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Abstract

A regular relationR, is one for whichR = R R̂ R, where “ ” is relational
composition and “^” is relational transpose. By examining realistic case
studies, and other examples, it is shown that when expressed using a rigorous
specification notation, the majority of specifications turn out to be regular
relations. This is certainly so for deterministic problems, and when abstraction
relations are functions, reification preserves regularity. Nondeterministic
specifications can appear to exhibit non-regularity, but at least in the most
commonly occuring cases, it is argued that this is caused as much by a failure
to separate concerns, as by any intrinsic lack of regularity in the specification.
Such specifications can be recast into a regular form, and the process is
analogous to a “transformation to orthogonal coordinates” of the original
problem. A design philosophy is proposed, that places the search for regularity
at the heart of specification construction, with implications for requirements
capture.

1 Introduction

In this paper we set out to convince readers that certain types of relations, the regular rela
are both relevant and useful in the practice of software construction, particularly in the req
ments capture and specification processes. For the sake of the precision that they can yi
will work mainly within notations such as VDM (Jones (1990)) and Z (Spivey (1993)), tho
the reader will realise that the main impact of the paper is at a meta level, and thus the pri
conclusions of the paper will translate to other methodologies too. Over the last couple o
ades, formal specification methodologies such as VDM and Z have reached a certain ma
and a considerable amount of experience in their use has been accumulated. When co
ing a system within a framework such as VDM or Z, one generally starts with a highly abs
view of what the system is to do, and then successively refines the high level view by inc
rating lower-level detail, until one is close enough to an implementation description, tha
can create executable code. Each step of the refinement process introduces proof obli

1. Email: banach@cs.man.ac.uk



accu-

s. The
f con-
ction

tate in
spec-
h the
as com-
efore
rela-
s the

fer-
te this

to el-
prom-
ome-
f re-

e is

It
sign,
of the
logies

tions,
more
con-
es, of-
nven-
fertile
We do
f reg-

e said

gular
seful

layed

o de-
d a
ut fur-
that must be successfully discharged before one can be certain that the lower-level view
rately models the higher-level view.

Regardless of the level of abstraction, a specification of some system consists of two part
first is a description of the state space of the system; this essentially describes the set o
figurations that an instance of the system might be in at any time. The second is a colle
of specifications of operations, each of which describes how the system is to change s
response to a certain kind of stimulus, the stimulus usually coming from outside. Since a
ification of an operation describes a change of state, it must involve a description of bot
state before the operation commences, the pre-state, and the state after the operation h
pleted, the post-state. Disregarding specific details of notation, mathematically it is ther
a relationR, from the set of pre-states to the set of post-states. Although in principle this
tion can be quite arbitrary, it turns out that in the vast majority of realistic cases it satisfie
property of regularity, i.e.R = R R̂ R.

The first aim of this paper is to establish that this is actually true. We do this mainly by re
ring to various examples, and to collections of case studies of specifications which preda
paper’s preoccupation with regularity, and which are thereforeprima faceneutral on the issue,
in particular Jones and Shaw (1990), and Hayes (1993). The second aim of the paper is
evate the previous fact to the status of a desideratum for specifications; in other words to
ulgate the view that if a specification of an operation is not regular, then perhaps there is s
thing wrong with it. This leads to a useful discipline that can guide the earlier phases o
quirements capture and specification design — “look for the regularity”. This disciplin
proposed at the end of this paper.

Perhaps it is as well to state plainly now what this paper does and does not set out to do.does
intend to bring to the fore a particular aspect (regularity) that is latent in much software de
and to promote the view that attention deserves to be paid to regularity, not only because
structural simplicity and robustness of regular specifications, but also because of the ana
that hold between regular strategies of problem solving in the discrete world of computa
and much older strategies that apply in the world of engineering mathematics (of which
below). Itdoes notintend to describe a specific software development methodology. The
clusions of the paper may be taken on board by many existing development methodologi
ten in a number of different ways, depending on taste. Problem solving is (at least in co
tional engineering practice) acknowledged to be a creative activity, and there is often a
interplay between the creative aspects and the rigorous techniques that validate them.
not wish to be prescriptive here about how this interaction is to be managed in the case o
ularity. We leave that task to the designers of specific development methodologies. As w
above, our major conclusions are intended for the meta level.

The structure of the rest of the paper is as follows. In section 2 we review relations and re
relations in particular. The criteria for regularity are many and varied, perhaps the most u
one being rationality, i.e. a relation is regular iff it can be written asR = f g^ with f andg
being partial functions. The special nature of the regularity property is probably best disp
categorically: a regular relation corresponds exactly to a bicartesian square inSet — this gives
regular relations powerful universal properties. In section 3 we apply regular relations t
terministic specifications, and to reifications in which the abstraction “function” is indee
(partial) function. An easy general theorem shows that these situations are regular witho
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ther ado. We quote a few examples to drive the point home. In section 4 we briefly me
that inverse deterministic specifications are regular for reasons that are analogues of th
sons in the deterministic case. In section 5 we tackle our first nondeterministic specifica
one that turns out to be non-regular; until that is one changes one’s perspective, whereup
ularity emerges easily. We argue that the change in perspective, a change of coordinate
to “orthonormal coordinates”, is just a classical problem solving technique from enginee
mathematics, which illuminates the significance of regularity from a perspective of impecc
pedigree. In section 6 we tackle the “canonical nondeterministic example”, of which most
deterministic specifications arising in practice are an instance. We argue that the non-re
ity of the canonical example is attributable more to a subtle mixing of concerns than to an
trinsic non-regularity in the problem, and furthermore, that in certain cases at least, ther
failure at the requirements level which is reflected in the structure of the specification. Re
ing the specifications so as to separate concerns, or to fix the inadequacy in the require
leads to regularity once more. Section 7 discusses further examples, including ones wh
genuinely non-regular, and comments on these. Section 8 gathers the supporting ev
from the preceding sections in order to propose a design philosophy that encourages the
search for regularity during the requirements capture and specification phases of system
struction.  Section 9 concludes.

2 REGULAR RELATIONS

We briefly review some material on relations in order to establish enough notation for th
mainder of the paper. Good references on the properties of relations are Tarski (1941) an
pes (1960); and much of this material is reviewed in Mili (1990), who uses it as a founda
for the study of program fault tolerence. Relations are also described in many introdu
texts on discrete mathematics eg. Ross and Wright (1992). See also Schmidt and Str
(1993).

Let R be a relation fromA to B. We write dom(R) for the domain ofR, and cod(R) for the co-
domain ofR. We writea.R for the set {b ∈ B | aRb}, and X.Rfor ∪a∈X a.R. LikewiseR.bis

{ a ∈ A | aRb} and R.Yis ∪b∈Y R.b. If for all a ∈ A, a.R is (at most) a singleton, then we sa
thatR is a (partial) function. Similarly if for allb ∈ B, R.bis (at most) a singleton, then we sa
thatR is an inverse (partial) function. We writeR̂ for the transpose, or inverse of a relationR,
andR S for the composition of relationsR andS (which works from left to right).

Now for the main definitions.

A relationR is regular iffR = R R̂ R. (In fact this amounts toR R̂ R ⊆ R since the
opposite inclusion holds for any relation).

A relationR is uniform iff a.R∩ a′.R ≠ ∅ ⇒ a.R= a′.R.

A relationR is rational iff there are (partial) functionsf : A → P, g : B → P such thatR= f g^.

Theorem 2.1  A relationR is regular iff it is uniform iff it is rational.

The proof of the equivalence of the above criteria for regularity (and their equivalences t
more criteria expressed in set theoretic terms) are easy enough, and can be found in B
(1994), building on work of Mili (1990) and Jaoua et al. (1991).
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Corollary 2.2  If R is regular thenR̂  is regular.

Corollary 2.3 If R is regular andf′ andg′ are suitable (partial) functions, thenR′ = f′ R g′^
is regular.

Corollary 2.4 R is regular iff there is a bijection≈ between equipollent partitions of dom(R)
and cod(R) given byaRb⇔ [a] ≈ [b].

All of the above follow most easily whenR is expressed in rational form asR= f g^ for some
partial functionsf andg.  Fig. 1 below illustrates a regular relation in rational form.

When specifications are described using regular relations, it turns out that the intermedia
P of the rational formulations, frequently express important abstract properties of the o
tions.  See the examples in the sections below, particularly section 6.

Universal properties

Perhaps the most striking property of regular relations is the fact that they correspond to
backs and bicartesian squares inSet, the category of sets and total functions. We indicate bri
ly how this happens. Readers unfamiliar with category theory may simply skip the rest o
section.

Let f : A → P andg : B → P be two total functions. Their pullback is given up to isomorphis
by the setK and obvious projection functionss : K → A, t : K → B where

K = ∪p∈cod(f)∩cod(g) f –1(p) × g–1(p)

It is clear that the elements of cod(f) ∩ cod(g) correspond to a bijection between blocks of pa

titions of f –1(cod(g)) andg–1(cod(f)) and that the elements ofK thus correspond to a regula

A B
P

f g

R
Fig. 1.

a
b
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relationR = f g^ given byaRb⇔ (a, b) ∈ K. The fact that in the abovef andg are total
whereas in an arbitrary regular relationR0 = f0 g0^, f0 andg0 need only be partial, may be
circumvented by enlargingP if necessary to include elementspa andpb, disjoint from cod(f0)
∩ cod(g0), and extendingf0 to all of A by sendingA – dom(f0) to pa andB – dom(g0) to pb. Of
course this is not the only way of making sure thatf0 andg0 extend to total functionsf andg
with the same cod(f) ∩ cod(g) and same pullback objectK, and so a given regular relation cor
responds to many different pullback squares inSet, even  up to isomorphism.

Note that the pullbackK, depends only on the restriction off0 to f0
–1(cod (g0)), and the restric-

tion of g0 to g0
–1(cod(f0)). We can use this freedom to stipulate thatf : A → P andg : B → P

is actually the pushout ofs : K → A andt : K → B.  Up to isomorphism we find

P = [A – f –1(g(B))] ∪+ [cod(f) ∩ cod(g)] ∪+ [B – g–1(f(A))]

with f andg injective on the first and last summands ofP respectively. Now, bothK andP are
unique up to isomorphism and we have a bicartesian square inSet, whose universal factorisa-
tion properties are illustrated in the Fig. 2 below.

Theorem 2.5 To every regular relationR there corresponds at least one pullback square inSet
such that the pullback objectK is isomorphic toR. Also, at least one of these pullbacks is

A P

P′

K B
t

f

f′

s g

g′

θ

K′

t′

s′

ψ

Fig. 2.
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bicartesian square, unique up to isomorphism. Conversely, to every pullback square or
tesian square inSet, there is a corresponding regular relation.

See Banach (1994) for a more thorough discussion and proof.

Although we do not make much use of the categorical properties of regular relations belo
mention them here for two reasons. Firstly to highlight their strong universal properties, w
for a mathematical construction, is always a sign that something “special” is at issue. Se
ly, it facilitates the analogy we bring out, between our methods and classical engineering-
ematical methods, as we discuss in section 5. Given that these two areas are so differe
abstractness of category theory provides an appropriately neutral playing field on whi
draw out the analogy. Having thus introduced the special nature of regular relations, it s
not be surprising that they display particularly convenient behaviour in applications.

3 DETERMINISTIC SPECIFICATIONS AND
REIFICATION

Specifications are principally concerned with the definition of state spaces and of opera
on, or between state spaces. We will take the slightly more general I/O view of operation
translators of “inputs” from one state spaceA, into “outputs” in another state spaceB. This
slightly unconventional view, which we call the “I/O picture”, has been studied in eg. Ha
and Sanders (1993). The conventional position, with operations acting on a single state
is just the special caseA = B.

State spaces in computing applications often display a degree of structural complexity, a
usually defined by giving a suitable cartesian product of basic or already defined types, an
imposing invariants on this set to give the actual state space required. (Note that we use
such as “state space”, “set”, and “type” fairly interchangably in this paper, the more subtle
notations of these concepts will not be needed.)

Operations are likewise defined in pieces. Suppose we have an input state spaceA and output
state spaceB already defined. An operationΠ from A to B will be given by a Boolean expres-
sion onA × B. If one examines the structure of this expression, one normally finds that it
conjunction of a number of pieces. The first piece is an expression independent ofB; we call
it the prerestriction,α(Π); it helps to define the domain of applicability ofΠ. The second piece
is an expression involving bothA andB; we call it the trans-restriction (transition restriction
ρ(Π); it says what the operation does. The third piece is an expression independent ofA; we
call it the postrestrictionβ(Π); it helps to define the codomain of the operationΠ. In a realistic
specification, one or more of these pieces may be absent. At any rate, in a specification
operation, we have a setA × B and a Boolean expression onA × B whose characteristic function
defines a subset ofA × B, in other words a relationR from A to B.

In VDM, what we have called the prerestriction is called the precondition, and is singled
syntactically; and what for us isρ(Π) ∧ β(Π) is called the postcondition, also captured usin
special syntax. In Z, all three pieces occur together in the body of the specification, thoug
tions of pre- and post- conditions arise in the metalanguage of Z. We have deliberately c
a different nomenclature in order to avoid bias, and more importantly to be symmetrica
tween the input and output aspects of a specification.
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It is important to emphasise that there is often some lattitude in how a specification is d
up. Whether a particular criterion is captured in the structure of the basic product space
input state, whether it is expressed in the invariant on that product space, whether it is exp
in the prerestrictionα, or whether is occurs in the trans-restrictionρ, are sometimes matters o
taste; and depend on such things as human readability predisposition and convenience,
pressivity of the formal notations used, the ease of manipulation of the formal notations in
sequent development stages, and so on. Similar remarks apply to the output side. And
these matters may be important in specific methodologies based on languages like VDM
we want to emphasise that for us they will be tangential; we are mainly interested in hijac
the notation for its inbuilt precision when convenient. For us, all that matters is that we h
relationR from A to B, however expressed.

Definition 3.1 A specification of an operationΠ, given by a relationR from A to B is deter-
ministic iff R is a (partial) function.

Theorem 3.2   A deterministic specificationR is a regular relation.

Proof. If R from A to B is deterministic thenR is a partial function andR = R IB̂ , whereIB
is the identity function onB; whenceR is regular by Theorem 2.1.

Union-Find

We examine a small example, theunion operation from the familiar union-find problem. Le
X be a fixed set. The input space consists of triples, each triple comprising a partition ofX and
two members ofX; and the output space consists of partitions ofX. In a purely relational for-
mulation, theunion operation is given by the following relation:

union = { (〈S, p1, p2〉, S′) | S is a partition ofX ∧
∃ s1 ∈ S• p1 ∈ s1 ∈ S∧
∃ s2 ∈ S• p2 ∈ s2 ∈ S∧
S′ = (S – {s1, s2 }) ∪ {s1∪s2} }

SinceSis a partition, in the abovep1 determiness1 uniquely and likewise forp2, and this makes
S′ depend functionally on〈S, p1, p2〉. At risk of labouring the point, we can write out the ratio
nal version of this specification. We haveunion ⊆ A × B whereA is the set of triples〈S, p1, p2〉
with S a partition ofX, andp1, p2 ∈ X, andB is the set of partitions ofX.  We can now write:

union = f g^ wheref : A → P, g : B → P with P = B, g = IB and
f(〈S, p1, p2〉) = (S – {s1, s2 }) ∪ {s1∪s2} wherep1 ∈ s1 andp2 ∈ s2.

Reification

Reification is an important activity in system development as it helps to bridge the gap bet
an abstract view of a system, and a more concrete view. In reification one starts with an ab
view of the state spacesAo andBo, and seeks to model them using more concrete state sp
Ac andBc, having characteristics closer to what is regarded as being directly implement
In the overwhelming majority of cases, the relationships between abstract and concrete
spaces are given by abstraction functions (or retrieve functions):
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AbsA : Ac → Ao
AbsB : Bc → Bo

which are normally required to satisfy totality and surjectivity criteria:

(TOT) ∀ x ∈ Ac • ∃ y ∈ Ao • AbsA(x) = y
∀ x ∈ Bc • ∃ y ∈ Bo • AbsB(x) = y

(SUR) ∀ y ∈ Ao • ∃ x ∈ Ac • AbsA(x) = y
∀ y ∈ Bo • ∃ x ∈ Bc • AbsB(x) = y

(If the abstraction functions do not satisfy these criteria, then a great deal of care has to be
in the reification process, to ensure well definedness.)

Having reified the state space descriptions, operations may be reified by composition wi
abstraction functions as follows. LetΠo be an abstract specification of an operation, and le
be given by a relationRo from Ao to Bo. Let AbsA : Ac → Ao and AbsB : Bc → Bo be the relevant
abstraction functions. Then the reified specificationΠc is given by a relationRc =

AbsA Ro AbsB̂ .

Theorem 3.3 Let AbsA : Ac → Ao and AbsB : Bc → Bo be abstraction functions. IfRo is a
regular relation fromAo to Bo which describes an abstract specificationΠo of some operation,

then the reified specificationΠc is given by a relationRc = AbsA Ro AbsB̂ from Ac to Bc
which is regular.

Corollary 3.4 Let AbsA : Ac → Ao and AbsB : Bc → Bo be abstraction functions. IfRo = f is
a deterministic relation fromAo to Bo which describes an abstract specificationΠo of some op-
erat ion, then the reified specificat ionΠc is given by a regular relat ionRc =

AbsA f AbsB̂ from Ac to Bc.

The proofs of both of these theorems are trivial consequences of Corollary 2.3.

Note that provided any resulting constraints on the domain and codomain ofRc are acceptable,
Theorems 3.3 and 3.4 do not even require the totality or surjectivity criteria (TOT), (SUR
hold.

Note further that in practice, many reifications of deterministic operations are actually d
ministic subrelations of the reified specifications mentioned in Theorem 3.3 and Corollary
In such cases, the reification obviously preserves regularity also.

It is time to mention some more examples. Specifications for the operations in the simple
dard textbook abstract data types will be deterministic. Things like lists, stacks, binary t
hash tables, queues, deques, priority queues etc., are described in many places, and it
that the operations involved generally have a single possible output for any given input, h
are deterministic. In Appendix A we mention some more deterministic examples culled
the case study collections Jones and Shaw (1990), and Hayes (1993).
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4 INVERSE DETERMINISTIC SPECIFICATIONS

By rationality, for any relationR, R is regular iffR̂ is regular. Consequently, if a general spe
ification design scheme always leads to regular relations, so will the transpose of that sc
Applying this idea to deterministic specifications immediately yields that inverse determin
specifications are regular. When one subsequently reifies such specifications using abst
functions, one obviously retains the regularity property, just as for deterministic specificat

We note a couple of examples of inverse deterministic specifications, both inspired by H
and Jones (1989). Both are in fact also deterministic, whence the relation between inpu
outputs is bijective. One might question the inverse deterministic formulation of the prob
in such cases. However the inverse deterministic formulation may well possess a deg
conceptual clarity that is absent in a direct formulation. This may swing matters in favo
the inverse deterministic formulation.

Integer Square Root

If r is intended to be the largest integer square root ofn, then we can specify the problem b
writing

r2 ≤ n < (r + 1)2

which is inverse deterministic.

Parsing

Another example arises in parsing, where one can succinctly specify the problem by the c

fringe(parse_tree) = input_string

wherefringe is the usual fringe function that lists the leaves of a tree in left to right order. Ag
this is inverse deterministic forparse_tree. Generally, other clauses in the specification w
narrow down the nondeterminism in the specification to the point where a giveninput_string
will yield exactly oneparse_tree (unless the grammar in question is actually ambiguous).

5 A SIMPLE NONDETERMINISTIC EXAMPLE

Now we turn to nondeterministic specifications. Our first example is relatively trivial but
lessons for us in terms of the significance of regularity. Let the input bex and the output bey
both reals.  The trans-restriction is:

lt = {(x, y) | x < y}

which makes the set of related (x, y) pairs, the above-diagonal half plane. Rather obvious
3 lt 4, 4lt^ 1, 1lt 2; but werelt regular, we would have 3lt 2, manifestly nonsense. So as give
lt is not regular.  However let us change to rotated coordinates

u = y + x
v = y – x

thenlt becomes the transformed specificationltr on the real variablesu, v whereu is unrestrict-

ed (i.e. dom(ltr) is the reals), butv is restricted to be positive (i.e. cod(ltr) is the positive reals):
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ltr = {(u, v) | v > 0}

Now ltr is regular becauseu ltr v is independent ofu, whenceu1 ltr v1, v1 ltr^ u2, u2 ltr v2 implies

u1 ltr v2. By changing coordinates, we have done two things. We have recast the original
lem into a form that more clearly reveals its underlying structure, and we have also subt
tered the significance of regularity with regard to the problem. This is most clearly seen
we refer to corollary 2.4. In the original formulation, we could not find suitable partitions
thex andy coordinates that related to one another in the required simple fashion. But cha
to u andv allowed us to relate all the allowed values ofu to all the allowed values ofv.

The transformation of a problem from one set of coordinates to a more convenient set,
hat in engineering mathematics (of which our problem may be seen as a rather trivial exam
In fact one can justifiably say that a major part of classical (not to mention quantum) m
matical physics reduces to the design of appropriate coordinate systems in which the str
of problems becomes tractable. Tractability in these cases amounts to the ability to se
variables in the equations of interest. The latter, to put it in terms familiar in programming
ory, is a form of divide and conquer strategy appropriate to continuous problems.

We therefore see that our search for regularity has a noble pedigree among tried and
problem solving techniques. Regularity corresponds to a certain separation of concerns
problem at hand, whereby points in the problem domain which do not have much to do
one another are not brought into too close proximity as a result of using an inappropriate
of reference to describe the problem. Often this is much easier to achieve in a continuous
lem domain than in a discrete one; in the latter it is much easier to “fiddle” with arbitrary p
of the problem to destroy any uniformity of structure that may exist, and consequently th
less temptation to search for the kind of uniformity that we have been speaking about. G
the different approaches used in continuous and discrete problems, it is not too surprisin
we need a fairly high level of abstraction to bring out the analogies that may exist. That
ration of variables and discrete techniques have anything in common at all is intere
enough, but that their relationship might reside in something as abstract as bicartesian s
in Set should be less surprising.

6 NONDETERMINISTIC SPECIFICATIONS: THE
CANONICAL EXAMPLE

Now we turn to a more realistic example. Operations which are inherently nondetermin
arise when the system has some element of freedom in deciding the outcome of the ope
In the overwhelming majority of realistic cases, the choice arises because the system as a
is growing in size, and the new data representing a quantum of growth has to be found a
in the representation of the system state. The exact place within the system state is usu
little importance, and because external users do not care about the precise details, it is
the system to choose a place. This gives rise to the nondeterminism. We examine a t
example to see how we farevis à visregularity. The structure of this example is so commo
that we call it our canonical example.
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Page Allocation in a Heap

The archetypal resource allocation/deallocation scenario is dynamic storage manag
Suppose we have a store containing four pages. We represent these pages by four small
open when free, and filled in when allocated. Suppose we are in the state an
receive a request for a page. We do not care which page gets allocated, so ifR is the relation
representing the allocation operation, we have

R  and R

depending on which free page gets allocated. On the other hand, if we are in the
 and we request a page, we find

R  and R

Clearly .R ∩ .R = { } ≠ ∅, but .R ≠ .R
so thatR is not uniform and therefore not regular by Theorem 2.1.

Operations which exhibit this behaviour invariably have two key clauses in their specificat
In the prerestriction one finds the first of them:

u ∉ dom( ) (❉)

whereu is a unit of resource which is about to be allocated, andinuseis a partial function which
maps each in-use unit of resource to the data that is assigned to it, the VDM hook indic
that we are refering to the input version ofinuse. In the trans-restriction one finds the other ke
clause

inuse = ∪ {u |→ datum} ( ❉❉)

wheredatumis the thing whose use requires the allocation ofu. (Note that we have quoted
verbatim from examples with this structure. In particular we should note thatu is implicitly a

member of the type of which dom( ) is a subset, and that theu’s in both (❉) and (❉❉) are
the same, i.e. both occur in the same scope (regardless of whether this strictly conforms
methodology at hand).)

This nondeterministic metaphorR= (❉) ∧ (❉❉) displays an important asymmetry between i
put and output, to which the non-regularity of the specification is attributable. The claus❉)

is indifferent to whichu outside of dom( ) we choose; all we care about is that there

such au. In other words it cares not about the map itself, but only about the multise
values

 = {datum |→ n | datum∈ cod( )∧

n = |{ x ∈ dom( )| (x) = datum} | }

[ ]

[ ] [ ] [ ] [ ]

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

ínuse

ínuse

ínuse

ínuse

ínuse

V́al ínuse

ínuse ínuse
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that dom( ) refers to1. On the other hand, the clause (❉❉) is fussy about the mapinuse

itself, since it demands that  andinuse differ only onu.

This is a significant mixing of levels of abstraction. Clause (❉) is abstract in that (implicitly)

it only demands that enough dom( ) objects are available to refer to the multiset

there are many different maps that will do the job. However (❉❉) is concrete in that it
is specific about the mapinuseitself in demanding that it changes as little as possible. The
ter is an efficiency consideration — obviously it is ludicrous to remap already allocated va
whenever a new datum requires allocation, moreover since members of dom(inuse) are fre-
quently passed around other parts of the system, as nicknames for the data thatinusemaps them
to; genuinely remapping the already mapped data would obviously incur substantial overh
(Nevertheless we point out that copying garbage collectors, when copying the live data in
unused halfspace in response to an allocation request which triggers a collection ope
come close to exactly this behaviour.) So we have a mixing of concerns: an abstract vie
plicit in the prerestriction, and a more concrete view in the trans-restriction. In view of ou
marks about separation of concerns in section 5, it is not surprising that the specificat
poorly behavedvis à vis regularity.

What happens when we try to unmix the concerns? At the abstract level we should car
that theinusemaps cater for the appropriate multisets of values, so in the prerestriction we
find

∃ u ∈ U • u ∉ dom( ) (❉o)

(whereU is the correct type foru). Of course this is no different from (❉) above except that
we are being more precise about the scope ofu.  In the trans-restriction we will then have

Val–1(datum) = –1(datum) + 1 (❉❉o)

which says thatVal contains one extra instance ofdatumcompared with , and which im-
plicitly specifiesinusenondeterministically through the formula forVal. We claim thatRo =

(❉o) ∧ (❉❉o) gives rise to a regular relation, since any that yields will be rela
to anyinusethat yieldsVal. Let us substantiate this by displayingRo in rational form. LetD
be an appropriate type fordatum. Then the type ofinusemaps isU → D. The type ofRo be-

comesRo ⊆ (U → D, D) × (U → D). Writing MT for the type of multisets overT and ∪+ to
insert an element into a multiset we can write

Ro = f g^  where

f : (U → D, D) → MD : ( , datum) → ∪+ datum
g : (U → D) → MD : inuse→ Val

            whereVal = ∪+ datum

1. Obviously, the codomain of a map is in reality a set, not a multiset. We use a multiset rathe
than a set in this discussion in order to keep track of the multiplicity of elements of dom(inuse)
that refer to a given element of the codomain; this is significant at this level of abstraction.
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It is now clear thatRo is regular. Of course the view expressed byRo is indifferent to the costs
of remapping mentioned above.

Latent in the above is a yet more abstract view of the allocation problem. Factoring the mf
above as

f = fA foo where

fA : (U → D, D) → (MD, D) : ( , datum) → ( , datum) and

foo : (MD, D) → MD : ( , datum) → ∪+ datum

we find that the essence of the problem may be understood usingRoo= fooalone.Rooexpresses
the notion that what is of interest is soley the data. This view is appropriate at the most ab
levels of system description, those in which representation issues are of no interest. If w
regard the fact thatVal implicitly encodes theinusemaps, we can write this highest level spe
ification, Z-style for variety, as

Ro may now be obtained as a reification ofRoo via

Ro = fA foo g^

Depending on our point of view we can regardRoo in different ways. On the one hand, we ca
see it as having revealed a useful clarification of the problem by bringing out extra abstra
as a byproduct of our search for a regular description of the original situation. (Note b
way, thatRoo is deterministic, it is just the relation that relates multisets which differ by o
member — thus we might be justified in regarding the whole problem as belonging to th
terministic camp of section 3.) On the other hand, we could say that thatRoo loses too much
of the detail that we are regarding as essential at the current level of abstraction, and th
Roo is mainly a manifestation of alternative ways of viewing the intermediate setP in the ratio-
nal representation ofRo asf g^ with f : A → P andg : B → P.

Amongst other things, this last remark highlights the usefulness in general of searching
intermediate setP in the rational description of a problem that is “as informative as possib
Theorem 2.1 assures us that for a regular relation a suitableP always exists, but the canonica
construction ofP in the proof is not enlightening. However, a proper understanding of the p
lem can often show that the canonical set is isomorphic (in the categorySet), to some set which
captures some characteristic properties of the problem. To that extent, finding a goodP for a
regular problem is one of the creative aspects of problem solving. We alluded to this al
in section 2. The improved understanding of the problem that a goodP witnesses, can lead to
benefits further down the line, such as correct designs and implementations.

ínuse V́al

V́al V́al

Roo

datum? :D
Val? : MD
Val! : MD

Val! = Val? ∪+ datum?
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We return now toRo which tells only the more abstract half of the original story. To say som
thing about efficiency, we must reifyRo. In any realistic situation, the storage typeU would be
managed by some storage manager, among whose tasks would be the selection of unus
tionsu when an allocation needs to be made. Normally, efficiency considerations dictate
the operation of the storage manager would be deterministic, so we can express the se
of an unused locationu by the use of a deterministic choice functionbestthat chooses for us
the “nearest” (or in some other sense “best”) as yet unallocated object inU, given that we wish
the already allocated part ofU to remain unaltered. Note that the operation of the storage m
ager would invariably depend on some internal data structures that are of no concern to u
In fact we should regardbestas a free name in the clauses below, unspecified apart from b
restricted to refer only to deterministic choice functions onU. This is a subtly different expres-
sion of the nondeterminism in the problem compared with (❉). The prerestriction then be-
comes:

∃ u ∈ U • u = best(U – dom( )) (❉c)

and the trans-restriction becomes:

inuse = ∪ {u |→ datum} ( ❉❉c)

whereu = best(U – dom( ))

It is clear thatRc = (❉c) ∧ (❉❉c) is deterministic and thus regular, so that latent in our origin
non-regular specification we find regularity, revealed by a suitable separation of concern
a reification of (❉o) ∧ (❉❉o) to (❉c) ∧ (❉❉c). We summarise the relationship of the three ve
sions of the problem that we have introduced below. We see that only the middle one is
inely nondeterministic.

The metaphor (❉) ∧ (❉❉) is almost universal in the majority of realistic nondeterministic spe
ifications, as these usually arise when an operation has to allocate an item from an inte
managed resource, to contain, or represent, or refer to new data generated because the o
is one that caused the system to grow. In Appendix B we list some operations from our a
mentioned collections that fit this paradigm. All may be reworked along the lines desc
above.

We have just covered the canonical example in some detail, but there is a further surp
store. We remarked casually above that the (❉) ∧ (❉❉) metaphor is used when an operatio
(let’s call it allocate) allocates a slot for a new datum in some storage medium, with the ch
member of dom(inuse), u say, passed around as a nickname for the stored datum. But ho
this member of dom(inuse), u, actually passed to users ofallocate? Well such users could com

pare dom(inuse) to dom( ) provided they had wisely retained a copy of the latter som
where beforehand. But this is hardly in the spirit of the way operations such asallocateare
intended to work. As given above, (perhaps slightly deviously, as the specifications wer
written out in full), there is an implicit existential quantification ofu over the body of the spec-
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ification, makingu in a sense private to the operation. (This last remark must be viewed
caution asinuseis externally visible — though formalisms such as VDM and Z do not prescr
how far it might be visible — nevertheless the identity ofu is to a greater or lesser extent ob
scured.) This of course is no good to users ofallocate. These needu explicitly, so thatu must
be an output parameter.  Let us make this change.  Using Z notation we find

This innocent change has a startling effect. Noting that when we delete {u! |→ datum?} from
inuse! we get a uniqueinuse?, we see thatRif is in fact inverse deterministic and thus regula
A simple repackaging of the data involved (actually a change of signature of the operati
(U → D, D) × (U → D, U)), has thus brought out the regularity right away. This is beca
there is no longer any ambiguity about whichu! has been allocated, even ifdatum? is a value
that is already present elsewhere in the mapinuse?.

What are we to learn from this? First of all, both the earlierRoo, Ro andRc are fine as specifi-
cationsin themselves. But Rif captures the intuitive behaviour of anallocateoperation consid-
erably better than the others. In fact it is not unreasonable to to regard (❉) ∧ (❉❉) andRoo, Ro,
Rc as containingrequirements errors, insofar as they are intended to describe the behaviou
allocate, because they hide the identity ofu!. They would be akin to bank deposit operation
that did not tell the depositor which account had been credited. At the heart of this phenom
is the issue of information loss, because of the way (❉) ∧ (❉❉) andRoo, Ro, Rc treatu!. We
will have more to say about the connection between information loss and regularity late

Thus we have a concrete case in which concentrating on regularity has brought to light
lems at the requirements level, a possibility fully in line with the intentions of this paper.
sentially the point is this: if the mappinginuseis central to the description (at the current lev
of abstraction), it is most likely of interest to other operations (at the current level of abs
tion) to know the identity ofu! when it is assigned; on the other hand, if other operations
the current level of abstraction) have no need ofu!, to what extent is the mapinuserelevant at
all (at the current level of abstraction). Readers may care to examine the operations men
in Appendix B in their proper context with regard to these observations.

We end this section by remarking that some specifications that contain the (❉) ∧ (❉❉) meta-
phor actually embody the transpose of the situation described byRif , in particular being deter-
ministic. This happens when theu ∈ U that appears in the metaphor is part of the input to t
operation (rather than the output as inRif ). Under these circumstances, the operation is not f
to chooseu at will, the choice coming from the environment. A particular example of this n

Rif

inuse? :U → D
datum? :D
inuse! : U → D
u! : U

u! ∈ U ∧
u! ∉ dom(inuse?) ∧
inuse! = inuse? ∪ {u! |→ datum?}
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canonical use of the metaphor is theclocking_in operation from the FLEXITIME case study
in Hayes (1993).

Thus in summary, there are three distinctive scope scenarios for specifications containi
(❉) ∧ (❉❉) metaphor. Theu in question may be an input, making the specification determ
istic; or an output, making it inverse deterministic — in both these casesu is free in the body
of the specification and the specification is manifestly regular; or it may be “hidden” or imp
i.e. existentially quantified, bound in the body, as inRo say, whereupon the regularity is closel
tied up with clean separation of concerns.

7 OTHER NONDETERMINISTIC EXAMPLES

In this section we examine some more nondeterministic specifications. These do not f
the canonical example paradigm of the previous section. We look at them so as to see ho
farevis à visregularity. They are ordered by the ease with which they conform to the reg
paradigm, the early ones being the more obviously regular.

Short_Count in ISTAR

Theshort_countoperation from the ISTAR case study in Jones and Shaw (1990) has the
clauses

( ≤ 1 ⇒ result = ) ∧
( > 1 ⇒ result > )

We note that this is nondeterministic and regular since any value > 1 of is related to
value > 1 ofresult.

Random Numbers

A choose_random_number operation may be given in VDM-ese by

choose_random_number ;
wr n : [0 . .N] ;
pre true
post true

which means that the value ofn is allowed to change at will within the range 0 . .N. Therefore
each input value ofn is related to each output value ofn, and the operation is regular. Thi
formulation does of course ignore the statistical properties of sequences of invokations
choose_random_number operation that are rather important in practice.

Statistical Desk Calculators

A statistical desk calculator furnishes an interesting example where reification takes pla
ing an abstraction relation rather than an abstraction function. As a simple example, we e
ine themean operation at both abstract and concrete levels.

At the abstract level, the calculator collects the numbers input by the user, forming the mu
numbs, and themeanoperation just yields the mean of these numbers. Note that these ar

ćount ćount

ćount ćount

ćount
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terministic operations. Below we use∪+ to add an element to a multiset,Σ to sum the elements
of a multiset of numbers, and| | for the cardinality of a multiset.

input_numbero ( x : Int ) ;

wr numbso : MInt ;
pre true

post numbso = ∪+ { x}

meano ;

rd numbso : MInt ;
wr meano : Real ;
pre true
post meano = Σ numbso / | numbso |

At the concrete level, a desk calculator does not maintain a multiset, which could grow
trarily large, but just maintains a running mean and running cardinality, which it update
each new number arrives.  When the mean is requested, its value is just output.

input_numberc ( x : Int ) ;
wr cardc : Int ;

meanc : Real ;
pre true

post (  = cardc + 1)∧

(meanc = ( ×  + x) / cardc)

meanc ;
rd meanc : Int ;
pre true
post true

Clearly many different multisets of numbers will give rise to the same mean, although n
the same history of running means; so from the point of view of an individual instance o
meanoperation, abstraction is a function from the abstract to the concrete view rather tha
other way round. In fact this is a consequence of the finite nature of the concrete view. T
form theory teaches us that if we were to maintain an infinite number of running momen
the distribution being analysed (something even more unrealistic than maintaining know
of the complete multiset), then the relationship between abstract and concrete worlds wo
bijective. Because we maintain only a finite number of moments in reality, we lose infor
tion. In this context it is not surprising that abstraction is not an arbitrary relation, but a func
from abstract to concrete views as mentioned; nor that in both views themeanoperation is de-
terministic, hence regular.

Float Square Root

A floating pointsquare_rootoperation may be specified, following Hayes and Jones (198
by

ńumbso

ćardc
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square_root ;
rd x : Float ;
wr root : Float ;
pre x ≥ 0

post ∃ r : Real• r2 = x ∧ | root - r | < 0.01

The type Float, of machine-representable reals, is introduced to deal with unavoidable ma
imprecision. As a result, the answer of the operation,root, has to be constrained no more tigh
ly than by the width of a given window (of width 0.01 in our case). This yields nondeterm
ism. As x increases through nearby values, these windows will typically overlap prope
Thus we will havex1.R ∩ x2.R ≠ ∅ but x1.R ≠ x2.R, whereR is the relation representing the
specification, andx1, x2 are two nearby input values, and this leads to non-regularity. We
recover this situation using the strategy of section 5. Let us define a fresh coordinate f
right half of the (x, root) plane

w = root – √x

Then the key clause in the specification becomes

| w | < 0.01

which is now regular. This is a pleasing result, but obscures one point. The space of Flo
a discrete subspace of the Reals (although these days, it may be regarded as an ade
dense one), therefore the set of points ranged over byw will not coincide exactly with the set
ranged over byroot, since an exact square root is involved in the definition ofw. However the
density of the Floats is such that few would disagree that this is, in practice, a trivial difficu

Raster Graphics

In the LINE REPRESENTATION ON GRAPHICS DEVICES case study in Jones and S
(1990), the inability to represent a line in the real plane exactly on a raster device, lead
nondeterministic specification of those sets of pixels which are acceptable approximate
sentations. This leads again to a window-style technique, whereby a sausage-like region
pixel array surrounding the ideal line, constrains the approximations that are permitted. A
ideal line moves through nearby values, the saugages overlap and a specification that is
value non-regular results.

In principle this may again be attacked by transformation of coordinates techniques. Gi
line segment, erect an elliptical coordinate system such that the line segment connects t
foci of the ellipse. If we call the radial coordinatew, we may specify suitable approximation
to the line segment by (say) the set of convex regions of the plane which contain the r
w ≤ ε (for ε suitably small), and are themselves contained within thew = κ contour, whereκ is
suitably large. If the construction of the elliptical coordinate system is smoothly paramete
in terms of the line segment endpoints, the set of regions that results (expressed in the el
coordinates) is independent of the line segment, and the problem becomes regular.

Though pleasing, this approach might be viewed with some caution. Firstly, the sau
shapes in the original case study are not exactly elliptical. This not much of a problem,
in principle one can invent orthogonal coordinate systems other than the elliptical one,
sausage shaped contours whose exact form was other than an ellipse. This would be tech
arduous rather than conceptually challenging. Secondly, the output of the representation
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tended to be sets of pixels rather than regions of the plane, and so we run into a difficulty s
to the definedness ofw in the floating square root case study above: the well definedness o
elliptical coordinate system and of the concept of convex region with the stated properties
not easily translate into a definition of corresponding sets of pixels in a grid. (Simply refe
to the set of pixels falling within an acceptable region is not enough since this has to be p
eterised in elliptic terms.) Thirdly and most importantly, the resolution of raster devices in
picting the plane does not come close to the density of Floats as approximations to the
It is unrealistic to ignore edge effects as was reasonable to do in the square root cas
achieve genuine regularity in the problem, given two different line segments, we would
to find a bijection between the sets of acceptable pixel collections that approximated th
lines, by analogy with the conformal transformation of the region between two ellipses
would do the job in the continuous case. Given the resolution of raster devices, it is unrea
to expect this in general, and so, the degree to which the present case study fails to be
is attributable to the uneven way in which a simple grid is able to approximate an impli
continuous situation.

We can regard this as a consequence of loss of information. Different line segments a
proximable with different degrees of accuracy, and as one moves from a line segment h
a large number of acceptable approximations to one having fewer ones, there is a loss o
mation signalled by the lack of a bijection between them. Of course it may be the case t
one considers not lines in the real plane, but “floating” lines in the 2D Float plane, then
suitable resolution of the Floats, this difficulty would be ameliorated, as the problem w
then transform to the coarsening of one raster pattern into another. In any event the prob
rather sensitive to edge effects, and this constitutes a useful observation in itself.

As an example of a situation where the approximation works smoothly, and there is an ob
bijection between approximations at different points of the domain, we could mention th
miliar floor andceiling functions on the reals, that give two different ideas of an integer
proximation to a real number. For either of these functions there is exactly one approx
for each real, and so the problem is deterministic, hence regular.

Nondeterministic Merge

A good source of nondeterminism comes from merging and permutation problems. A
example is nondeterministic merge.  Suppose Alpha is a suitable alphabet.

ND_merge ;
rd X : seq of Alpha ;

Y : seq of Alpha ;
wr Z : seq of Alpha ;
pre true

post Z ∈ shuffles(X, Y)
where shuffles([ ], Y) = {Y}

shuffles(X, [ ]) = {X}
shuffles(x :: xs, y :: ys) =

{ x :: X′ | X′ ∈ shuffles(xs, y :: ys)} ∪
{ y :: Y′ | Y′ ∈ shuffles(x :: xs, ys)}
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At the core of nondeterministic merge is the following observation. Let NA = [ 1A, 2A, 3A, … ]

and NB = [ 1B, 2B, 3B, … ] be two disjoint sequences of tags. IfXandYare two initial segments

of NA and NB, then from anyZ ∈ shuffles(X, Y) we can uniquely reconstructX andY simply
by looking at the tag superscripts in order. This means that theND_mergeproblem with se-
quences from disjoint alphabets is inverse deterministic and thus regular. Many realistic
cations of nondeterministic merge are of this character as the sequences of items being m
are tagged with their sequence of origin. This is particularly so in the field of operating
tems, where servers of various kinds service requests from a number of sources.

The version of the problem given in the specification above, where the sequences are fro
same alphabet, can be obtained from the previous case by applying suitable alphabeti

phismsΦA : NA → Alpha,ΦB : NB → Alpha. If rng(ΦA) ∩ rng(ΦB) ≠ ∅ then loss of infor-
mation occurs and the operation becomes non-regular. For example, if Alpha = char, t
X = “a” andY = “ab” thenshuffles(“a”, “ab”) = {“aab”, “aba”}; while if X = “a” and Y = “ba”
thenshuffles(“a”, “ba”) = {“aba”, “baa”}. So the images of (“a”, “ab”) and of (“a”, “ba”) under
ND_mergehave an element in common but do not coincide, i.e.ND_mergeis not uniform.
However, when this occurs, for any pair of pairs of sequences having properly interse
shufflesets, there will be a closed system of merge instances satisfying a higher order per
ability equation (see the conclusions). For instance in our given case, the system is clo
X = “b” and Y= “aa” with shuffles(“b”, “aa”) = {“aab”, “aba”, “baa”} and we get the equation

R R̂ R R̂  = R R̂

for the relation that relates pairs of strings to members of their shuffle sets. Once again w
that loss of information can lead to a loss of regularity.

Diff

Another slightly unusual example, mentioned in Hayes and Jones (1989), is the UNIXdiff util-
ity. This accepts two files (sequences of lines of characters), as input, and as output, pro
a set of edits that converts the first file into the second. Again this is highly nondetermin
(eg. the global edit which just replaces all of the first file with all of the second will alwa
work).

To study this example, let us examine the simplersdiff which just edits one sequenceX into
anotherY by outputting a set of substitutions of slices ofX by slices ofY, each in the form
[n . . m] |→ [n′ . . m′], and each of which is intended to signify that the subsequence fromn to
m inclusive ofX is to be replaced by the subsequence fromn′ to m′ inclusive ofY. Assuming
a suitable suite of invariants to ensure that edits are well defined and consistent etc., w
write the top level specification as

sdiff ;
rd X : seq of char ;

Y : seq of char ;
wr EDS : set of subst ;
pre true
post ApplyEdits(EDS, X) = Y
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Let us pursue the strategy that worked in theND_mergeexample. Let NA = [ 1A, 2A, 3A, … ]

and NB = [ 1B, 2B, 3B, … ] be two disjoint sequences of tags as previously, and letX andYbe

two initial segments of NA and NB. Then (up to unimportant variations), there is only one e
that will do the job, the one that always works, replacing all ofX by all of Y. We conclude that
this subproblem of the generalsdiff problem is inverse deterministic and thus regular. Aga

we obtain the general case by applying suitable alphabetic morphismsΦA : NA → Alpha,

ΦB : NB → Alpha and if rng(ΦA) ∩ rng(ΦB) ≠ ∅ then loss of information occurs and the op
eration becomes non-regular. We illustrate this by the letting Alpha = char,X = “ApqrBxyzC”
andY= “A 12B4B56C”.  The two edits which work, are

E1 = {[2 . . 4] |→ [2 . . 5], [6 . . 8]|→ [7 . . 8]},  and
E2 = {[2 . . 4] |→ [2 . . 3], [6 . . 8]|→ [5 . . 8]}

E1 also converts “ApqrBxyzC” into “A1234B56C”, but E2 doesn’t. So we have a non-uniform
example as claimed. As before, we may perform deeper analyses of the problem, wher
we would once again encounter higher order permutability equations for the relation desc
the specification.

Recap

Let us comment on the above. We have encountered varying degrees of success in ta
range of nondeterministic examples, and showing in what sense they can be viewed as d
ing regularity. The earlier examples,short_count, choose_random_numberand the statistical
calculator example were regularab initio. Thesquare_rootexample could be transformed into
regular form using a change of variable, and the process was reasonably convincing. Th
approach yielded a strategy for the raster graphics example, but here the result was con
bly less convincing due to the coarseness of the pixel grid on a realistic device. This cau
potential loss of information to take place which was much less innocuous than in the s
root case, even though mathematically the underlying phenomenon was the same. This
information was correlated with a corresponding loss of regularity. Even sharper cases o
of information appeared in the final two examples,ND_mergeandsdiff, where with enough
combinatorial effort, one could attempt to quantify the loss of information through the way
the overlap in the ranges of two alphabetic morphisms identified cases which would othe
have remained distinct. We saw there, that allied to this loss of regularity was the relevan
higher order permuatbility equations for the relations in question, though there is clearly a
for a more thoroughgoing analysis than we have given above.

8 THE REGULAR DESIGN PHILOSOPHY

Aside from some cases discussed in section 7, where we found evidence that higher ord
mutability was relevant, we have found on the whole, that specifications, and thus the u
lying problems that they describe, can be understood using regular relations, (and, partic
in section 6, that this approach could be beneficial at the requirements level). This is cer
true of the overwhelming proportion of “industrial” case studies in the Jones and Shaw
Hayes collections. We are therefore on solid ground in proposing that regularity is an inh
property of the specifications of “real-world” or “practical” problems; problems that people
actually likely to need to solve.
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One can propose good reasons for this. In the real world, people act with specific go
mind — usually. At any rate when a system of real-world procedures is computerised
range of possible behaviours tends to get narrower rather than broader. Even when the
range of acceptable outputs from a given input, these often represent a freedom of impl
tation choice for some more abstract single-valued goal. Regular relations have just the
properties to capture such situations. IfR = f g^ is a regular specification, withf : A → P,
g : B → P, thenC = cod(f) ∩ cod(g) ⊆ P is the set of values of the most abstract characteri
tions of the operations in question. For example, in our canonicalallocate_pagenondetermin-
istic operation, the elements ofC can be taken to correspond to the possible values taken by
Val multisets formed from the data mentioned in the discussion of (❉oo) ∧ (❉❉oo) in section 6.

Working at the level of abstraction represented by the setC can often be alien to conventiona
thinking about the problem in hand. For instance this was true of our canonical example, w
needed reformulation in order to bring out the regularity. We regard such reappraisal of a
lem as entirely healthy. Not only can it lead to a better understanding of the symmetries
situation, and thence to a cleaner reification strategy, but in many cases it can actually tu
that this most abstract view of an operation, characterised byC, is deterministic (eg. our canon
ical example again). Determinism is generally easier to deal with conceptually, so we re
its discovery ina priori nondeterministic situations as beneficial.

Regularity can give us a cleaner reification strategy because it breaks up both the doma
codomain of the specification into independent pieces, each (corresponding pair of which
be dealt with separately. This can help to structure the extra levels of detail of reification
to reduce the complexity of the proofs entailed by refinement, effectively by pulling out c
analysis to the top level, and replacing large monolithic proofs by a collection of shorter
vations for each of the possible cases. This paper is not the only place where such a dec
sition of input and output spaces is recommended. For example, the tabular methods of
(1992) are also based on a decomposition of domain and codomain into independent p
Other related remarks on specification structure and ease of verification/validation (thoug
on regularity), can be found in Mili et al. (1986). The decomposition into independent pi
is very desirable given that the greater detail of a reified representation always carries wi
greater risk of clutter, chaos and error. Starting from a regular specification, it is easier to
in a “balanced” way, adding equivalent layers of detail at the input and output sides of o
tions. (Of course this is less of a problem when input and output state spaces coincide
summarise some recommendations to this effect in the slogans that appear in Fig. 3.

The slogans of Fig. 3 take into account that there are cases where regularity does not
This may happen for a number of reasons ranging from the benign to the serious. It m
that all that is needed is a suitable change of coordinates, as in some of our examples
Then the question arises whether the change of representation is worth pursuing at the
mentation level. The issues that have to be weighed here include whether or not computi
transformation would itself be equivalent to solving the whole problem (as was true in ou
amples), and if not, whether computing the transformation is an efficient implementation
egy in its own terms. If computing the transformation is not efficient, it may still be worth p
suing because of the simpler problem structure that is revealed when the original prob
cast into regular form; giving payoffs in terms of more straightforward implementation and
ture maintainability. More seriously, the original problem may resist being put into reg
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scribe it. In that case a deeper study of the structure of the problem using the permuta
properties might reveal aspects that can be exploited in implementations. However we
pursued these latter possibilities rather less in this paper and so this last suggestion mus
a more tentative level.

On the whole, we have amassed enough evidence to make plausible the claim that non-
cases will be rare. Usually one will be able to find regularity, and then we recommend t
be used. It can help to structure the details of how a specification is developed, and this
ture can be profitably exploited in the verification of the specifications developed. The au
imagines that a structured and disciplined approach to the creation of a specification, s
is provided at least in part by regularity, will be particularly beneficial in computer-aided w
where it could lead to proof obligations which are rather more tractable than would other
be the case for reasons mentioned above. Further work would be needed to properly su
tiate this though.

The Regular Design Philosophy

❉ When commencing the design of a system, look for regularity
from the earliest possible moment. Make the search for reg-
ularity central to the requirements capture phase, as well as
to the specification phase. Understand the significance of
suitable sets C = cod(f) ∩ cod(g) in a rational formulation of a
regular specification R = f g^.

❉ Perform reification so as to preserve regularity, especially
when input and output state spaces are distinct.

❉ If an operation subbornly refuses to be captured by a regular
specification, strive to understand why. Is it fundamentally
non-regular, or could an alternative approach (eg. a change
in coordinates) bring out regularity? If so, is the change of
perspective on the problem, cost-effective as an aid in devel-
opment or is it best regarded as an aid in understainding? If
no alternative view yields regularity, could alternative oper-
ations be designed which are regular, and if so, would they
be more useful? Could the operation be broken down into
smaller suboperations which are regular, and if so, is this in-
sight helpful? If the former do not apply, would an analysis
of the operation in terms of higher order permutability prop-
erties be helpful?

Fig. 3.
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9 CONCLUSIONS

In the preceding sections of this paper, we have picked out the criterion of regularity of
tions, a concept having deep universal properties, and shown that it has widespread app
ity in specification design. As well as being manifest in deterministic specifications, we
shown it to be widely applicable to nondeterministic problems, and indicated that it has p
lels with methods used in classical applied mathematics. As a result of this widespread
cability, we have recommended that the search for regularity be placed at the forefro
specification design, as being likely to lead to more understandable specifications, and on
are easier to manipulate in subsequent stages of design. We have encapsulated our rec
dations in a few slogans in the previous section.

We have stopped short of proposing a specific deveopment methodology based on the o
tions in ths paper. On the one hand this would take us outside the scope of the paper as
in the introduction, on the other it would tend to emphasise whichever particular method
we described in preference to others. This would be undesirable, since we intend the imp
this paper to be at the meta level: its ideas are capable of being brought to bear on many
opment methodologies.

We have indicated that in the case of the few examples that defied easy description using
relations, there is evidence to indicate that other relational metaphors might apply, bas
higher order, orn-permutability. Material on this topic can be found in eg. Carboni et
(1993). Forn = 3 n-permutability corresponds to regularity, also called the Mal’cev prope
(Mal’cev (1954)). Forn = 4 it is the Goursat property (Goursat (1889)). General values on
may well lead to a useful classification of relations arising in specification work.
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Appendix A: Some Deterministic Examples

For some more complex examples of deterministic specifications we refer to the collec
Jones and Shaw (1990), and Hayes (1993). These abound with deterministic operations
Jones and Shaw (1990), we might mention:

❉ delete_connection (from a database) in the NDB case study,

❉ count_tripple, declare_verb, delete_tripple, grant_access, initialise, insert_tripple,
partition_clear, test_verb, undeclare_verb, verb_inverse, and others in the ISTAR case
study,

❉ almost all the operations in the MUFFIN case study, (because they are already (p
functions),

❉ dispose, and some of the versions ofnew, in the HEAP STORAGE case study,
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❉ many of the operations in the GARBAGE COLLECTION case study,

and so on.  From Hayes (1993) we might mention:

❉ the operations in thesymbol table, file update, andsorting tutorials,

❉ the operations in the BLOCK STRUCTURED SYMBOL TABLE case study,

❉ the operations in the TELEPHONE NETWORK case study,

❉ readfile, writefile, createSS, destroySS, readCHAN, writeCHAN, seekCHAN, closeCS,
readAS, writeAS, seekAS, etc., in the UNIX FILING SYSTEM case study,

❉ the operations in the CAVIAR case study.

In fact the vast majority of operations mentioned in both collections of case studies are d
ministic, as one might expect, and the vast majority of those that remain fit the canonical
deterministic template, as listed below.

Appendix B: Some Canonical Nondeterministic Examples

Allocating a page in a heap-managed memory is the obvious canonical example, but the
many others.  From Jones and Shaw (1990) we might mention:

❉ add_connection from the NDB case study,

❉ build_tripple from the ISTAR case study,

❉ spawn_proof, andadd_empty_proof from the MUFFIN case study,

❉ some versions ofnew from the HEAP STORAGE case study,

etc.  From Hayes (1993) we might mention:

❉ openCS, create from the UNIX FILING SYSTEM case study.

All of these can be recast as regular relations by using the techniques described in sec
They also vary with regard to whether the assigned objectu, is visible in the interface or not.
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