properties, which interact through their sharing of phenom-
ena (i.e, events, commands, states, etc. [11]). More pre-
cisely, a domain is a set of related phenomena that are use-
fully treated as a behavioural unit for some purpose. A
domain D(p)c

o = N : E has name (N) and description (E),
the description indicating the possible values and/or states
that the domain’s phenomena (in p∪c∪o) can occupy, how
those values and states change over time, how phenomena
occur, and when. Of the phenomena:

• c are those controlled by D , i.e., visible to, and sharable
by, other domains but whose occurrence is controlled
by D ;

• o are those observed by D , i.e., made visible by other
domains, whose occurrence is observed by D ;

• p are those unshared by D , i.e., sharable by no other
domain.

A problem’s requirement states how a proposed solution
description will be assessed as the solution to that problem.
Like a domain, a requirement is a named description with
phenomena, Rcons

refs = N : E . A requirement description
should always be interpreted in the optative mood, i.e., as
expressing a wish. As to the requirement’s phenomena:

• cons are those constrained by R, i.e., whose occur-
rence is constrained by the requirement, and whose
occurrence the solution affects in providing a solution;

• refs are those referenced by R, i.e., whose occurrence
is referred to but not constrained by the requirement.

A software solution is a domain, S(p)c
o = N : E , that is

intended to solve a problem, i.e., when introduced into the
problem context will satisfy the problem’s requirement. The
possible descriptions of a solution range over many forms,
from high-level specification through to program code. As
a domain, a solution has controlled, observed and unshared
phenomena; the union of the controlled and observed sets is
termed the specification phenomena for the problem.

A problem’s elements come together in POSE in a problem
sequent1:

D1(p1)c1
o1 , . . . , Dn(pn)cn

on
, S(p)c

o ` Rcons
ref

1As here, for brevity, we will sometimes omit the phenomena
decorations and descriptions in W , S and R whenever they
can be inferred by context.

Here ` is the problem builder and reminds us that it is the re-
lation of the solution to its context and to the requirements
that we seek to explore. By convention, the problem’s solu-
tion domain, S , is always positioned immediately to the left
of the `.

The descriptions of a problem’s elements may be in any
language, different elements being described in different lan-
guages, should that be appropriate. So that descriptions in
many languages may be used together in the same problem,
POSE provides a semantic meta-level for the combination of
descriptions; notationally, this is a role of the ‘,’ that collects
into a problem sequent the domains that appear around the
turnstile, formally making each visible to the others2.

2.2 Problem transformation
Problem transformations capture discrete steps in the prob-

lem solving process. Many classes of transformations are
recognised in POSE, reflecting a variety of software engi-
neering practices reported in the literature or observed else-
where. Problem transformations relate a problem and a jus-
tification to a (set of) problems. Problem transformations
conform to the following general pattern. Suppose we have
problems W , S ` R, Wi , Si ` Ri , i = 1, ..., n, (n ≥ 0) and
justification J , then we will write:

W1, S1 ` R1 ... Wn , Sn ` Rn [Name]
〈〈J〉〉W , S ` R

to mean that, derived from an application of the Name prob-
lem transformation schema (discussed below):

S is a solution of W , S ` R with adequacy argu-
ment (CA1∧...∧CAn)∧J whenever S1, ..., Sn are
solutions of W1, S1 ` R1, ..., Wn , Sn ` Rn , with
adequacy arguments CA1, ..., CAn , respectively.

Software engineering design under POSE proceeds in a
step-wise manner: the initial problem forms the root of a
development tree with transformations applied to extend the
tree upwards towards its leaves. Branches are completed by
problem transformations that leave the empty set of premise
problems.

2.3 Problem transformation schemata
A problem transformation schema defines a named class

of problem transformations, describing the way in which the
conclusion problem (that below the line) is related to the
premise problem(s) (those above the line). How a problem
is transformed is given in a problem transformation schema
by pattern matching of the elements of the conclusion prob-
lem, with those matched elements repeated as appropriate
to specialise both the premise problem(s) and justification
obligation (explained below).

Here is the transformation schema for context inter-
pretation by which the context W is interpreted as W ′:

W ′,S ` R [Context Interpretation]
〈〈Explain and justify the use of W′ over
W〉〉W,S ` R

The justification obligation is a condition that must be dis-
charged for an application of a schema to be solution pre-
serving. Each schema has its own general form of justifica-
tion obligation; that for context interpretation is shown
2A situation similar to that found in the propositional cal-
culus in which conjunction and disjunction serve to combine
the truth values of the atomic propositions.

in the rule. However, the specific form will depend upon the
development context as well as other factors.

In Section 4, we discuss in more detail the form of the
justification when the development context is safety-critical.

3. RELATED WORK
Problem Frames are a conceptual framework for Require-

ments Engineering, based on the problem-oriented founda-
tion laid by Michael Jackson over a number of years, the
culmination being [11]. The popularity of Problem Frames
is growing: see [5, 6] for some recent work. Whilst sharing
a conceptual basis, POSE is both an extension and general-
isation of Problem Frames in the following ways: all forms
of description in the solution space are admitted: specifica-
tions, high- and low-level design, code, etc.; structuring of
the solution space is possible using Architectural Structures
(see Section 5.3); problem solving is transformational, pro-
viding rich traceability between problem and solution do-
mains; the range of POSE problem transformations goes
beyond Problem Frames’ problem decomposition; and prob-
lem transformations are accompanied by justification obli-
gations that confirm the adequacy of the transformation,
with respect to various criteria. The fact that POSE ex-
tends into the solution domain implies that iterative design
processes—processes that span both problem and solution
domains—can be supported.

Approaches to software development based on various log-
ics and calculi have been the subject of computer science for
many years, and much has been learned about the logics,
calculi, and their derivatives, that are best suited to de-
scribe software. Transformations of a similar nature to those
in POSE are sometimes found in these formal approaches
to software development; examples include the transforma-
tions of specifications through to program code found in the
refinement calculi of Morgan [19] and Back [2] and, more
recently, the categorical refinements of Smith [22].

Two structured notations for expressing safety cases have
emerged. One is the goal-structuring notation (GSN) [14],
a graphical argumentation notation which allows the repre-
sentation of individual elements of a safety argument and
their relations. Elements include: goals (used to represent
requirements and claims about the system), context (used to
represent the rationale for the approach and the context in
which goals are stated), solutions (used to give evidence of
goal satisfaction) and strategies (the approach used to iden-
tify sub-goals). The other, is Adelard’s Claim-Argument-
Evidence (ASCAD) approach [3], which is based on Toul-
min’s work on argumentation [24] and includes: claims (same
as Toulmin’s claims), evidence (same as Toulmin’s grounds)
and argument (combination of Toulmin’s warrant and back-
ing). More recently, Habli and Kelly [8] have also suggested
ways in which product and process evidence could be com-
bined in GSN assurance cases.

Some very recent work by Strunk and Knight [23] proposes
Assurance Based Development (ABD) in which a safety-
critical system and its assurance case are developed in par-
allel through the combined used of Problem Frames [11] and
GSN.

4. POSE FOR SAFETY-CRITICAL DEVEL-
OPMENT

We have already applied POSE in support of safety-related

developments [16, 17]. In those papers our focus was on the
evaluation for safety of proposed candidate solution struc-
tures (i.e., partial solutions; architectures) early in devel-
opment. From those papers, and work supporting them, a
‘process pattern’ has emerged. Its elements are shown in
Fig. 1 as a UML activity diagram. The activities in the
figure include the following:

Context and Requirement Interpretation to capture
(increasing) knowledge and detail in the context and
requirement of the problem (Activity 1);

Solution Intepretation and Expansion to structure the
solution (or part thereof) according to a candidate ar-
chitecture (Activity 2);

Preliminary safety analysis (PSA) for early assessment
of a candidate architecture (Activity 3).

The choice point (labelled 4) in the figure depends on the
outcome of the PSA, which determines whether the current
candidate architecture is viable as the basis of a solution or
whether backtracking is needed so that the problem should
be changed in some way or another candidate architecture
chosen. The techniques applied for the PSA will depend on
the level of criticality of the system under design and may
include Functional Failure Analysis (FFA) [21], functional
Fault Tree Analysis (FTA) [25], or the use of fully formal
specification languages and logical proof. The level of criti-
cality is determined by whether the system is safety critical
(highest integrity required) or safety related (high integrity,
but not as high as safety critical).

The POSE pattern is iterative in that design choices,
through the choice of candidate architecture, influence re-
quirements, and vice versa. It ends when an architecture
suitable for further solution development is found.

Context &
Requirement

Interpretation

Solution
Interpretation &

Expansion

Preliminary
Safety Analysis

[PSA ok]

[not PSA ok]

null problem

solution development

1

2 3
4

Figure 1: POSE Safety Pattern: to move towards
the solution of a safety-critical problem, we first un-
derstand the problem better (Activity 1), use engi-
neering judgement to determine a candidate solu-
tion architecture (Activity 2), then test the candi-
date for satisfaction of safety concerns, iterating if
necessary.

4.1 Building a safety case
In this paper, we focus on safety critical development,

whence the justification obligation must satisfy the inter-
ested stake-holder that their concerns (similar in nature to
those in [11]) about safety are discharged. The justification

obligation for a schema will contain, as well as other ele-
ments, the imperative that the concerns associated with the
problem transformation step it defines should be discharged.
A concern therefore leads to a claim stated within a justi-
fication, the claim being that the concern is discharged by
the development step. The justification will, eventually, con-
tain arguments and evidence that the claim is valid. We say
eventually because some concerns can only be discharged af-
ter the ramifications of a problem transformation are known
which is, typically, later in the development tree.

For reasons of space, we are not able to give an exhaustive
presentation of the concerns related to each of the POSE
schemata. However, for those schemata encountered in this
paper, the following concerns arise:

• the well-founded concern, for which the associated claim
is that a particular domain description is well-founded,
i.e., realistic and reasonable;

• the reliability concern, for which the associated claim
is that a particular domain, described in an interpreted
problem, is adequately reliable;

• the feasibility concern, for which the associated claim
is that a chosen architecture, i.e., (partial) solution
structure, should not prevent an adequately safe solu-
tion from being found;

• the sound judgement concern, for which the associated
claim is that a particular development choice is based
on sound engineering judgement.

A summary of the relationship between the schemata and
concerns used within this paper is shown in Table 1.

Schema C
o

n
ce

rn

W
el

l-
fo

u
n

d
ed

n
es

s

R
el

ia
bi

li
ty

S
o

u
n

d
ju

d
ge

m
en

t

F
ea

si
bi

li
ty

interpretation schemata
Context x x
Solution x x x x
Reqmnts x

Table 1: Transformation Schemata and their stan-
dard concerns

The justifications in a development tree combine to give
the adequacy argument for the development. Eventually, a
developer will have to construct an argument (or many argu-
ments) for customers and/or other validating stake-holders
that convinces them of the solution’s adequacy with respect
to their criteria: the adequacy argument constructed during
development is intended to be the definitive source of such
arguments. When one validating stake-holder is a safety reg-
ulator, the adequacy argument must, as already mentioned,
include a safety case, and it is this aspect of adequacy with
which we are most concerned in this paper.

Of course, the concerns of the stake-holders have always
driven development, to a greater or lesser extent. However,
the need to discharge concerns explicitly as a development
step is taken adds two strong drivers to development:

• the claims, arguments and evidence needed can guide
the detail of a development, including the justification
of choices as and when they are made;

• a very richly traceable development path through which
a record of both the steps that lead to the delivered
product, and those that were discarded—presumably
because they were not able to discharge some concern
or other—is built.

This tight concurrent design (or co-design) of the product
and its safety case is the basis of our claim that we can, in
POSE, address what we have termed the difficulty of Post-
Hoc Assurance.

4.2 Notational conventions
So that it is easier to interleave development prose, de-

scriptions and figures with the explanatory narrative, we
will describe each transformation step by separating it from
the narrative, using the following graphical device. Suppose
we wish to transform the problem P(= W , S ` R) under
the Name transformation schema, then we will write:

Application of Name to problem P

Justification J : describing the named justification
(J) for the application of transformation Name to P .
The name can be used elsewhere in the development to
refer to this justification. The body of the justification
can have many components—prose, formal descriptions,
figures, for instance—and any or all elements of the fol-
lowing structure may be present:

Includes: identifying any relationships between this jus-
tification and others in the development such as those
that occurred from an earlier step, that was subsequently
discovered to be inadequate and so backtracked from.
The inadequacy can also be described here.

Concerns: A collection of standard concerns associ-
ated with each transformation schema. Each concern is
discharged by argument and evidence supporting a claim
of the following form:

Claim: Claim statement

Argument & Evidence: The reason to believe the
claim, or the reason it does not hold.

Phenomena: Should the schema introduce phenomena,
or need to detail their sharing, the details can be included
here.

5. CASE STUDY
The case study is a real development, underdone by the

second author of this paper, based on systems flying in real
aircraft. The case study is cut-down only in the sense that
some detail has been removed for brevity, and it retains all
essential complexity. It concerns the development of the
Decoy Controller component of a defensive aids system on
an aircraft, whose role is to control the release of decoy flares
providing defence against incoming missile attack.

5.1 The starting point
In POSE, all problem solving starts from the null prob-

lem (Pnull), that of which we know nothing; its introduction
requires no justification, and it can be thought of as the
beginning of all POSE developments:

Pnull : W : null , S : null ` R : null

Here, null is used as the description for W , R and S to
indicate that nothing is known about them: null has less
information than any description that can be written in any
language chosen for descriptions. It is a point of contact
between all description languages used in a problem. Moving
from the null problem to the specific problem of this case
study was done in the following way: after a successful bid
to tender, the mechanical outline, approximate weight and
power envelope of the system was established. Subsequent
communications were used to clarify the requirements and
properties of the system environment. The remainder of
the system was designed in response to the post bid revised
customer requirements including their allocation to software
and hardware as appropriate. The details are given below.

5.2 Context and Requirement Interpretation
Problem descriptions are captured in POSE through the

various transformation schemata for interpretation, includ-
ing that of context interpretation introduced in Sec-
tion 2.3. In what follows, for brevity we summarise the
various interpretations of [17] which from Pnull leads us to
the following problem:

P1 :

Defence Systemcon , Dispenser Unitout
fire,sel ,

Aircraft Status Systemair ,

Pilotok , Decoy Controllerfire,sel
con,out,air,ok

` Rfire,sel
con,out,air,ok

The justification obligation of all interpretation schemata
requires us to justify a newly provided description over an
existing one. Here is the (collated) justification for all in-
tepretation transformations from Pnull to P1, which add
knowledge of the problems and its parts starting from null
descriptions.

Application of Context and Requirement
Interpretation to problem Pnull

Justification J1: The identified requirement, domains
and their relevant properties are summarised below:

Name Description

Defence
System

The computer responsible for controlling
and orchestrating all defensive aids on the
aircraft

Dispenser
Unit

Mechanical device for releasing decoy
flares used as defence against incoming
missile attack. It has number of different
flare types, and includes a safety pin that,
when in place, prevents flares from being
released

continued

Name Description

Aircraft
Status
System

The system which monitors the status of
certain key aircraft parameters, including
whether the aircraft is in the air

Pilot The pilot, who can signal the controller
that flare release should be allowed

Decoy
Controller

null

R The requirement is the conjunction of:

Ra : On receiving a con command from
Defence System, Decoy Controller shall
obtain the selected flare type information
from the relevant field in con, and use it
in its sel message to the Dispenser Unit
to control flare selection in that unit.

Rb : Decoy Controller shall issue a fire
command only on receiving a con com-
mand from Defence System. This shall be
the only way in which a flare can be re-
leased.

Rc : Decoy Controller shall cause a flare
to be released by issuing a fire command
to the Dispenser Unit, which will fire the
selected flare.

Rd : Decoy Controller shall only issue a
fire command if its interlocks are satisfied,
i.e. aircraft is in air (air = yes), safety pin
has been removed (out = yes) and pilot
has issued an allow a release command (ok
= yes).

RS : Decoy Controller shall mitigate H1

and H2, where:

H1: Inadvertent firing of decoy flare on
ground. Safety Target: safety critical,
10−7 fpfh3; and

H2: Inadvertent firing of decoy flare in
air. Safety Target: safety critical, 10−7

fpfh.

Phenomena: Phenomena and their control and sharing
(see P1) are known from the existing system components
as:

Name Description

fire Command to release the selected flare type

sel Command to select flare type

out Pin status: out = yes when pin removed

con Command to select and release a flare type

air Aircraft status: air = yes when aircraft air-
borne

ok Pilot intention: ok = yes when allow release

Claim: The interpretations are well-founded

Argument & Evidence: The choice of domains fol-
lows from the aircraft level safety analysis and the re-
quired choice of interlocks. The Defence System, Dis-
penser Unit, Aircraft Status System are existing compo-
nents of the avionics system, with well-known properties

(that could be validated through direct inspection). The
Pilot is trained to follow protocol rigorously.

The customer requirement was provided as an input to
the developer team. Hazard H1 and H2 came from an
aircraft level safety analysis which allocated safety re-
quirements to the main aircraft systems, including the
Decoy Controller. Hazards H1 and H2 have both sys-
tematic (safety related) and probabilistic components.
To counter these hazards, the following safety interlocks
were required as input to the Decoy Controller to pro-
vide safety protection: an input from the pilot indicating
whether the release should be allowed; an input indicat-
ing whether the aircraft is in the air; and an input indi-
cating whether the safety pin, present when the aircraft
is on the ground, is in place. The expected behaviour
is that flare release should be inhibited if any of the fol-
lowing conditions hold: a) the pilot disallows flares; b)
the aircraft is not in the air; or c) the safety pin has
not been removed. These interlocks provide extra assur-
ance for hazard H1, but not for H2. Therefore, the safety
task is to demonstrate that H2 can be satisfied, with the
knowledge that if H2 can be satisfied, then so can H1.

Claim: The in-air indicator in Aircraft Status System
is reliable

Argument & Evidence: The in-air indicator is ob-
tained from the weight on wheels and landing gear up in-
dications: if the landing gear is up and there is no weight
on the wheels then the aircraft is assumed to be in the air.
The landing gear is detected as being up by a number of
sensor switches. The switches use a multi-pole arrange-
ment of appropriately selected “Normally open/Normally
closed” contacts. This imbues an error detection capabil-
ity that is used to achieve very good failure rates, well
within the required margins.

There are other claims that would be made of each inter-
pretation that we do not include here for reasons of space.

5.3 Solution Interpretation and Expansion
An AStruct (short for Architectural Structure) is used to

add structure to a solution domain, through an application
of solution interpretation. An AStruct combines, in a
given topology, a number of known solution components4

(the Ci below) with solution components yet to be found
(the Sj below). Its general form is:

AStructName[C1, ..., Cm](S1, ..., Sn)

with AStructName the AStruct name. Once the solution
is interpreted by providing and justifying an AStruct, so-
lution expansion generates premise problems by moving
the already known components Ci to the environment—
expanding the problem context—whilst simultaneously refo-
cussing the problem to be that of finding the solution com-
ponents Sj that remain to be designed. The requirement
and context of the original problem is propagated to all sub-
problems.

4There are also constraints on the phenomena sets, which
we omit here for brevity; the reader is referred to [9] for the
full definition.

A particular case, which is relevant to our case study, is
when there is only one component to be found, that is, the
AStruct has the following form:

AStructName[C1, ..., Cm](S)

In this case expansion only generates one premise problem
as follows:

W, C1, ..., Cm ,S:null ` R
[Solution
Expansion]W,S : AStructName[C1, ..., Cm](S) ` R

In the case study, the following AStruct encodes the initial
candidate architecture chosen for the Decoy Controller :

DecoyContAS [II int
ok,air,out , DM sel,fire?

con](Safety Controllerfire
int,fire?)

which includes two extant components, II and DM and one
to be found component Safety Controller. Therefore, a sub-
sequent expansion leads to problem:

P2 :

Defence Systemcon , Dispenser Unitout
fire,sel ,

Aircraft Status Systemair , Pilotok ,

II int
ok,air,out , DM sel,fire?

con , Safety Controllerfire
int,fire?

` Rfire,fire?,sel
con,out,air,ok

Here is the combined development step:

Application of Solution Interpretation
and Expansion to problem P1

Justification J2: The identified architecture5, its com-
ponents and relevant properties are summarised in the
table below:

Name Description

Decoy
Controller

DecoyContAS [II int
ok,air,out , DM sel,fire?

con](Saf -

ety Controllerfire
int,fire?)

II Collects together the interlock inputs
and passes their status to Safety Con-
troller (int)

DM A microcontroller used to decode con
messages from Defence System and when
appropriate issue a fire command re-
quest, fire?, to the Safety Controller.
A schematic diagram of its hardware
components is given below: the mes-
sage buffer MB holds the received con-
trol message con; the micro-controller uP
decodes it to extract: a) a fire command
request (leading to fire?), and b) the se-
lected flare type (leading to sel).

continued

5Note that a requirement interpretation is often required
after solution interpretation and before expansion in order
to adjust the names of those domains introduced as part of
the architecture. Usually, as in this case, such renaming is
straight-forward.

Name Description

uP MB DS!{con}

DM!{sel}

DM!{fire?}

Safety
Controller

null

Claim: The choice of candidate solution architecture
exhibits sound safety engineering judgement

Argument & Evidence: The architecture is chosen to
minimise the number and extent of the safety related
functions, localising them to simple, distinct blocks in
accordance with best practice. The Safety Controller,
the only safety-critical component, is a simple block that
handles the safety-critical elements of the interlocking.

Claim: The chosen solution architecture does not pre-
vent the satisfaction of R. This claim is not yet sup-
ported.

Phenomena: The new phenomena introduced by the
architecture are:

Name Description
fire? Command to release the selected flare

type
int Status of combined interlocks

5.4 Preliminary Safety Analysis
The justification of the previous transformation step is not

complete. The feasibility concern remains to be discharged.
The related claim is that the chosen architecture candidate
should not prevent an adequately safe solution, and yet, as
we shall see, the chosen architecture candidate does prevent
an adequately safe solution. In this (and the general) case,
to continue the design without checking feasibility uncovers
the risk that there will need to be (expensive) redevelopment
if the final product cannot be argued safe. Although, tradi-
tionally, this risk is mitigated through what might be called
over-engineering of the solution, such over-engineering is yet
another development cost. This risk can be managed in
POSE through an eager Preliminary Safety Analysis (PSA)
that can be applied as the means to discharge the feasibility
concern.

The goal of a PSA is to: (a) confirm any relevant hazards
allocated by the system level hazard analysis; (b) identify if
further hazards need to be added to the list; and (c) analyse
an architecture to validate that it can satisfy the safety tar-
gets associated with the identified relevant hazards. Many
techniques can be applied to perform a PSA. In [17] we
used a combination of mathematical proof, Functional Fail-
ure Analysis (FFA) [21] and functional Fault Tree Analysis
(FTA) [25].

Note that PSA is not a POSE transformation per se (no
POSE schema defines a PSA). Instead it is a technique which
we use to discharge one of the concerns in the justification
obligation for Solution Interpretation.

Application of Solution Interpretation
and Expansion to problem P1 (cont’d)

Claim: The chosen solution architecture does not pre-
vent the satisfaction of R. This claim does not hold.

Argument & Evidence: We applied FFA to each
architectural component in turn. The significant results6

from applying FFA to the DM are shown in Table 2,
where three problem cases were identified: F2, F3 and
F5, with ‘Yes’ in the Hazard column.

Table 2: FFA Summary for Safety Controller
Id Failure Md Effect Haz
F1 No fire? Release inhibited No
F2 fire? at wrong

time
Inadvertent release Yes

F3 fire? when not
required

Inadvertent release Yes

F4 Intermittent
fire?

Could inhibit release No

F5 Continuous fire? Inadvertent release Yes

A functional FTA applied to DM and using the three
FFA problem cases F2, F3 and F5, indicates that a failure
in uP (systematic or probabilistic) could result in the
fire? failing on. The Pilot ’s allow input provides some
mitigation, but as soon as this is set (ok = yes) a flare
will be released, which is undesirable behaviour. In other
words, with this architecture, H2 is only protected by
the Pilot ’s allow input. If fire? failed on, then as soon
as the Pilot indicated an intention to allow flare release,
by selecting the switch, then the flare would be released,
which is not the design intention.

Therefore the safety analysis indicates that fire? needs to
have a safety involved (not critical) integrity. This can
only be achieved with the existing design by upgrading
all of the design to be safety involved. That is, by assign-
ing fire? to the uP , we require that all uP functionality
must be of fire?s required safety integrity, including much
of the uPs functionality (timing, BIT, etc.) that is not
safety-related. Further, any updates to the uP software
have to satisfy the safety involved integrity. To make
the uP safety-involved is not possible. The conclusion of
the PSA is that the selected DM component, hence the
architecture, is not a suitable basis for the design—no ad-
equate solution can be derived from its parametrisation,
hence the feasibility concern cannot be discharged.

5.5 Backtracking the development
The failed PSA leads to backtracking of the development,

and to iteration of the POSE process. In particular, we
backtrack development to P1, choosing a second candidate
architecture informed by what we learned from trying to
discharge the failed feasibility claim. In this way we have
allowed safety concerns for a design choice to influence the

6There is insufficient space to present the full PSA, and so
we summarise only its main elements to demonstrate the
process followed.

product, during its development. We have also managed a
development risk very close to where it was discovered.

The second iteration of the POSE process is similar to
the first: although there is new information associated with
the revised architecture, the remainder of the transforma-
tions may be carried across from the first iteration without
change, simplifying this second (and any subsequent) iter-
ation. The second candidate architecture differs from the
original in that we replace DM with higher integrity com-
ponent DM ′. Here is the development step:

Application of Solution Interpretation and
Expansion to problem P1, after backtracking

Justification J ′2: The newly identified architecture,
its components and relevant properties are summarised
below (where they differ from J2):

Name Description

Decoy
Controller

DecoyContAS [II int
ok,air,out , DM ′sel,fire?

con](Saf -

ety Controllerfire
int,fire?)

DM ′ A microcontroller used to decode con
messages from Defence System and when
appropriate issue a fire command re-
quest, fire?, to the Safety Controller. A
schematic diagram of its hardware compo-
nents is given below: the message buffer
MB holds the received control message
con; the micro-controller uP decodes it
to extract the selected flare type (leading
to sel); the FPGA (a Field-Programmable
Gate Array, [10]) component decodes it to
extract a fire command request (leading to
fire?).

uP

MB DS!{con}

DM’!{sel}

DM’!{fire?} FPGA

Safety
Controller

null

Includes: Includes J2, with alterations as discussed be-
low.

Claim: The choice of candidate solution architecture
exhibits sound safety engineering judgement

Argument & Evidence: The chosen architecture is
similar to the previous one (see J2) except that as a re-
sult of the PSA we require the fire? signal to be safety
involved (but not safety critical) so that to allow the over-
all architecture to satisfy its safety target. We do this
by taking the safety involved functions out of the uP
component and route them through a separate high in-
tegrity path. As a result, we choose a new component
DM ′ in which there is a partition between the safety and
non-safety elements: the simple safety functions (those
associated with the fire? request) are routed separately
through MB and FPGA, while the other complex func-
tionality is routed through MB and uP. This means that

only MB and FPGA, which have simple functionality,
have to be designed to a safety related standard.

Claim: The chosen solution architecture does not pre-
vent the satisfaction of R. This claim is not yet sup-
ported.

As a result of this step, we arrive at:

P ′2 :

Defence Systemcon , Dispenser Unitout
fire,sel ,

Aircraft Status Systemair , Pilotok ,

II int
ok,air,out , DM ′sel,fire?

con , Safety Controllerfire
int,fire?

` Rfire,fire?,sel
con,out,air,ok

The next step forward is a PSA to discharge the extant
claim from the second solution interpretation, i.e., to dis-
charge the feasibility concern for the new architecture. The
idea behind this second PSA is that in the revised architec-
ture the fire? processing is sent via the FPGA, which can
be of simple functionality. For such a dedicated device, the
required systematic and failure rate integrity can be demon-
strated, leading to the result that the revised architecture
is feasible. The remaining detail of the PSA is omitted for
brevity.

5.6 Concluding the development
The subsequent design of the Safety Controller, which,

again, we do not include for brevity, is carried out under
POSE through a solution interpretation whose justification
includes supporting evidence that the design is indeed a so-
lution to the problem.

In terms of POSE development, we have now reached a
leaf in the development tree with no other branches to be
pursued and with no justification obligations left pending.
Therefore, we have reached a solution where the architecture
of the Decoy Controller is completely known and whose ad-
equacy is argued through the conjunction of all discharged
justifications in the corresponding tree. Such conjunction
includes the outcome of the PSA, arguing the feasibility of
the architecture in addressing the safety requirement.

6. DISCUSSION
The POSE notion of problem requires a separation of con-

text, requirement and solution, with explicit descriptions of
what is given, what is required and what is designed. This
improves the traceability of artefacts and their relation, as
well as exposing all assumptions to scrutiny and validation.
That all descriptions are generated through problem trans-
formation forces the inclusion of an explicit justification that
such assumptions are realistic and reasonable. In particu-
lar, safety requirements are justified as valid, are fully trace-
able with respect to the designed system, and evidence of
their satisfaction is provided by the adequacy argument of
a completed POSE development tree. A choice of candi-
date solution requires that a justification of good engineer-
ing judgement is given—another piece of evidence which is
now required for safety assurance.

The case study development has illustrated many essential
elements of the use of POSE in support of safety critical sys-
tem development. In particular, through it we have shown

how a safety case can be constructed concurrently with the
development of a safe product, and that a regard for safety
during development leads to detailed examination of design
choices during development whilst managing development
risk and reducing the tendency to over-engineer just to be
sure that the product is defensible.

The applied POSE safety pattern includes a (develop-
ment) risk assessment in the form of a PSA; following it-
erations provide low-cost risk mitigation through redevel-
opment. The form the PSA takes depends on the level of
criticality applied, and hence will follow the ALARP prin-
ciple. The outcome of the PSA, encapsulated in transfor-
mation justifications, contributes to explicit evidence of risk
management and is fully contextualised in terms of environ-
ment assumptions, safety requirements and chosen design.
The proposed PSA has the added bonus of being applica-
ble to early architectural design and provides early evidence
of feasibility of the proposed solution. That no extra arte-
facts are required for this step makes the approach highly
cost-effective.

That product and safety argument development are co-
designed is a fundamental characteristic of POSE: no trans-
formation should occur without appropriate justification (al-
though such justification may not be immediately available,
requiring some exploratory development to be done first).
On the other hand, development risks can be taken by ten-
tative transformation which are not completely justified: in
such cases concerns can be stated as suspended justification
obligations to be discharged later on in the process. This
adds the flexibility of trying out solutions, while still retain-
ing the rigour of development and clearly identifying points
where backtracking may occur.

Finally, POSE defines a clear formal structure in which
the various element of evidence fit, that is whether they are
associated with the distinguished parts of a development
problem or the justifications of the transformation applied
to solve it. This provides a fundamental clarification of the
type of evidence provided and reasoning applied. Moreover,
that the form of justification is not prescribed under POSE
signifies that all required forms of reasoning can be accom-
modated, from deductive to judgemental, within a single
development.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have illustrated how issues of produc-

ing and managing the safety reasoning involved in critical
system development can be addressed through POSE. In
particular, we have provided some evidence on how POSE
may contribute to those elements of a safety case arguing
requirements validity and satisfaction, explicit context as-
sumptions, design judgement and rationale, and safety risk
management, and demonstrated the approach on a real-
world example.

In future work, we plan to explore larger software and
system engineering designs in POSE. This will require many
things, whose development may speed the adoption of POSE
ideas in industry. The first is tool support: Gentzen-style
sequent calculi are known to be amenable to automated sup-
port, viz. PVS [20], Gumtree [18], and others. The second
is the availability of larger and more realistic case studies,
for which we continue to look to industry.

8. ACKNOWLEDGMENTS

We acknowledge the financial support of IBM, under the
Eclipse Innovation Grants. We particularly thank Colin
Brain of S E Validation Limited for the many comments
and insights he has given into POSE. Thanks also go to our
colleagues in the Centre for Research in Computing at The
Open University, particularly Michael Jackson.

9. REFERENCES
[1] AssWS. Workshop on assurance cases: Best practices,

possible obstacles and future opportunities. Florence,
Italy, 2004. Co-located with the International
Conference on Dependable Systems and Networks.

[2] R.-J. Back and J. von Wright. Trace refinement of
action systems. In International Conference on
Concurrency Theory, pages 367–384, 1994.

[3] R. Bloomfield, P. Bishop, C. Jones, and P. Froome.
ASCAD - Adelard Safety Case Development Manual,
1998.

[4] P. Caseley, N. Tudor, and C. O’Halloran. The case for
an evidence based approach to software certification.
Safety standards review committee, UK Ministry of
Defence, 2003.

[5] K. Cox, J. G. Hall, and L. Rapanotti, editors. Journal
of Information and Software Technology: Special issue
on Problem Frames, volume 47. Elsevier, November
2005.

[6] K. Cox, J. G. Hall, and L. Rapanotti. A roadmap of
problem frames research. Journal of Information and
Software Technology, 47(14):891–902, 2005.

[7] DS0056-3. Defence Standard 00-56 issue 3, 1997.
Safety Management Requirements for Defence
Systems.

[8] I. Habli and T. Kelly. Achieving integrated process
and product safety arguments. In Proceedings of 15th
Safety Critical Systems Symposium (SSS’07).
Springer, 2007.

[9] J. G. Hall, L. Rapanotti, and M. Jackson.
Problem-oriented software engineering. Technical
Report 2006/10, Department of Computing, The
Open University, 2006.

[10] A. Hilton and J. G. Hall. Developing critical systems
with PLD components. In T. Margaria and
M. Massink, editors, FMICS ’05: Proceedings of the
10th international workshop on Formal methods for
industrial critical systems, pages 72–79, New York,
NY, USA, 2005. ACM Press.

[11] M. A. Jackson. Problem Frames: Analyzing and
Structuring Software Development Problems.
Addison-Wesley Publishing Company, 1st edition,
2001.

[12] T. Kelly. A systematic approach to safety case
management. In Proceedings SAE 2004 World
Congress, Detroit, US, 2004.

[13] T. Kelly and R. Weaver. The goal structuring notaion
- a safety argument notation. In [1].

[14] T. P. Kelly. Arguing safety - A systematic approach.
PhD thesis, Department of Computing, University of
York, 1998.

[15] S. C. Kleene. Introduction to Metamathematics. Van
Nostrand, Princeton, NJ., 1964.

[16] D. Mannering, J. G. Hall, and L. Rapanotti. Relating
safety requirements and system design through
problem oriented software engineering. Technical
Report TR2006/11, Computing Department, The
Open University, 2006.

[17] D. Mannering, J. G. Hall, and L. Rapanotti. Towards
normal design for safety-critical systems. In M. B.
Dwyer and A. Lopes, editors, Proceedings of FASE
2007, volume 4422 of Lecture Notes in Computer
Science, pages 398–411. Springer Verlag Berlin
Heidelberg, 2007. To appear.

[18] A. Martin, R. Nickson, and M. Utting. Improving
angel’s parallel operator: Gumtree’s approach.
Technical Report 97-15, University of Queensland,
Australia, 1997.

[19] C. Morgan. Programming from Specifications. Prentice
Hall International Series in Computer Science.
Prentice-Hall International, 1994.

[20] S. Owre, J. Rushby, and N. Shankar. PVS: A
prototype verification system. In D. Kapur, editor,
11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1992.

[21] SAE. ARP4761: Guidelines and methods for
conducting the safety assessment process on civil
airborne systems and equipment. Technical report,
December 1996.

[22] D. Smith. Comprehension by derivation. In
Proceedings of the 13th International Workshop on
Program Comprehension, pages 3–9. IWPC, 15-16
May 2005.

[23] E. A. Strunk and J. C. Knight. The essential synthesis
of problem frames and assurance cases. In
International Workshop on Advances and Applications
of Problem Frames, 2006.

[24] Toulmin. The uses of argument. Cambridge University
Press, 1958.

[25] W. Vesely, F. Goldberg, N. Roberts, and D. Haasl.
Fault Tree Handbook, volume NUREG-0492. U.S.
Nuclear Regulatory Commission, 1981.

