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Introductory Paragraph 
 
   Wind-waves are dominant contributors to coastal sea-levels1,2 and shoreline position3,4, and can be 
major disruptors of coastal population5,6, ecosystems7 and offshore/coastal structures. Understanding 
climate-driven impacts on the different variables of global wind-wave fields is critical to successful 
offshore/coastal climate adaptation planning4,8. Nonetheless, global wave-climate projections studies 
have strongly relied on single-method ensembles of limited size9, prohibiting a robust assessment of  
variations between wind-wave modelling approaches. Consequently, the uncertainty remains largely 
unquantified among existing projections of future wave climate9,10, which has subsequently hindered 
broad-scale assessments of future coastal risk and vulnerability11-14. Here, we present results from the 
first coherent, community-based multi-method ensemble of global wave-climate projections derived 
from ten independent state-of-the art studies, based on different dynamical and statistical approaches. 
Clustering of the ensemble members shows different spatial pattern characteristics of historical and 
projected future wave climate. Under a business-as-usual scenario, we find robust projected changes 
of ~5-10% in annual mean significant wave height (𝐻"), mean wave period (𝑇$), and/or mean wave 
directions (𝜃$) along ~52% of the world’s coastline (of which ~22% exhibits robust change in two or 
more variables). Furthermore, we find that the variance in the existing community-ensemble is largely 
dominated by climate model-driven uncertainty, and that previous studies using single wind-wave 
modelling methods have been unable to resolve up to ~50% of the full variance associated with future 
wave-climate projections. 
 
Main body    
   Anticipated changes to the wave climate will result from a combination of meteorologically-driven 
changes in near-surface ocean wind fields15 and morphologically-driven changes nearshore16, and can 
potentially exacerbate or exceed impacts of future projected sea-level rise5,17,18. Establishing robust 
projections of global wave characteristics and quantifying the associated uncertainties introduced by 
the inherently complex modelling process is critical to avoid potentially costly maladaptation19. The 
wide range of wind-wave-modelling methods used to derive wave characteristics from surface wind 
fields expands the uncertainty space surrounding these projections, and remains poorly understood. 
The International Panel on Climate Change (IPCC) Fifth Assessment Report (AR5)20 assigned low 
confidence to wave projections (medium confidence for Southern Ocean 𝐻" increase) owing to the 
limited number of available model simulations and the uncertainty associated with Global Climate 
Model (GCM) downscaled surface wind fields. Since then, a new generation of global wave-climate 
projection studies have been completed by multiple international modelling groups21-30, using GCM-
forcing from the Fifth Coupled Model Intercomparison Project (CMIP5). While each of these studies 
have addressed aspects of uncertainty inherent to their own specific climate-modelling process, they 
treated the uncertainty space differently (emission scenarios and GCM-forcing) and none was able to 
quantify the uncertainty introduced by their own specific wind-wave modelling approaches (that is the 
different configurations of statistical/dynamical global wind-wave models)9. Consequently, there exist 
contrasting projected changes in wind-wave characteristics (magnitude and/or sign) across the world’s 
oceans. These limitations have systematically hampered broad-scale assessments of future coastal risk 



and vulnerability which have either adopted future wave parameters obtained from a limited number 
of GCM-forced simulations surrounded by low confidence5; or have omitted any future changes13,14,31 
on the basis of the unavailability of robust global data12 and the high uncertainty surrounding existing 
studies11.  
   Here, we perform a unique analysis of a coherent, multi-method ensemble of future global wind-
wave climate scenarios derived from ten independent state-of-the-art studies21-30, which have been 
completed under a pre-established community-driven framework32,33. Together, such studies yield a 
grand ensemble of 148 members of global wave-climate projections, from which we identify robust 
projected meteorologically-driven changes in 𝐻", 𝑇$ and 𝜃$ at the global-scale. Further, we resolve 
the dominant sources of uncertainty (emission scenarios, model forcing and wind-wave modelling 
approaches) amongst these different projections of the world’s future wave climate which has not 
been previously possible. Two29,30 of the ten contributing studies adopt statistical methods to derive 
wave projections exploiting a relationship between sea level pressure (SLP) fields and wind-wave 
parameters. The remaining contributions21-23,25-28,34 employ dynamical-based approaches in which 
GCM simulated high-temporal resolution surface winds are used to force a dynamical wave model. 
Details of each contribution and respective acronyms are provided in the Supplementary Information 
(Table S1). 
   Contributing studies have assessed the performance of each model to represent the historical wave 
climate on an individual basis. Here, we systematically evaluate the model skill of each contribution 
against the ERA-Interim35 (ERAI) global reanalysis wave data for the present time-slice (1979-2004) 
using spatial correlation (SC), normalized standard deviation (NSD) and centered-root-mean-square 
difference (CRMSD) (Supplementary Figs. S1-S3). Overall, both dynamical- and statistical-derived 
simulations exhibit good agreement relative to ERAI. CRMSD values in annual/seasonal 𝐻", 𝑇$ and 
𝜃$ are generally under 0.5 m, 0.5 s and 0.5 ° respectively, and SC values are consistently above 0.9. 
The statistically downscaled ECCC (s)30 members and ERAI are not independent in the present time-
slice, since these simulations have been obtained from a statistical-regression, calibrated using ERAI-
based SLP and 𝐻" fields. Thus, both data sets are predisposed towards good agreement exhibiting SC 
and CRMSD values above 0.99 and under 0.20 m, respectively, for all 𝐻" parameters. This is however 
not seen for the statistically downscaled IHC models which were calibrated using Global Ocean Wave 
(GOW2)-based SLP fields. Simulations from IHC29 and ECCC (s)30 share a common characteristic in 
which their members exhibit little variability relative to the dynamical projections, as a consequence 
of their statistical methods (Supplementary Fig. S1). Further discussion on model skill at seasonal and 
regional-scales is provided in Supplementary Information (Section 3.2; Fig. S2-S4). 
   Cluster analysis of 𝐻" by model (Methods) over the representative present-day time-slice delineates 
groups of ensemble members that are strongly dependent on the wind-wave modelling approach used 
by each study to develop wave projections (Fig. 1). These results (supported by analysis of variations 
in wind-wave models and settings; Supplementary Information Section 3) show wave-modelling 
approach is the dominant source of variance within the ensemble of present-day wave simulations. 
There are two well-defined statistical-based clusters explained by differences in training data set and 
transfer functions, and three dynamical-based clusters arising from differences in wave modelling 
configurations, e.g. source-term physics. Statistical and dynamical-derived clusters exhibit differences 



in magnitude/spatial pattern (Fig. 1; Supplementary Fig. S5), emphasizing the dominant influence of 
wind-wave modelling approaches. A detailed discussion on the dissimilarities between simulations is 
provided in Supplementary Information, supported by global pairwise comparisons of mean and 
variability bias in a coherent subset with common forcing-method (Supplementary Table 3; Fig. S6-
S9). 
 
 

Fig. 1 - Hierarchical clustering of annual mean significant wave height (𝑯𝒔) for time-slice 
representing present-day climate (1979-2004). a, Cluster tree diagram (dendrogram) resulting from 

Euclidean distance-based Ward’s minimum variance clustering using global pairwise annual 𝐻" 
(Methods). The vertical axis of the dendrogram represents the distance or dissimilarity between 

clusters (and cluster members) presented in log-scale for simplicity, higher lines are more dissimilar. 
In the horizontal axis of the dendrogram, the members are labelled by model forcing and study group 

(coloured accordingly). The multi-model ensemble mean from each group is also included with its 
respective colour. Multi-model ensemble averages (weighted multi-model mean by method, 

ENSEMBLE-WM, and uniformly weighted mean, ENSEMBLE) are coloured blue (Methods). The 
ERA-Interim is shown in green. Grey shading denotes five well-defined key clusters. b, Within each 
dashed line section, the cluster average of the relative difference to ERAI are shown for annual 𝐻" 

(Methods). The numbers at the bottom left of each panel are the number of cluster members used to 
calculate the cluster average (ERAI was excluded). 

 
 
 
 
 
 



 
 
   Future projected changes in global wave fields at the end of the 21st century (2081-2100) are 
examined for two representative concentration pathways: an intermediate-emission (RCP4.5) and a 
high-emission scenario (RCP8.5). Changes in the weighted multi-model mean under RCP4.5 and 
RCP8.5 exhibit very similar spatial patterns for all wave parameters, but with relatively larger 
changes projected for RCP8.5. Signals of projected annual change in wave parameters (𝐻", 𝑇$ and 
𝜃$) exhibit agreement between models across ~30%, 40% and 44% of global ocean under RCP8.5, 
respectively (Fig. 2; Supplementary Table S2).  
   A robust projected decrease in annual 𝐻" is seen across the North Atlantic and portions of the 
northern Pacific Ocean of up to ~10% under RCP8.5, expanding further across the eastern Indian and 
southern Atlantic Oceans in Austral summer. This is consistent with the relatively uniform decrease in 
projected surface wind speeds over the boreal extra-tropical storm belt36 partially driven by a strongly 
reduced meridional temperature gradient owing to polar amplification of climate change37. The 
regions of robust projected increase are limited to the Southern Ocean and the tropical eastern Pacific, 
in line with the intensification and poleward shift of the austral westerly storm belt38 and the 
increasing Southern Ocean swell propagation into the tropics10 respectively. In the Austral winter, 
regions of robust projected increase expand further across the tropics. These findings are (overall) 
qualitatively consistent with the Coordinated Ocean Wave Climate Project (COWCLIP) CMIP3-
based multi-model ensemble10 and other relevant literature9. Storm significant wave height 𝐻"(( 
exhibit similar annual and seasonal features of change as for 𝐻", nevertheless the fraction of global 
ocean exhibiting robust changes is smaller (Fig. 2; Supplementary Table S2).  
   The extended influence of the increasing propagation of swells out of the Southern Ocean region 
into the tropics is shown by the robust projected increase in 𝑇$ (25% of global ocean area) and the 
projected shift in 𝜃$ across ~44% of the global ocean (clockwise in the tropical Pacific and tropical 
Atlantic and anticlockwise elsewhere). A further discussion on projected seasonal future changes and 
global pairwise comparison between the different contributions is provided in Supplementary 
Information (Section 4.1; Fig. S11-S14). The findings described above are mechanistically linked to 
well-documented large-scale atmospheric wind circulation changes36,37 and modes of natural climate 
variability10. 
   Beyond evaluating the robustness of projected changes in terms of inter-model agreement (Fig. 2), 
we assess the importance of the changes relative to the magnitude of the present-day inter-annual 
variability (Supplementary Fig. S10). For RCP4.5, and we speculate the same for lower pathways39, 
most robust projected changes in wind-wave characteristics fall within the range of present natural 
variability (<100%). However, under the high-emission RCP8.5, nearly all robust changes exceed one 
standard deviation of the simulated inter-annual variability (some regions >150%).  
 
 

 
 
 



 
 

Fig. 2 - Projected future changes in weighted multi-model averaged wave-climate parameters 
under RCP4.5 and RCP8.5. a, Averaged weighted multi-model annual mean significant wave height 
𝐻", (December-February DJF and June-August JJA 𝐻" within dashed box with same colorbar as for 

annual 𝐻"), 99th percentile significant wave height, 𝐻"((, mean wave period, 𝑇$, and mean wave 
direction, 𝜃$, for the time-slice representing present climate (1979-2004). b-c, Averaged weighted 
multi-model changes for each respective wave parameter for the projected time-slice (2081-2100) 

relative to the present time-slice (% change) under RCP4.5/RCP8.5, respectively. Changes in 𝜃$ are 
absolute changes with vector direction denoting 𝜃$ for the present-day time-slice. Hatching is applied 

to regions of robust change in which the magnitude of the climate signal is larger than the one 
standard deviation across the n-members of the weighted multi-model ensemble (methods). Seasonal 

changes for each wave parameter are provided in Supplementary Fig. S11-S12. 

 
 
 
 
 



 
   Fig. 3 presents the robust wave-climate projections (Fig. 2) in the context of the world’s coasts, 
where impacts of any changes will be most acutely felt. Robust climate-driven changes in annual 
wave characteristics are projected across large sections of the world’s coast with, ~52% of coastline 
(excluding sea-ice areas and enclosed seas) exhibiting projected robust changes in at least one wave 
variable considered in this study (Fig. 3, Supplementary Table S2). Whilst there are areas where 
robust projections are limited to a single variable (e.g., 𝜃$ changes on the southern and eastern coasts 
of Africa), there are several coastal sections (~22% of the world’s coast) where robust projections in 
𝐻", 𝑇$ and/or 𝜃$ coincide (e.g., New Zealand, Southern Australia or Chile). This is also the case for 
the highly-vulnerable Pacific/Indian Ocean low-lying countries6 and the highly populated North 
American Atlantic coast which is a well-documented ‘hotspot’ of accelerated sea-level rise40. Future 
projected changes in 𝜃$ (a key driver of erosion patterns8,41 and island morphodynamic changes42) are 
robust along many coastlines with magnitudes of change ranging between ~±17°. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 3 - World’s coastlines exhibiting projected robust changes in significant wave height (𝑯𝐬), 
period (𝑻𝐦) and direction (𝜽𝒎) by 2080-2100 under RCP8.5. Sections of coast exhibiting robust 

weighted multi-model mean changes under RCP8.5 are coloured according to the qualitative 
colourbar (bottom), which also shows the respective percentage of coast where changes are robust 

(Methods for definition) for each wave characteristic(s) under RCP8.5 (top line) and RCP4.5 (bottom 
line). Sections of coast exhibiting a simultaneous robust increase in 𝐻. and robust decrease in 𝑇/ (or 

vice versa) are extremely limited. Vectors represent sections of coast with projected robust 𝜃/ 
changes with their angle (° north) representing wave direction over the representative time-slice 
(1979-2004) and their color representing the magnitude of the future changes (according to the 

quantitative colourbar, right side). The percentage of the world’s coast with robust changes in 𝜃$ is 
estimated at 29% (Supplementary Table S2). Coasts without black outline represent sea-ice areas and 

enclosed seas excluded from analysis (Methods). 
 

 
    
 
 
 
 
 
 
 
 
 



   The community ensemble of wave climate projections exhibits a range of uncertainty stemming 
from several different sources (emission scenarios, RCPs; model forcing, GCMs; and wind-wave 
modelling methods, WMs) which have been largely unquantified in previous studies. We applied 
Ward’s ANOVA-based clustering (Methods) to a designed subset of projection scenarios (consult 
Supplementary Table S3) spanning 2 RCP scenarios, 10 forcing GCMs and 10 WMs, providing an 
overall analysis of the dissimilarity amongst the projected signals (Fig. 4; Supplementary Fig. S16). 
We find that climate change signals largely cluster by GCM-forcing (wind forcing from which the 
wave field originates). There are some cases where RCP- and/or WM-related uncertainty dominate 
dissimilarity among the simulations (e.g., MIROC5, BCC-CSM1.1 and MRI-CGCM3). Analysis of 
the full ensemble of projections shows consistent results but less simply interpreted (Supplementary 
Fig. S16). 
   To further elucidate the dominant drivers of variance amongst these wave projections (and their 
relative contribution), we applied a three-factor ANOVA (Methods) to a set of coherent ensembles 
available as subsets of the full ensemble (Supplementary Table S4). The results show that no source 
of variance is negligible, and that projection uncertainty is not solely attributable to the different 
sources of uncertainty but also depend upon their nonlinear interactions. For each of the subsets 
analyzed (Fig. 5; Supplementary Fig. S17-S19), we find a dominating influence of GCM uncertainty 
across most of the global ocean accounting for ~30% to over 50% of the total variance associated with 
the projected change signal of 𝐻" (consistent with our cluster analysis; Fig. 4). Scenario uncertainty 
dominates across the North Atlantic, western North Pacific Ocean and Southern Ocean (~40 to more 
than 50% of the total variance), but is exceeded by other uncertainty contributors elsewhere. These 
results are consistent, to a certain extent, with previous research using statistical ensembles29,43 which 
found GCM-driven uncertainty to be larger than scenario uncertainty. However, these studies report 
that scenario uncertainty only accounts for less than 5% of the total variance anywhere, whereas our 
results demonstrate that its contribution is much larger across the afore-mentioned regions. Wind-
wave modelling method is a considerable contributor to the total uncertainty particularly across the 
tropics and subtropics (~25-50% of the total variance), whilst nonlinear interactions contribute ~20-
30% of the total uncertainty over most of the global ocean (dominated by interactions between GCM-
WM) (Fig. 5). These results show that all three sources of variance have to be systematically sampled 
to capture the total uncertainty in the projected change signal. It also indicates previous studies using 
a single WM have not captured up to 40-50% of the total variance (sum of the fractions attributable to 
WMs; Fig. 5). 
 
 
 
 
 
 
 
 
 



 
Fig. 4 - Hierarchical clustering of projected future changes in annual mean significant wave 
height (𝑯𝒔) (2081-2100 relative to 1979-2004). a, Cluster dendrogram resulting from Euclidean 

distance-based Ward’s minimum variance clustering using global pairwise projected change annual 
𝐻" (Methods). The vertical axis of the dendrogram represents the distance or dissimilarity between 

clusters (and cluster members) presented in log-scale for simplicity. In the horizontal axis of the 
dendrogram, the members are labelled by model forcing, study group and RCP scenario (RCP4.5 

simulations are italicized) respectively, and coloured by GCM, accordingly. The multi-model 
ensemble mean from each study group is also included. Multi-model ensemble averages (weighted 

multi-model mean by method, ENSEMBLE-WM, uniformly weighted mean, ENSEMBLE, and 
weighted multi-model mean by forcing, ENSEMBLE-WF) are coloured blue (methods). Grey shading 

denotes seven well-defined key clusters. b, Within each dashed line section, cluster-averaged 
projected changes in annual 𝐻" (m) between are shown (Methods). The numbers at the bottom left of 

each panel are the number of cluster members used to calculate the cluster average. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   Our study does not address variance in projections of wave climate fields introduced with atmospheric 
downscaling techniques. Although the regional downscaling step has been widely used in wave climate 
projection studies and is a topic of intensive research44, the different downscaling techniques introduce 
an additional source of variance which (at present) is not possible to sample at the global-ocean scale. 
We also note that the ensemble subsets suitable for ANOVA are limited relative to the full community 
ensemble. Nonetheless, the GCM-forcing within each subset represents a broad cross-section of the full 
CMIP5 ensemble with available high-temporal resolution surface wind forcing21,45, model components, 
spatial resolution and skill45.  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 5 - Relative contribution of different sources of uncertainty to projected future changes in 
mean significant wave height (𝑯𝒔). a-d, Fraction of the total variance in annual 𝐻" changes (2081-

2100 relative to 1979-2004) attributable to a) global climate models (GCMs), b) wind-wave 
modelling methods (WMs), c) greenhouse-gas emission pathways (RCPs) and d) sum of pairwise 

nonlinear interactions. e) Spatially-averaged contribution of each uncertainty source and their 
pairwise nonlinear interactions to the total ensemble uncertainty. Note the relatively small 

contribution of model residuals. Results are derived from ensemble subset 2 which comprises 6 
GCMs, 2 RCPs and 3 WMs for a total of N = 36 simulations (Supplementary Table S4). Similar 

results for subset 1 and 3 are presented in Supplementary Fig. S16-S17. Variance partitioning based 
on a three-factor ANOVA complemented with a subsampling scheme (Methods). Note that plotting 

artifacts such as horizontal lines reflect the effects of the spatial-domain partition applied in statistical 
methodologies. 

 
 
 
 
 
 
 
 
 
 



   Our CMIP5-derived coherent ensemble of wave-climate projections samples across RCPs, GCMs 
and WMs, allowing a much improved systematic sampling of the uncertainty space compared to the 
COWCLIP CMIP3-based ensemble of opportunity10 and/or any previous study to date. In addition to 
resolving the largely unquantified contribution of the dominant sources of uncertainty, it attests to the 
importance of using conceptually different WMs (similar to water-scarcity projections46). Some of the 
existing variability among dynamical WMs caused by 𝐻" biases may be potentially reduced by further 
model calibration47. While at present it impossible to separate this component, we advocate that future 
dynamical wind-wave simulations attempt to reduce the overall 𝐻" bias. These findings also highlight 
the need to understand how different available global wind-wave reanalysis/hindcasts (used to derive 
historical trends of wave climate change1) differ. We need to understand whether the same level of 
variance lies between these products. Our findings provide a new perspective on the robustness of 
global multivariate wave projections which builds beyond the restricted range of future wave-climate 
scenarios published to date. These coordinated ensemble projections show signals of wave climate 
change will not exceed the magnitude of the internal climate variability if the goal of the Paris 
Agreement 2° C degree target is kept. Under a business-as-usual scenario, ~52% of the world’s 
coastline will endure robust annual changes in 𝐻", 𝑇$ and/or 𝜃$ (with ~22% exhibiting robust 
changes in at least two of these variables). The magnitude of the projected future changes in any of 
these wave variables (~5-10%) are capable of inducing notable changes in coastal wave-driven 
processes and associated hazards41. While our results have far-reaching implications from many 
perspectives, they only address meteorologically-driven changes in wind-wave characteristics, which 
have been the predominant focus of wind-wave climate projection studies to date. Some localised 
studies suggest the morphologically-driven component of wave climate change (induced by rising 
sea-level, reef stability and other beach morphology changes) might lead to greater change in the 
coastal zone than these meteorologically-driven changes16. Concentrated community effort is now 
required to quantify morphologically-driven wave climate change as a contributor to global coastal 
sea-level change, as we look towards improved coastal vulnerability assessments from the climate 
community48. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Methods.  
1. Data contribution  
   We use a community-derived ensemble compiled from ten CMIP5-derived global wind-wave 
climate projection studies21-30 completed under a pre-established designed framework32,33. Annual and 
seasonal means of significant wave height (𝐻"), mean wave period (𝑇$) and mean wave direction 
(𝜃$) as well as 10th and 99th percentiles of annual/seasonal 𝐻" are obtained from the ten contributions 
(Supplementary Information for detailed description of data sets and framework). Our analysis 
assesses projected 21st century changes between the present-day (1979-2004) and future (2081-2100) 
time-slices. These align with CMIP5 archives of high-temporal resolution wind data required for 
wave-model forcing, and correspond to the common period across nine of the ten contributing data 
sets. Contributed wave data has been considered under two greenhouse-gas concentration 
representative pathways: RCP4.5 and RCP8.5 characterizing medium-stabilizing and high-radiative 
forcing (reaching +4.5W/m2 and 8.5 W/m2 relative to pre-industrial 1850-conditions), respectively. 
Sea-ice ocean areas were excluded from this analysis to support intercomparison between the 
different contributions. 
 
2. Model-skill analysis 
   Model skill for the present-day wave climate (1979-2004) was assessed by comparison with the 
wave parameters obtained from the ERA-Interim (ERAI) global wave reanalysis (Supplementary 
Information). To allow for intercomparison, the wave parameters derived from each of the global 
wave data sets were bilinearly interpolated onto the ERAI grid at 1° spatial resolution. Taylor 
diagrams were used to compare model performance for each wave parameter at global- and regional-
scales. The global model-skill analysis and regional evaluation performed over 10 sub-domains of the 
global ocean is provided in Supplementary Information.  
 
3. Cluster methodology  
   We applied an agglomerative-hierarchical clustering analysis, with the similarity criterion defined 
by Ward’s ANOVA-based minimum variance algorithm49. Initial cluster distances were determined 
using a multi-dimensional approach, where the pair-wise Euclidean distance (𝐷) amongst ensemble 
members are calculated at every grid node (rather than spatially-averaged), thereby clustering 
members with high similarity in terms of spatial pattern and magnitude: 
 

      𝐷2,4,5 = 	 𝑥2,5 − 𝑥4,5
:;

5<= 	     (1) 
 
where 𝑥2,5 and 𝑥4,5 are the magnitudes of the relative projected change in the annual mean significant 
wave height from models 𝑖 and 𝑗 respectively, at grid point 𝑘, with 𝑤 equal to the number of ocean 
grid points. Note that for the clustering of present-day wave simulations, we used absolute values 
rather than relative changes. The usage of the annual mean significant wave height (𝐻") as our 
clustering variable is based on the fact that 𝐻" is the only parameter available from all contributions, 



and our main goal is to analyse the whole community ensemble of wave simulations. Note that 
statistical-method-derived members30,50 do not provide wave period and/or directions due to 
methodological constraints (Supplementary Table S1). To further support our results, we performed a 
multivariate clustering based on annual 𝐻", 𝑇$ and 𝜃$ using our dynamical subset exhibiting 
qualitatively similar results in the present-day simulations and future relative changes. Further 
description of the cluster application to the present-day climate and the future projected changes is 
provided below. 
 
3.1 Application to present-day simulations 
   Annual 𝐻" over the present time slice (1979-2004) was used in the clustering procedure. We 
included all ensemble members available as well as the ensemble average of each contributing study, 
a uniformly weighted multi-model mean (attributing equal weight to each individual member) and a 
weighted multi-model mean by method (or approach). The latter consisted of reducing the full 
ensemble to n-members, with each single member representing the mean from a given study (when 
available). For example, the 30-member IHC ensemble was reduced to one member representing its 
multi-model mean. The relative differences (%) between the average of all members within each main 
cluster (when available) and the ERAI data was calculated for each parameter analysed over the 
global ocean (Fig. 1, and Supplementary Fig. S5). We extended our clustering analysis to annual and 
seasonal 𝐻" values combined and the results were consistent with those obtained using annual mean 
values. We also applied the clustering approach to the other wave parameters individually obtaining 
consistent results. In both cases, present simulations are strongly dependent on the method taken by 
each study group to develop future wave fields as shown in Fig. 1. 
 
3.2 Application to future projected changes 
   To identify and resolve similarities in the projected future change signal, the clustering procedure 
was applied to the projected changes in annual 𝐻" between present-day (1979-2004) and future (2081-
2100) time-slices. To resolve the relative importance of the different sources of variance (RCP 
scenario, GCM forcing and wave-modelling methods), we selected a subset from the full ensemble 
where each member shares common GCM forcing with at least two other members (obtained from 
different wave-modelling approach) (Supplementary Table S2). In the clustering procedure, we 
included the ensemble average of each contribution, a uniformly weighted multi-model mean (section 
3.1), a weighted multi-model mean by climate-model forcing (section 5) and a weighted multi-model 
mean by method, for each RCP. Five main clusters were identified based on the clustering results as 
indicative of members with considerable dissimilarity in the projected change signal. The average of 
all members within each main cluster (when available) was calculated for each wave parameter (Fig. 
1; Supplementary Fig. S5), providing a robust indication of spatial and magnitude dissimilarities 
across the global ocean. 
   We further applied the ANOVA-based clustering algorithm to the full community ensemble of wave 
projections, presenting consistent dissimilarities and respective associations between all available 
wave simulations, albeit less clear owing to the large size of the ensemble (Supplementary Fig. S15).  
 



 
4. ANOVA method 
4.1 Approach and selection of subsets 
   Variance across projected future wave climate changes (2081-2100 relative to 1979-2004) within 
our community-based ensemble arises from three different sources: choice of emission scenarios 
(RCPs), global climate models (GCMs), and wind-wave modelling methods (WMs). The latter refers 
to different configurations of the statistical/dynamical wind-wave models used to derive future global 
wave fields. In contrast with other climatic variables (e.g., temperature or precipitation), dynamically-
derived multi-model ensembles of wave projections are usually only available for twenty-year time-
slices over which high-temporal resolution GCM-derived near-surface wind fields are available9,33 
(Supplementary Table S2), prohibiting any partitioning of projection uncertainty in time. Therefore, 
we decompose the total ensemble uncertainty into contributions from the different sources of 
uncertainty (RCPs, GCMs and WMs) and the nonlinear interactions between them, where the total 
ensemble uncertainty is the variance of the climate change signal in projected average annual/seasonal 
𝐻". The fraction of variance attributable to each source at each grid point was determined based on a 
three-factor ANOVA51 (section 4.3). The ANOVA was applied to three subsets out of the full 
ensemble individually, each with a distribution of simulations sharing our three sources of uncertainty 
(Supplementary Table S3). 
 
4.2 Subsampling scheme 
   Traditional applications of ANOVA using different sample sizes of variance sources result in biased 
variance estimators52 (cf. Fig. 4 and Supplementary Fig. S15-16 with Supplementary Fig. S17). In order 
to reduce the effect of the biased variance estimator on the quantification of the uncertainty contribution 
we complemented the ANOVA with a subsampling scheme previously proposed52. In each subsampling 
iteration i, we select two of n-climate models and two of m-wave models, representing a total of 𝐶:C𝐶:$ 
subsamples with n and m denoting the number of GCMs and WMs within each subset respectively. For 
each subsample i, we ended up with two global climate models, two emission scenarios and two wave-
modelling approaches which we used for variance decomposition as described below. 
 
4.3 Three-factor ANOVA model 
   Letting 𝑌45E

2  be our response variable representing the projected change signal in 𝐻" from the jth 
GCM, kth RCP and lth WM, we define our three-factor ANOVA model without replication 
following52,53: 

 
                        𝑌45E

2 	= 	 𝜇2 + 	𝛼4
2 + 	𝛽52 + 	𝛾E2 + (𝛼𝛽)45

2 + (𝛼𝛾)4E
2 + (𝛽𝛾)5E2 + 	𝛿45E

2                        (1) 
 
where 𝜇2 is the grand-mean projected change of the subsample i. The terms 𝛼4

2, 𝛽52  and 𝛾E2 represent 
the variance attributable to the different factors (GCM, RCP and WMs respectively) with 𝑗, 𝑘 and 𝑙 
denoting samples of the different factors. The terms 𝛼𝛽45

2 , 𝛼𝛾4E
2  and 𝛽𝛾5E2  represent nonlinear 

interactions between the different pairs of factors, respectively. The term 𝛿45E
2  represents the variance 

attributable to residuals of the model (which are assumed to be normally distributed having zero-



average and variance 𝜎OP": ) and internal variability. The results derived from each subsample i for 
each subset were used to estimate the unbiased fraction of the total uncertainty attributable to each 
source52,53. The nature of our ensemble allows us to quantify the contribution of each source of 
uncertainty, and their first-order interactions, to the total variance, but does not allow us to test 
whether these stand out of the natural internal variability of the climate system or resolve GCM 
generated internal variability. An analysis of the climate change signal relative to the amplitude of the 
internal climate variability is provided in Supplementary Fig. S10 based on one realisation for each 
member.  
 
5. Analysis of projected change 
   Changes in all wave variables (except 𝜃$) between the present and future time-slices were derived 
as percentage changes for each member (from each contribution) directly forced by GCM-derived 
surface wind fields. Both LBNL27 and KU28 data sets were derived using downscaled forcing via high 
resolution atmospheric models driven by specific SST conditions (Supplementary Information) and 
therefore were not included in this analysis. Projected changes in 𝜃$ were calculated as absolute 
values and shown as clockwise, or anticlockwise, rotation in degrees relative to the present-day 
climate mean. Changes were calculated under RCP4.5 and RCP8.5. A multi-model weighted mean 
projected change was calculated. Fifty statistical projected scenarios are available from IHC and 
ECCC (s) combined for both scenarios, whereas dynamical projections consist of 23 (RCP4.5) and 25 
(RCP8.5) projected wave-climate change scenarios (Supplementary Table S1). Projected change 
signals strongly depend on GCM forcing (the surface wind fields from which the wave field 
originates from) (Fig. 3 and 4), hence a weighted multi-model ensemble average was calculated by 
applying a weighting factor to each member: 
 

     𝑥5 = 	
(∆R,S	×	UR,S)V

RWX
(UR,S)V

RWX
                          (3) 

   
where ∆2,5 is the projected change for a given wave parameter 𝑘 by the ensemble member 𝑖 and 𝑊2 is 
the weighting factor for the ensemble member 𝑖 for that same parameter (calculated as the number of 
ensemble members with that same forcing GCM amongst all members 𝑛). For all wave parameters, 
the map of mean projected change was derived as the	𝑛-member multi-model weighted mean 
difference between projected and present wave-climate fields from Equation 3. Stippling is shown 
where the multi-model weighted mean response exceeds the model spread (i.e. a robust change), 
measured as the weighted standard deviation across the 𝑛-members: 

             𝑆5 = 	
	UR,S(∆R,S\]S)V

RWX
UR,S \=V

RWX
                                       (4) 

 
6. Percentage of coastline with robust changes 
   For annual and seasonal means of each wave parameter, the percentage of global coastline length 
that exhibits a robust, by the above definitions (section 5), projected increase/decrease was calculated 
(Table S1). To this end, we used the nearest model deep-water grid-point to the coastline data set 
from the Global Self-consistent Hierarchical High-resolution Geography (GSHHG) archive54. Coasts 



without available wave model outputs were not considered, which included sea-ice regions and 
enclosed seas. These results are considered representative of wind-wave conditions before interaction 
with the seafloor and depth-induced wave breaking in the nearshore occurs55.  
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