ON REGULARITY IN SOFTWARE
DESIGN

1
R. Banach

Computer Science Department, Manchester University,
Manchester, M13 9PL, U. K.

Abstract
A regular relationR, is one for whichR=Ro R* o R, where " is relational
composition and “*” is relational transpose. By examining realistic case
studies, and other examples, it is shown that when expressed using a rigorous
specification notation, the majority of specifications turn out to be regular
relations. Thisis certainly so for deterministic problems, and when abstraction
relations are functions, reification preserves regularity. Nondeterministic
specifications can appear to exhibit non-regularity, but at least in the most
commonly occuring cases, it is argued that this is caused as much by a failure
to separate concerns, as by any intrinsic lack of regularity in the specification.
Such specifications can be recast into a regular form, and the process is
analogous to a “transformation to orthogonal coordinates” of the original
problem. A design philosophy is proposed, that places the search for regularity
at the heart of specification construction, with implications for requirements
capture.

1 Introduction

In this paper we set out to convince readers that certain types of relations, the regular relations,
are both relevant and useful in the practice of software construction, particularly in the require-
ments capture and specification processes. For the sake of the precision that they can yield, we
will work mainly within notations such as VDM (Jones (1990)) and Z (Spivey (1993)), though
the reader will realise that the main impact of the paper is at a meta level, and thus the principal
conclusions of the paper will translate to other methodologies too. Over the last couple of dec-
ades, formal specification methodologies such as VDM and Z have reached a certain maturity,
and a considerable amount of experience in their use has been accumulated. When construct-
ing a system within a framework such as VDM or Z, one generally starts with a highly abstract
view of what the system is to do, and then successively refines the high level view by incorpo-
rating lower-level detail, until one is close enough to an implementation description, that one
can create executable code. Each step of the refinement process introduces proof obligations

1. Email: banach@cs.man.ac.uk

that must be successfully discharged before one can be certain that the lower-level view accu-
rately models the higher-level view.

Regardless of the level of abstraction, a specification of some system consists of two parts. The
first is a description of the state space of the system; this essentially describes the set of con-
figurations that an instance of the system might be in at any time. The second is a collection
of specifications of operations, each of which describes how the system is to change state in
response to a certain kind of stimulus, the stimulus usually coming from outside. Since a spec-
ification of an operation describes a change of state, it must involve a description of both the
state before the operation commences, the pre-state, and the state after the operation has com-
pleted, the post-state. Disregarding specific details of notation, mathematically it is therefore
a relationR, from the set of pre-states to the set of post-states. Although in principle this rela-
tion can be quite arbitrary, it turns out that in the vast majority of realistic cases it satisfies the
property of regularity, i.eR=Ro R*o R.

The first aim of this paper is to establish that this is actually true. We do this mainly by refer-
ring to various examples, and to collections of case studies of specifications which predate this
paper’s preoccupation with regularity, and which are thergforea faceneutral on the issue,

in particular Jones and Shaw (1990), and Hayes (1993). The second aim of the paper is to el-
evate the previous fact to the status of a desideratum for specifications; in other words to prom-
ulgate the view that if a specification of an operation is not regular, then perhaps there is some-
thing wrong with it. This leads to a useful discipline that can guide the earlier phases of re-
guirements capture and specification design — “look for the regularity”. This discipline is
proposed at the end of this paper.

Perhaps it is as well to state plainly now what this paper does and does not set out thabs It
intend to bring to the fore a particular aspect (regularity) that is latent in much software design,
and to promote the view that attention deserves to be paid to regularity, not only because of the
structural simplicity and robustness of regular specifications, but also because of the analogies
that hold between regular strategies of problem solving in the discrete world of computations,
and much older strategies that apply in the world of engineering mathematics (of which more
below). Itdoes notntend to describe a specific software development methodology. The con-
clusions of the paper may be taken on board by many existing development methodologies, of-
ten in a number of different ways, depending on taste. Problem solving is (at least in conven-
tional engineering practice) acknowledged to be a creative activity, and there is often a fertile
interplay between the creative aspects and the rigorous techniques that validate them. We do
not wish to be prescriptive here about how this interaction is to be managed in the case of reg-
ularity. We leave that task to the designers of specific development methodologies. As we said
above, our major conclusions are intended for the meta level.

The structure of the rest of the paper is as follows. In section 2 we review relations and regular
relations in particular. The criteria for regularity are many and varied, perhaps the most useful
one being rationality, i.e. a relation is regular iff it can be writterRasf o g™ with f andg

being partial functions. The special nature of the regularity property is probably best displayed
categorically: a regular relation corresponds exactly to a bicartesian squte-inthis gives
regular relations powerful universal properties. In section 3 we apply regular relations to de-
terministic specifications, and to reifications in which the abstraction “function” is indeed a
(partial) function. An easy general theorem shows that these situations are regular without fur-

ther ado. We quote a few examples to drive the point home. In section 4 we briefly mention
that inverse deterministic specifications are regular for reasons that are analogues of the rea-
sons in the deterministic case. In section 5 we tackle our first nondeterministic specification,
one that turns out to be non-regular; until that is one changes one’s perspective, whereupon reg-
ularity emerges easily. We argue that the change in perspective, a change of coordinate system
to “orthonormal coordinates”, is just a classical problem solving technique from engineering
mathematics, which illuminates the significance of regularity from a perspective of impeccable
pedigree. In section 6 we tackle the “canonical nondeterministic example”, of which most non-
deterministic specifications arising in practice are an instance. We argue that the non-regular-
ity of the canonical example is attributable more to a subtle mixing of concerns than to any in-
trinsic non-regularity in the problem, and furthermore, that in certain cases at least, there is a
failure at the requirements level which is reflected in the structure of the specification. Rewrit-
ing the specifications so as to separate concerns, or to fix the inadequacy in the requirements,
leads to regularity once more. Section 7 discusses further examples, including ones which are
genuinely non-regular, and comments on these. Section 8 gathers the supporting evidence
from the preceding sections in order to propose a design philosophy that encourages the active
search for regularity during the requirements capture and specification phases of system con-
struction. Section 9 concludes.

2 REGULAR RELATIONS

We briefly review some material on relations in order to establish enough notation for the re-
mainder of the paper. Good references on the properties of relations are Tarski (1941) and Sup-
pes (1960); and much of this material is reviewed in Mili (1990), who uses it as a foundation
for the study of program fault tolerence. Relations are also described in many introductory
texts on discrete mathematics eg. Ross and Wright (1992). See also Schmidt and Strohlein
(1993).

Let Rbe a relation fromA to B. We write domR) for the domain oR, and codR) for the co-
domain ofR. We writea.R for the set f 00 B | aRl, and X.Rfor [J,-x a.R LikewiseR.bis
{aOA|aRB and R.Yis Uy R.b If for all a0 A, a.Ris (at most) a singleton, then we say

thatRis a (partial) function. Similarly if for alb O B, R.bis (at most) a singleton, then we say
thatRis an inverse (partial) function. We wri" for the transpose, or inverse of a relat®n
andRo Sfor the composition of relatiori® andS (which works from left to right).

Now for the main definitions.

A relationRis regular iffR=Ro R*o R (In fact this amounts tR o R* o R[] R since the
opposite inclusion holds for any relation).

A relationRis uniform iffa.Rn a.Rz0 00 a.R=a.R.
ArelationRis rational iff there are (partial) functioris A - P,g: B - PsuchthaR=f o g".
Theorem 2.1 A relationR s regular iff it is uniform iff it is rational.

The proof of the equivalence of the above criteria for regularity (and their equivalences to yet
more criteria expressed in set theoretic terms) are easy enough, and can be found in Banach
(1994), building on work of Mili (1990) and Jaoua et al. (1991).

Corollary 2.2 If Ris regular the®" is regular.

Corollary 2.3 If Ris regular and’ andg’ are suitable (partial) functions, th&=f o Ro g"
is regular.

Corollary 2.4 Ris regular iff there is a bijectior between equipollent partitions of doR)(
and codR) given byaRb < [a] = [b].

All of the above follow most easily wheRis expressed in rational form &=f o g" for some
partial functiond andg. Fig. 1 below illustrates a regular relation in rational form.

A f B
P g

L N

Fig. 1.

When specifications are described using regular relations, it turns out that the intermediate sets
P of the rational formulations, frequently express important abstract properties of the opera-
tions. See the examples in the sections below, particularly section 6.

Universal properties

Perhaps the most striking property of regular relations is the fact that they correspond to pull-
backs and bicartesian squareSét, the category of sets and total functions. We indicate brief-

ly how this happens. Readers unfamiliar with category theory may simply skip the rest of this
section.

Letf: A -~ Pandg: B - P be two total functions. Their pullback is given up to isomorphism
by the seK and obvious projection functioss K - A, t: K - B where

K= Ijpl]cod@mcod@) f_l(p) X g_l(p)

It is clear that the elements of cdd(cod(g) correspond to a bijection between blocks of par-
titions of f ~Y(cod(g)) andg~X(codf)) and that the elements &f thus correspond to a regular

relationR=1f o g" given byaRb < (a, b) O K. The fact that in the abovieandg are total
whereas in an arbitrary regular relati®g = fy o 9o, fg andgg need only be partial, may be

circumvented by enlarginB if necessary to include elememigandpy, disjoint from codfy)

n cod@g), and extendindy, to all of A by sendingA — dom(p) to p, andB — dom@g) to p,,. Of
course this is not the only way of making sure thgaindgg extend to total functionfandg
with the same codi(n cod(@) and same pullback objekt and so a given regular relation cor-
responds to many different pullback squareSeln even up to isomorphism.

Note that the pullback, depends only on the restrictionfgfto fo‘l(cod @), and the restric-

tion of gy to go‘l(cod(fo)). We can use this freedom to stipulate thaA -~ Pandg:B - P

is actually the pushout af: K -~ Aandt: K - B. Up to isomorphism we find
P=[A-fXg(B)] & [cod() n cod@)] B [B-g f(A))]

with f andg injective on the first and last summandshofespectively. Now, botK andP are
unigue up to isomorphism and we have a bicartesian squast,iwhose universal factorisa-
tion properties are illustrated in the Fig. 2 below.

Fig. 2.

Theorem 2.5 To every regular relatioR there corresponds at least one pullback squa%etin
such that the pullback objest is isomorphic toR. Also, at least one of these pullbacks is a

bicartesian square, unigue up to isomorphism. Conversely, to every pullback square or bicar-
tesian square ifet, there is a corresponding regular relation.

See Banach (1994) for a more thorough discussion and proof.

Although we do not make much use of the categorical properties of regular relations below, we
mention them here for two reasons. Firstly to highlight their strong universal properties, which
for a mathematical construction, is always a sign that something “special” is at issue. Second-
ly, it facilitates the analogy we bring out, between our methods and classical engineering-math-
ematical methods, as we discuss in section 5. Given that these two areas are so different, the
abstractness of category theory provides an appropriately neutral playing field on which to
draw out the analogy. Having thus introduced the special nature of regular relations, it should
not be surprising that they display particularly convenient behaviour in applications.

3 DETERMINISTIC SPECIFICATIONS AND
REIFICATION

Specifications are principally concerned with the definition of state spaces and of operations
on, or between state spaces. We will take the slightly more general I/O view of operations, as
translators of “inputs” from one state spa&ginto “outputs” in another state spaBe This

slightly unconventional view, which we call the “I/O picture”, has been studied in eg. Hayes
and Sanders (1993). The conventional position, with operations acting on a single state space,
is just the special cage=B.

State spaces in computing applications often display a degree of structural complexity, and are
usually defined by giving a suitable cartesian product of basic or already defined types, and then
imposing invariants on this set to give the actual state space required. (Note that we use words
such as “state space”, “set”, and “type” fairly interchangably in this paper, the more subtle con-
notations of these concepts will not be needed.)

Operations are likewise defined in pieces. Suppose we have an input staté sjpatceutput
state spacB already defined. An operatidm from A to B will be given by a Boolean expres-
sion onA x B. If one examines the structure of this expression, one normally finds that it is a
conjunction of a number of pieces. The first piece is an expression independemweftcall

it the prerestrictiong(M); it helps to define the domain of applicabilityldf The second piece

is an expression involving both andB; we call it the trans-restriction (transition restriction),
p(I); it says what the operation does. The third piece is an expression independemief

call it the postrestrictiof3(1); it helps to define the codomain of the operatitnin a realistic
specification, one or more of these pieces may be absent. At any rate, in a specification of an
operation, we have a s&tx B and a Boolean expression Arx B whose characteristic function
defines a subset éfx B, in other words a relatioR from A to B.

In VDM, what we have called the prerestriction is called the precondition, and is singled out
syntactically; and what for us (') O 3(IN) is called the postcondition, also captured using
special syntax. In Z, all three pieces occur together in the body of the specification, though no-
tions of pre- and post- conditions arise in the metalanguage of Z. We have deliberately chosen
a different nomenclature in order to avoid bias, and more importantly to be symmetrical be-
tween the input and output aspects of a specification.

It is important to emphasise that there is often some lattitude in how a specification is drawn
up. Whether a particular criterion is captured in the structure of the basic product space of the
input state, whether it is expressed in the invariant on that product space, whether it is expressed
in the prerestrictiom, or whether is occurs in the trans-restrict@rare sometimes matters of
taste; and depend on such things as human readability predisposition and convenience, the ex-
pressivity of the formal notations used, the ease of manipulation of the formal notations in sub-
sequent development stages, and so on. Similar remarks apply to the output side. And while
these matters may be important in specific methodologies based on languages like VDM or Z,
we want to emphasise that for us they will be tangential; we are mainly interested in hijacking
the notation for its inbuilt precision when convenient. For us, all that matters is that we have a
relationR from A to B, however expressed.

Definition 3.1 A specification of an operatiof, given by a relatiorR from A to B is deter-
ministic iff Ris a (partial) function.

Theorem 3.2 A deterministic specificatioR is a regular relation.

Proof. If Rfrom Ato B is deterministic thefRis a partial function anR=Ro I3, wherelg
is the identity function oB; whenceR is regular by Theorem 2.1

Union-Find

We examine a small example, tbhaion operation from the familiar union-find problem. Let
Xbe afixed set. The input space consists of triples, each triple comprising a partif@ndf
two members oK; and the output space consists of partitionXofin a purely relational for-
mulation, theunion operation is given by the following relation:

union = { ([$ py, poJS) | Sis a partition ofX [
Us; USep; Us UOSO
Us,JSe pp Us, USO
S=0C—-{s5}) U{sUsy}}

SinceSis a partition, in the above, determines,; uniquely and likewise fop,, and this makes
S depend functionally o, p;, p,L1 At risk of labouring the point, we can write out the ratio-
nal version of this specification. We hawrion [] A x BwhereA is the set of triplesS, p;, p,UJ
with Sa partition ofX, andp4, p, [l X, andB is the set of partitions of. We can now write:

union =f o g wheref :A - P,g:B - PwithP=B,g=Igand
f(CB pr, P20 = (S—{s1, 2 }) U {s,10sp} wherep; U s; andp, U sp.

Reification

Reification is an important activity in system development as it helps to bridge the gap between
an abstract view of a system, and a more concrete view. Inreification one starts with an abstract
view of the state spaceg, andB,, and seeks to model them using more concrete state spaces
A. andBg, having characteristics closer to what is regarded as being directly implementable.
In the overwhelming majority of cases, the relationships between abstract and concrete state
spaces are given by abstraction functions (or retrieve functions):

Absg : B. - By

which are normally required to satisfy totality and surjectivity criteria:

(TOT) OxOAce OyOAge Absy(X) =y
OxOBge Oy OBy Absg(X) =y

(SUR) OyOAge OxXOA. Absy(X) =y
OyOBge OxOB.* Absg(x) =y

(If the abstraction functions do not satisfy these criteria, then a great deal of care has to be taken
in the reification process, to ensure well definedness.)

Having reified the state space descriptions, operations may be reified by composition with the
abstraction functions as follows. LBf, be an abstract specification of an operation, and let it

be given by arelatioR, from A to B,. Let Absy: A. - Agand Abg : B. — B, be the relevant
abstraction functions. Then the reified specificatiidp is given by a relatiorR; =

AbSAo RO o AbSBA

Theorem 3.3 Let Absy : A; -— A, and Abg : B. — B, be abstraction functions. R, is a
regular relation fromf, to B, which describes an abstract specificatigyof some operation,
then the reified specificatiof; is given by a relatiorR. = Abs, o R, o Absg' from A, to B,
which is regular.

Corollary 3.4 Let Absy : A. — Ajand Abg : B. — B, be abstraction functions. Ry =fis
a deterministic relation from, to B, which describes an abstract specificafigyof some op-
eration, then the reified specificatioli. is given by a regular relatiofR, =

Abs, o f o Absg' from A, to Be.

The proofs of both of these theorems are trivial consequences of Corollafy 2.3.

Note that provided any resulting constraints on the domain and codomBjraoé acceptable,

Theorems 3.3 and 3.4 do not even require the totality or surjectivity criteria (TOT), (SUR) to
hold.

Note further that in practice, many reifications of deterministic operations are actually deter-
ministic subrelations of the reified specifications mentioned in Theorem 3.3 and Corollary 3.4.
In such cases, the reification obviously preserves regularity also.

It is time to mention some more examples. Specifications for the operations in the simple stan-
dard textbook abstract data types will be deterministic. Things like lists, stacks, binary trees,
hash tables, queues, deques, priority queues etc., are described in many places, and it is clear
that the operations involved generally have a single possible output for any given input, hence
are deterministic. In Appendix A we mention some more deterministic examples culled from
the case study collections Jones and Shaw (1990), and Hayes (1993).

4 INVERSE DETERMINISTIC SPECIFICATIONS

By rationality, for any relatioir, Ris regular iffR* is regular. Consequently, if a general spec-
ification design scheme always leads to regular relations, so will the transpose of that scheme.
Applying this idea to deterministic specifications immediately yields that inverse deterministic
specifications are regular. When one subsequently reifies such specifications using abstraction
functions, one obviously retains the regularity property, just as for deterministic specifications.

We note a couple of examples of inverse deterministic specifications, both inspired by Hayes
and Jones (1989). Both are in fact also deterministic, whence the relation between inputs and
outputs is bijective. One might question the inverse deterministic formulation of the problem
in such cases. However the inverse deterministic formulation may well possess a degree of
conceptual clarity that is absent in a direct formulation. This may swing matters in favour of
the inverse deterministic formulation.

Integer Square Root

If r is intended to be the largest integer square roat, dfien we can specify the problem by

writing
rPsn<(r+ 17

which is inverse deterministic.

Parsing

Another example arises in parsing, where one can succinctly specify the problem by the clause:
fringe(parse_treg = input_string

wherefringeis the usual fringe function that lists the leaves of a tree in left to right order. Again
this is inverse deterministic fggarse_tree Generally, other clauses in the specification will
narrow down the nondeterminism in the specification to the point where a mipah string

will yield exactly oneparse_tregunless the grammar in question is actually ambiguous).

5 A SIMPLE NONDETERMINISTIC EXAMPLE

Now we turn to nondeterministic specifications. Our first example is relatively trivial but has
lessons for us in terms of the significance of regularity. Let the inputdred the output bg
both reals. The trans-restriction is:

It ={(x,y) [x<y}
which makes the set of relaten,) pairs, the above-diagonal half plane. Rather obviously,
31t 4,41t 1, 11t 2; but werdt regular, we would have IB2, manifestly nonsense. So as given,
It is not regular. However let us change to rotated coordinates

u=y+x

V=y—X
thenlt becomes the transformed specificatithon the real variables, v whereu is unrestrict-
ed (i.e. dom(t") is the reals), but is restricted to be positive (i.e. cold) is the positive reals):

It" = {(u, v) | v> 0}

Now It" is regular becauselt’ vis independent afi, whenceuy It" vy, vy It™ u,, U, It" v, implies

uq It" v,. By changing coordinates, we have done two things. We have recast the original prob-

lem into a form that more clearly reveals its underlying structure, and we have also subtly al-
tered the significance of regularity with regard to the problem. This is most clearly seen when
we refer to corollary 2.4. In the original formulation, we could not find suitable partitions of
thex andy coordinates that related to one another in the required simple fashion. But changing
to u andv allowed us to relate all the allowed valuesiod all the allowed values of

The transformation of a problem from one set of coordinates to a more convenient set, is old
hat in engineering mathematics (of which our problem may be seen as a rather trivial example).
In fact one can justifiably say that a major part of classical (not to mention quantum) mathe-
matical physics reduces to the design of appropriate coordinate systems in which the structure
of problems becomes tractable. Tractability in these cases amounts to the ability to separate
variables in the equations of interest. The latter, to put it in terms familiar in programming the-
ory, is a form of divide and conquer strategy appropriate to continuous problems.

We therefore see that our search for regularity has a noble pedigree among tried and trusted
problem solving techniques. Regularity corresponds to a certain separation of concerns in the
problem at hand, whereby points in the problem domain which do not have much to do with
one another are not brought into too close proximity as a result of using an inappropriate frame
of reference to describe the problem. Often this is much easier to achieve in a continuous prob-
lem domain than in a discrete one; in the latter it is much easier to “fiddle” with arbitrary parts
of the problem to destroy any uniformity of structure that may exist, and consequently there is
less temptation to search for the kind of uniformity that we have been speaking about. Given
the different approaches used in continuous and discrete problems, it is not too surprising that
we need a fairly high level of abstraction to bring out the analogies that may exist. That sepa-
ration of variables and discrete techniques have anything in common at all is interesting
enough, but that their relationship might reside in something as abstract as bicartesian squares

in Set should be less surprising.

6 NONDETERMINISTIC SPECIFICATIONS: THE
CANONICAL EXAMPLE

Now we turn to a more realistic example. Operations which are inherently nondeterministic,
arise when the system has some element of freedom in deciding the outcome of the operation.
In the overwhelming majority of realistic cases, the choice arises because the system as a whole
is growing in size, and the new data representing a quantum of growth has to be found a place
in the representation of the system state. The exact place within the system state is usually of
little importance, and because external users do not care about the precise details, it is left to
the system to choose a place. This gives rise to the nondeterminism. We examine a typical
example to see how we fawés a visregularity. The structure of this example is so common,

that we call it our canonical example.

Page Allocation in a Heap

The archetypal resource allocation/deallocation scenario is dynamic storage management.
Suppose we have a store containing four pages. We represent these pages by four small circles,

open when free, and filled in when allocated. Suppose we are in the[saée> o] and we
receive a request for a page. We do not care which page gets allocate® isdhk relation
representing the allocation operation, we have

[eecoc]R[eeeo] and[eeco] R[ee0e]

depending on which free page gets allocated. On the other hand, if we are in the state
[@ 0@ 0] and we request a page, we find

[eceoc]R[eeeo] and[ecec] R[ecee]

Clearly[e@00] RN [eceo].R={[eeeo]} Z[,but[eeco] RZ[eceo].R
so thatR is not uniform and therefore not regular by Theorem 2.1.

Operations which exhibit this behaviour invariably have two key clauses in their specifications.
In the prerestriction one finds the first of them:

u 0 dom(inuse) ()

whereu is a unit of resource which is about to be allocated,iandeis a partial function which

maps each in-use unit of resource to the data that is assigned to it, the VDM hook indicating
that we are refering to the input versioniofise In the trans-restriction one finds the other key
clause

inuse= inuse [{u - datun} (ao
wheredatumis the thing whose use requires the allocatioru.of(Note that we have quoted
verbatim from examples with this structure. In particular we should noteutisatmplicitly a

member of the type of which doriﬂ{use) is a subset, and thatrthim both (J) and (J0) are
the same, i.e. both occur in the same scope (regardless of whether this strictly conforms to the
methodology at hand).)

This nondeterministic metaph&= ([J) O (0JO) displays an important asymmetry between in-
put and output, to which the non-regularity of the specification is attributable. The clause (
is indifferent to whichu outside of dom'(nuse) we choose; all we care about is that there is

such au. In other words it cares not about the meqse itself, but only about the multiset of
values

s

Val ={datumi- n|datum(cod('inuse)D
n=|x0O dom('inuse)| inuse(x) =datun}|}

that dom(’lnma) refers th On the other hand, the claugel]) is fussy about the maipuse
itself, since it demands thamuse amdisediffer only onu.

This is a significant mixing of levels of abstraction. Clausk i6 abstract in that (implicitly)

it only demands that enough dom) objects are available to refer to the mViEet ;

there are many differenhuse maps that will do the job. HoweW@r) is concrete in that it

is specific about the mapuseitself in demanding that it changes as little as possible. The lat-
ter is an efficiency consideration — obviously it is ludicrous to remap already allocated values
whenever a new datum requires allocation, moreover since members ahdegh@are fre-
guently passed around other parts of the system, as nicknames for the diatasttratps them

to; genuinely remapping the already mapped data would obviously incur substantial overheads.
(Nevertheless we point out that copying garbage collectors, when copying the live data into the
unused halfspace in response to an allocation request which triggers a collection operation,
come close to exactly this behaviour.) So we have a mixing of concerns: an abstract view im-
plicit in the prerestriction, and a more concrete view in the trans-restriction. In view of our re-
marks about separation of concerns in section 5, it is not surprising that the specification is
poorly behavedis a visregularity.

What happens when we try to unmix the concerns? At the abstract level we should care only
that theinusemaps cater for the appropriate multisets of values, so in the prerestriction we will
find

OuO U ul dom(inuse) ()

(whereU is the correct type fou). Of course this is no different froml) above except that
we are being more precise about the scope dh the trans-restriction we will then have

Varr-Xdatum) = Val ~Y(daturm + 1 00,

which says thaVal contains one extra instance @dtumcompared withVal , and which im-
plicitly specifiesinusenondeterministically through the formula foal. We claim thatR, =
(0o O(00,) gives rise to a regular relation, since amuse that yieVd will be related
to anyinusethat yieldsVal. Let us substantiate this by displayiRg in rational form. LetD
be an appropriate type folatum Then the type oinusemaps isU - D. The type ofR, be-
comesR, 0 (U - D, D) x (U - D). Writing MT for the type of multisets oveF and # to
insert an element into a multiset we can write
R,=f o g" where
f:(U- D,D) -~ MD: (inuse,datun) _, Val @ datum
g:(U - D) - MD :inuse- Val
wherd/al = Val 8 datum

1. Obviously, the codomain of a map is in reality a set, not a multiset. We use a multiset rather
than a set in this discussion in order to keep track of the multiplicity of elements ofoiasg(
that refer to a given element of the codomain; this is significant at this level of abstraction.

It is now clear thaR, is regular. Of course the view expressedRyis indifferent to the costs
of remapping mentioned above.

Latent in the above is a yet more abstract view of the allocation problem. Factoring tHe map
above as

f=fp o foo Where
f: (U -~ D,D) - (MD, D) : (inuse, datun) — (Val, datum) and
foo: (MD,D) -~ MD: (’\H, datun) - Val # datum

we find that the essence of the problem may be understoodBgirdf,, alone. Ry, expresses

the notion that what is of interest is soley the data. This view is appropriate at the most abstract
levels of system description, those in which representation issues are of no interest. If we dis-
regard the fact thatal implicitly encodes thénusemaps, we can write this highest level spec-
ification, Z-style for variety, as

Roo

datun? :D
Val? :MD
Val! - MD

Vall = Val? B datun?

R, may now be obtained as a reificatiorRgf via

Ro =fa o fopo 9"

Depending on our point of view we can reg&g}, in different ways. On the one hand, we can

see it as having revealed a useful clarification of the problem by bringing out extra abstraction
as a byproduct of our search for a regular description of the original situation. (Note by the
way, thatR,, is deterministic, it is just the relation that relates multisets which differ by one
member — thus we might be justified in regarding the whole problem as belonging to the de-
terministic camp of section 3.) On the other hand, we could say thaRfjgabses too much

of the detail that we are regarding as essential at the current level of abstraction, and thus that
Ry is mainly a manifestation of alternative ways of viewing the intermediate sethe ratio-

nal representation &, asf o g* withf: A - Pandg:B - P.

Amongst other things, this last remark highlights the usefulness in general of searching for an
intermediate se® in the rational description of a problem that is “as informative as possible”.
Theorem 2.1 assures us that for a regular relation a suitaabeays exists, but the canonical
construction oP in the proofis not enlightening. However, a proper understanding of the prob-
lem can often show that the canonical set is isomorphic (in the cat>)ryo some set which
captures some characteristic properties of the problem. To that extent, finding & ¢mroal
regular problem is one of the creative aspects of problem solving. We alluded to this already
in section 2. The improved understanding of the problem that a Boeithesses, can lead to
benefits further down the line, such as correct designs and implementations.

We return now tdR, which tells only the more abstract half of the original story. To say some-
thing about efficiency, we must reif§,. In any realistic situation, the storage tygevould be

managed by some storage manager, among whose tasks would be the selection of unused loca-
tionsu when an allocation needs to be made. Normally, efficiency considerations dictate that
the operation of the storage manager would be deterministic, so we can express the selection
of an unused location by the use of a deterministic choice functibestthat chooses for us

the “nearest” (or in some other sense “best”) as yet unallocated objgctirmen that we wish

the already allocated part bfto remain unaltered. Note that the operation of the storage man-
ager would invariably depend on some internal data structures that are of no concern to us here.
In fact we should regarldestas a free name in the clauses below, unspecified apart from being
restricted to refer only to deterministic choice functiondbnThis is a subtly different expres-

sion of the nondeterminism in the problem compared with (The prerestriction then be-
comes:

OuldUe u=besfU — dom('inuse) do
and the trans-restriction becomes:

inuse= inuse [{u - datun} (00
whereu = bes{U — dom('inuse)

Itis clear thatR. = (L) [(U0.) is deterministic and thus regular, so that latent in our original
non-regular specification we find regularity, revealed by a suitable separation of concerns, and
a reification of (Jp) [(0,) to (L) O(D0). We summarise the relationship of the three ver-

sions of the problem that we have introduced below. We see that only the middle one is genu-
inely nondeterministic.

Abstraction Abstraction
RC Reification Reification 0

The metaphor(() CI(00) is almost universal in the majority of realistic nondeterministic spec-
ifications, as these usually arise when an operation has to allocate an item from an internally
managed resource, to contain, or represent, or refer to new data generated because the operation
is one that caused the system to grow. In Appendix B we list some operations from our afore-
mentioned collections that fit this paradigm. All may be reworked along the lines described
above.

We have just covered the canonical example in some detail, but there is a further surprise in
store. We remarked casually above that th [(l ((I[J) metaphor is used when an operation
(let’s call itallocate) allocates a slot for a new datum in some storage medium, with the chosen
member of donifiuseg, u say, passed around as a nickname for the stored datum. But how is
this member of donifusé, u, actually passed to usersalfocate? Well such users could com-

pare domifiuse to dom(inuse) provided they had wisely retained a copy of the latter some-
where beforehand. But this is hardly in the spirit of the way operations suahoaateare
intended to work. As given above, (perhaps slightly deviously, as the specifications were not
written out in full), there is an implicit existential quantificationwbver the body of the spec-

ification, makingu in a sense private to the operation. (This last remark must be viewed with
caution asnuseis externally visible — though formalisms such as VDM and Z do not prescribe
how farit might be visible — nevertheless the identitywis to a greater or lesser extent ob-
scured.) This of course is no good to useraltcate These need explicitly, so thatu must

be an output parameter. Let us make this change. Using Z notation we find

Rit
inuse? :U - D
datun? :D
inusé :U - D
u! U
u gu
u! 0 dom{nuse?) O
inusé = inuse? [{u! |- datun®}

This innocent change has a startling effect. Noting that when we delete {datun®} from

inuse we get a uniguenuse?, we see thaR; is in fact inverse deterministic and thus regular.

A simple repackaging of the data involved (actually a change of signature of the operation to
(U - D,D) x (U - D, U)), has thus brought out the regularity right away. This is because
there is no longer any ambiguity about whighhas been allocated, evendatun?® is a value

that is already present elsewhere in the mape?.

What are we to learn from this? First of all, both the eafRgy, R, andR; are fine as specifi-
cationsin themselvesBut R; captures the intuitive behaviour of aflocateoperation consid-
erably better than the others. In fact it is not unreasonable to to regafd((JU) andR,,, R,,

R. as containingequirements errorsnsofar as they are intended to describe the behaviour of
allocate because they hide the identitywf They would be akin to bank deposit operations

that did not tell the depositor which account had been credited. Atthe heart of this phenomenon
is the issue of information loss, because of the way[((00) andR,,, R,, R, treatu!. We

will have more to say about the connection between information loss and regularity later on.

Thus we have a concrete case in which concentrating on regularity has brought to light prob-
lems at the requirements level, a possibility fully in line with the intentions of this paper. Es-
sentially the point is this: if the mappinguseis central to the description (at the current level

of abstraction), it is most likely of interest to other operations (at the current level of abstrac-
tion) to know the identity olu! when it is assigned; on the other hand, if other operations (at
the current level of abstraction) have no need!pto what extent is the majpuserelevant at

all (at the current level of abstraction). Readers may care to examine the operations mentioned
in Appendix B in their proper context with regard to these observations.

We end this section by remarking that some specifications that containlthé((JJ) meta-
phor actually embody the transpose of the situation describ&t by particular being deter-

ministic. This happens when the] U that appears in the metaphor is part of the input to the
operation (rather than the output aslf). Under these circumstances, the operation is not free

to choosau at will, the choice coming from the environment. A particular example of this non-

canonical use of the metaphor is ttlecking_in operation from the FLEXITIME case study
in Hayes (1993).

Thus in summary, there are three distinctive scope scenarios for specifications containing the
(0) O(0O0) metaphor. Thet in question may be an input, making the specification determin-
istic; or an output, making it inverse deterministic — in both these casefree in the body

of the specification and the specification is manifestly regular; or it may be “hidden” or implicit,
i.e. existentially quantified, bound in the body, aRjysay, whereupon the regularity is closely

tied up with clean separation of concerns.

7 OTHER NONDETERMINISTIC EXAMPLES

In this section we examine some more nondeterministic specifications. These do not fit into
the canonical example paradigm of the previous section. We look at them so as to see how they
farevis a visregularity. They are ordered by the ease with which they conform to the regular
paradigm, the early ones being the more obviously regular.

Short_Count in ISTAR

Theshort_countoperation from the ISTAR case study in Jones and Shaw (1990) has the key
clauses

(bounts 10 result= 'count) [
(}:ount> 10 result> bount)

We note that this is nondeterministic and regular since any value chait is related to any
value > 1 ofresult

Random Numbers
A choose_random_numbayperation may be given in VDM-ese by

choose_random_number
wr n:[0..N];
pre true
post true

which means that the value ois allowed to change at will within the range ON.. Therefore

each input value of is related to each output value of and the operation is regular. This
formulation does of course ignore the statistical properties of sequences of invokations of the
choose_random_numberperation that are rather important in practice.

Statistical Desk Calculators

A statistical desk calculator furnishes an interesting example where reification takes place us-
ing an abstraction relation rather than an abstraction function. As a simple example, we exam-
ine themeanoperation at both abstract and concrete levels.

At the abstract level, the calculator collects the numbers input by the user, forming the multiset
numbs and themeanoperation just yields the mean of these numbers. Note that these are de-

terministic operations. Below we usé to add an element to a multis&tto sum the elements
of a multiset of numbers, and for the cardinality of a multiset.

input_numbeg (x: Int) ;
wr numbg : Mint ;
pre true

post numbg = humbg B {x}

mear, ;
rd numbsg : Mint ;
wr mean, : Real ;

pre true
post mean =Z numbg/|numbsg |

At the concrete level, a desk calculator does not maintain a multiset, which could grow arbi-
trarily large, but just maintains a running mean and running cardinality, which it updates as
each new number arrives. When the mean is requested, its value is just output.

input_number. (x: Int) ;
wr card. : Int;
mean : Real ;
pre true
post (card, =card, + 1)0

(mean = ('Ca—rdC X 'mealg +X) / card,)

mean. ;
rd mean : Int;
pre true
post true

Clearly many different multisets of numbers will give rise to the same mean, although not to
the same history of running means; so from the point of view of an individual instance of the
meanoperation, abstraction is a function from the abstract to the concrete view rather than the
other way round. In fact this is a consequence of the finite nature of the concrete view. Trans-
form theory teaches us that if we were to maintain an infinite number of running moments of
the distribution being analysed (something even more unrealistic than maintaining knowledge
of the complete multiset), then the relationship between abstract and concrete worlds would be
bijective. Because we maintain only a finite number of moments in reality, we lose informa-
tion. Inthis contextitis not surprising that abstraction is not an arbitrary relation, but a function
from abstract to concrete views as mentioned; nor that in both viewaéa@operation is de-
terministic, hence regular.

Float Square Root

A floating pointsquare_rootoperation may be specified, following Hayes and Jones (1989),
by

square_root,
rd X : Float ;
wr root : Float ;
pre x=0

post [r:Reals r’=x0]|root-r | <0.01

The type Float, of machine-representable reals, is introduced to deal with unavoidable machine
imprecision. As aresult, the answer of the operationt, has to be constrained no more tight-

ly than by the width of a given window (of width 0.01 in our case). This yields nondetermin-
ism. Asx increases through nearby values, these windows will typically overlap properly.
Thus we will havex;.R n x,.R# O butx;.R # X,.R, whereR is the relation representing the

specification, anty, X, are two nearby input values, and this leads to non-regularity. We can

recover this situation using the strategy of section 5. Let us define a fresh coordinate for the
right half of the X, root) plane

W = root — VX
Then the key clause in the specification becomes
|w]<0.01

which is now regular. This is a pleasing result, but obscures one point. The space of Floats is

a discrete subspace of the Reals (although these days, it may be regarded as an adequately
dense one), therefore the set of points ranged ovev Wl not coincide exactly with the set

ranged over byoot, since an exact square root is involved in the definitiowoHowever the

density of the Floats is such that few would disagree that this is, in practice, a trivial difficulty.

Raster Graphics

In the LINE REPRESENTATION ON GRAPHICS DEVICES case study in Jones and Shaw
(1990), the inability to represent a line in the real plane exactly on a raster device, leads to a
nondeterministic specification of those sets of pixels which are acceptable approximate repre-
sentations. This leads again to a window-style technique, whereby a sausage-like region of the
pixel array surrounding the ideal line, constrains the approximations that are permitted. As the
ideal line moves through nearby values, the saugages overlap and a specification that is at face
value non-regular results.

In principle this may again be attacked by transformation of coordinates techniques. Given a
line segment, erect an elliptical coordinate system such that the line segment connects the two
foci of the ellipse. If we call the radial coordinate we may specify suitable approximations

to the line segment by (say) the set of convex regions of the plane which contain the region
w < € (for € suitably small), and are themselves contained withinmtkex contour, where is

suitably large. If the construction of the elliptical coordinate system is smoothly parameterised
in terms of the line segment endpoints, the set of regions that results (expressed in the elliptical
coordinates) is independent of the line segment, and the problem becomes regular.

Though pleasing, this approach might be viewed with some caution. Firstly, the sausage
shapes in the original case study are not exactly elliptical. This not much of a problem, since
in principle one can invent orthogonal coordinate systems other than the elliptical one, with
sausage shaped contours whose exact form was other than an ellipse. This would be technically
arduous rather than conceptually challenging. Secondly, the output of the representation is in-

tended to be sets of pixels rather than regions of the plane, and so we run into a difficulty similar
to the definedness 0¥ in the floating square root case study above: the well definedness of the
elliptical coordinate system and of the concept of convex region with the stated properties does
not easily translate into a definition of corresponding sets of pixels in a grid. (Simply refering
to the set of pixels falling within an acceptable region is not enough since this has to be param-
eterised in elliptic terms.) Thirdly and most importantly, the resolution of raster devices in de-
picting the plane does not come close to the density of Floats as approximations to the Reals.
It is unrealistic to ignore edge effects as was reasonable to do in the square root case. To
achieve genuine regularity in the problem, given two different line segments, we would need
to find a bijection between the sets of acceptable pixel collections that approximated the two
lines, by analogy with the conformal transformation of the region between two ellipses that
would do the job in the continuous case. Given the resolution of raster devices, it is unrealistic
to expect this in general, and so, the degree to which the present case study fails to be regular
is attributable to the uneven way in which a simple grid is able to approximate an implicitly
continuous situation.

We can regard this as a consequence of loss of information. Different line segments are ap-
proximable with different degrees of accuracy, and as one moves from a line segment having
a large number of acceptable approximations to one having fewer ones, there is a loss of infor-
mation signalled by the lack of a bijection between them. Of course it may be the case that if
one considers not lines in the real plane, but “floating” lines in the 2D Float plane, then for a
suitable resolution of the Floats, this difficulty would be ameliorated, as the problem would
then transform to the coarsening of one raster pattern into another. In any event the problem is
rather sensitive to edge effects, and this constitutes a useful observation in itself.

As an example of a situation where the approximation works smoothly, and there is an obvious
bijection between approximations at different points of the domain, we could mention the fa-
miliar floor andceiling functions on the reals, that give two different ideas of an integer ap-
proximation to a real number. For either of these functions there is exactly one approximant
for each real, and so the problem is deterministic, hence regular.

Nondeterministic Merge

A good source of nondeterminism comes from merging and permutation problems. A good
example is nondeterministic merge. Suppose Alpha is a suitable alphabet.

ND_merge;
rd X : seq of Alpha ;
Y : seq of Alpha ;
wr Z : seq of Alpha ;
pre true

post Z [shufflegX, Y)
where shufflef]], Y) = {Y}
shufflegX, []) = {X}
shuffle§x :: xg y::y9 =
{x:: X | X Oshufflegxs y :: y9)} O
{y: Y |Y Oshuffle§x :: xs y9)}

At the core of nondeterministic merge is the following observation. etN14, 284, 3%, ...]
and N =[1B, 2B, 38, ...] be two disjoint sequences of tags XIndY are two initial segments

of N* and NB, then from anyZ O shufflegX, Y) we can uniquely reconstrutandY simply

by looking at the tag superscripts in order. This means thalNiemergeproblem with se-
guences from disjoint alphabets is inverse deterministic and thus regular. Many realistic appli-
cations of nondeterministic merge are of this character as the sequences of items being merged
are tagged with their sequence of origin. This is particularly so in the field of operating sys-
tems, where servers of various kinds service requests from a number of sources.

The version of the problem given in the specification above, where the sequences are from the
same alphabet, can be obtained from the previous case by applying suitable alphabetic mor-

phisms®” : NA _ Alpha, ®B: NB _, Alpha. If rng@”) n rng(@®®B) # O then loss of infor-
mation occurs and the operation becomes non-regular. For example, if Alpha = char, then if
X="a"andY = “ab” thenshuffle¢‘a”, “ab”) = {*aab”, “aba”}; while if X =“a” and Y ="“ba”
thenshuffle¢‘a”, “ba”) = {“aba”, “baa’}. So the images of (“a”, “ab”) and of (*a”, “ba”) under
ND_mergehave an element in common but do not coincide,NlB. mergeis not uniform.
However, when this occurs, for any pair of pairs of sequences having properly intersecting
shufflesets, there will be a closed system of merge instances satisfying a higher order permuat-
ability equation (see the conclusions). For instance in our given case, the system is closed by
X="pb”andY = “aa” with shuffle¢'b”, “aa”) = {*aab”, “aba”, “baa”} and we get the equation

RoRoRo RrR=Ro R

for the relation that relates pairs of strings to members of their shuffle sets. Once again we see
that loss of information can lead to a loss of regularity.

Diff

Another slightly unusual example, mentioned in Hayes and Jones (1989), is thedifiNliXl-

ity. This accepts two files (sequences of lines of characters), as input, and as output, produces
a set of edits that converts the first file into the second. Again this is highly nondeterministic,
(eg. the global edit which just replaces all of the first file with all of the second will always
work).

To study this example, let us examine the simglgiff which just edits one sequeneinto
anotherY by outputting a set of substitutions of slicesXby slices ofY, each in the form
[n..m] - [n"..m], and each of which is intended to signify that the subsequenceriram
minclusive ofX is to be replaced by the subsequence fréro nY inclusive ofY. Assuming

a suitable suite of invariants to ensure that edits are well defined and consistent etc., we may
write the top level specification as

sdiff ;
rd X seq of char;
Y : seq of char ;
wr EDS: set of subst ;
pre true
post ApplyEdit4EDS X) =Y

Let us pursue the strategy that worked in M2 _mergeexample. Let & =[14, 24, 3%, ...]
and NB =18, 2B, 38, ...] be two disjoint sequences of tags as previously, an¥ ktdY be

two initial segments of Rand N°. Then (up to unimportant variations), there is only one edit
that will do the job, the one that always works, replacing alKdify all of Y. We conclude that
this subproblem of the genersadliff problem is inverse deterministic and thus regular. Again

we obtain the general case by applying suitable alphabetic morpl#msN” — Alpha,

®B: NB _, Alpha and if rng(®) n rng(@®) # O then loss of information occurs and the op-
eration becomes non-regular. We illustrate this by the letting Alpha = BratApqrBxyzC”
andY =“A12B4B56C”. The two edits which work, are

E1={2..4]1-[2..5],[6..8]- [7..8]} and
E2={2..4]-[2..3],[6..8]-[5..8]}

E1 also converts “ApqrBxyzC” into “A234856C”, but E2 doesn’t. So we have a non-uniform
example as claimed. As before, we may perform deeper analyses of the problem, whereupon
we would once again encounter higher order permutability equations for the relation describing
the specification.

Recap

Let us comment on the above. We have encountered varying degrees of success in taking a
range of nondeterministic examples, and showing in what sense they can be viewed as display-
ing regularity. The earlier exampleshort_countchoose_random_numbeand the statistical
calculator example were regulab initio. Thesquare_rooexample could be transformed into
regular form using a change of variable, and the process was reasonably convincing. The same
approach yielded a strategy for the raster graphics example, but here the result was considera-
bly less convincing due to the coarseness of the pixel grid on a realistic device. This caused a
potential loss of information to take place which was much less innocuous than in the square
root case, even though mathematically the underlying phenomenon was the same. This loss of
information was correlated with a corresponding loss of regularity. Even sharper cases of loss
of information appeared in the final two exampl&f) mergeandsdiff, where with enough
combinatorial effort, one could attempt to quantify the loss of information through the way that
the overlap in the ranges of two alphabetic morphisms identified cases which would otherwise
have remained distinct. We saw there, that allied to this loss of regularity was the relevance of
higher order permuatbility equations for the relations in question, though there is clearly a need
for a more thoroughgoing analysis than we have given above.

8 THE REGULAR DESIGN PHILOSOPHY

Aside from some cases discussed in section 7, where we found evidence that higher order per-
mutability was relevant, we have found on the whole, that specifications, and thus the under-
lying problems that they describe, can be understood using regular relations, (and, particularly
in section 6, that this approach could be beneficial at the requirements level). This is certainly
true of the overwhelming proportion of “industrial” case studies in the Jones and Shaw, and
Hayes collections. We are therefore on solid ground in proposing that regularity is an inherent
property of the specifications of “real-world” or “practical” problems; problems that people are
actually likely to need to solve.

One can propose good reasons for this. In the real world, people act with specific goals in
mind — usually. At any rate when a system of real-world procedures is computerised, the
range of possible behaviours tends to get narrower rather than broader. Even when there is a
range of acceptable outputs from a given input, these often represent a freedom of implemen-
tation choice for some more abstract single-valued goal. Regular relations have just the right
properties to capture such situations.RIE f o g" is a regular specification, with: A - P,

g: B - P, thenC = codf) n cod@) [I P is the set of values of the most abstract characterisa-
tions of the operations in question. For example, in our canoalladate pageondetermin-

istic operation, the elements Gfcan be taken to correspond to the possible values taken by the
Val multisets formed from the data mentioned in the discussioblgf)(J (J,) in section 6.

Working at the level of abstraction represented by the€sedn often be alien to conventional
thinking about the problem in hand. For instance this was true of our canonical example, which
needed reformulation in order to bring out the regularity. We regard such reappraisal of a prob-
lem as entirely healthy. Not only can it lead to a better understanding of the symmetries of the
situation, and thence to a cleaner reification strategy, but in many cases it can actually turn out
that this most abstract view of an operation, characteriséti l/deterministic (eg. our canon-

ical example again). Determinism is generally easier to deal with conceptually, so we regard
its discovery ima priori nondeterministic situations as beneficial.

Regularity can give us a cleaner reification strategy because it breaks up both the domain and
codomain of the specification into independent pieces, each (corresponding pair of which) can
be dealt with separately. This can help to structure the extra levels of detail of reifications and
to reduce the complexity of the proofs entailed by refinement, effectively by pulling out case
analysis to the top level, and replacing large monolithic proofs by a collection of shorter deri-
vations for each of the possible cases. This paper is not the only place where such a decompo-
sition of input and output spaces is recommended. For example, the tabular methods of Parnas
(1992) are also based on a decomposition of domain and codomain into independent pieces.
Other related remarks on specification structure and ease of verification/validation (though not
on regularity), can be found in Mili et al. (1986). The decomposition into independent pieces
is very desirable given that the greater detail of a reified representation always carries with it a
greater risk of clutter, chaos and error. Starting from a regular specification, it is easier to reify
in a “balanced” way, adding equivalent layers of detail at the input and output sides of opera-
tions. (Of course this is less of a problem when input and output state spaces coincide.) We
summarise some recommendations to this effect in the slogans that appear in Fig. 3.

The slogans of Fig. 3 take into account that there are cases where regularity does not apply.
This may happen for a number of reasons ranging from the benign to the serious. It may be
that all that is needed is a suitable change of coordinates, as in some of our examples above.
Then the question arises whether the change of representation is worth pursuing at the imple-
mentation level. The issues that have to be weighed here include whether or not computing the
transformation would itself be equivalent to solving the whole problem (as was true in our ex-
amples), and if not, whether computing the transformation is an efficient implementation strat-
egy inits own terms. If computing the transformation is not efficient, it may still be worth pur-
suing because of the simpler problem structure that is revealed when the original problem is
cast into regular form; giving payoffs in terms of more straightforward implementation and fu-
ture maintainability. More seriously, the original problem may resist being put into regular

The Regular Design Philosophy

0O When commencing the design of a system, look for regularity
from the earliest possible moment. Make the search for reg-
ularity central to the requirements capture phase, as well as
to the specification phase. Understand the significance of
suitable sets C = codf) n cod(@@) in a rational formulation of a
regular specification R=f o g".

Perform reification so as to preserve regularity, especially
when input and output state spaces are distinct.

If an operation subbornly refuses to be captured by a regular
specification, strive to understand why. Is it fundamentally
non-regular, or could an alternative approach (eg. a change
in coordinates) bring out regularity? If so, is the change of
perspective on the problem, cost-effective as an aid in devel-
opment or is it best regarded as an aid in understainding? If
no alternative view yields regularity, could alternative oper-
ations be designed which are regular, and if so, would they
be more useful? Could the operation be broken down into
smaller suboperations which are regular, and if so, is this in-
sight helpful? If the former do not apply, would an analysis
of the operation in terms of higher order permutability prop-
erties be helpful?

Fig. 3.

form because at a fundamental level, higher order permutability equations are needed to de-
scribe it. In that case a deeper study of the structure of the problem using the permutability
properties might reveal aspects that can be exploited in implementations. However we have
pursued these latter possibilities rather less in this paper and so this last suggestion must be on
a more tentative level.

On the whole, we have amassed enough evidence to make plausible the claim that non-regular
cases will be rare. Usually one will be able to find regularity, and then we recommend that it
be used. It can help to structure the details of how a specification is developed, and this struc-
ture can be profitably exploited in the verification of the specifications developed. The author
imagines that a structured and disciplined approach to the creation of a specification, such as
is provided at least in part by regularity, will be particularly beneficial in computer-aided work,
where it could lead to proof obligations which are rather more tractable than would otherwise
be the case for reasons mentioned above. Further work would be needed to properly substan-
tiate this though.

9 CONCLUSIONS

In the preceding sections of this paper, we have picked out the criterion of regularity of rela-
tions, a concept having deep universal properties, and shown that it has widespread applicabil-
ity in specification design. As well as being manifest in deterministic specifications, we have
shown it to be widely applicable to nondeterministic problems, and indicated that it has paral-
lels with methods used in classical applied mathematics. As a result of this widespread appli-
cability, we have recommended that the search for regularity be placed at the forefront of
specification design, as being likely to lead to more understandable specifications, and ones that
are easier to manipulate in subsequent stages of design. We have encapsulated our recommen-
dations in a few slogans in the previous section.

We have stopped short of proposing a specific deveopment methodology based on the observa-
tions in ths paper. On the one hand this would take us outside the scope of the paper as stated
in the introduction, on the other it would tend to emphasise whichever particular methodolgy
we described in preference to others. This would be undesirable, since we intend the impact of
this paper to be at the meta level: its ideas are capable of being brought to bear on many deve-
opment methodologies.

We have indicated that in the case of the few examples that defied easy description using regular
relations, there is evidence to indicate that other relational metaphors might apply, based on
higher order, om-permutability. Material on this topic can be found in eg. Carboni et al.
(1993). Fom = 3 n-permutability corresponds to regularity, also called the Mal’cev property
(Mal'cev (1954)). Fom = 4 it is the Goursat property (Goursat (1889)). General values of

may well lead to a useful classification of relations arising in specification work.

Acknowledgements

It is a pleasure to thank Cliff Jones and lan Hayes for discussions and comments on some of
the material in this paper, and particularly for suggesting interesting examples of specifications
with which to confront the regular methodology. Thanks are also due to Harold Simmons and
Peter Johnstone for the Carboni et al. reference.

Appendix A: Some Deterministic Examples

For some more complex examples of deterministic specifications we refer to the collections
Jones and Shaw (1990), and Hayes (1993). These abound with deterministic operations. From
Jones and Shaw (1990), we might mention:

[0 delete_connectioiffrom a database) in the NDB case study,

[0 count_tripple declare_verb delete_tripple grant_access initialise, insert_tripple
partition_clear, test_verbundeclare_verbverb_inverseand others in the ISTAR case
study,

[0 almost all the operations in the MUFFIN case study, (because they are already (partial)
functions),

0 disposeand some of the versionsregw in the HEAP STORAGE case study,

O many of the operations in the GARBAGE COLLECTION case study,

and so on. From Hayes (1993) we might mention:

[0 the operations in theymbol tablefile update andsorting tutorials,

the operations in the BLOCK STRUCTURED SYMBOL TABLE case study,
the operations in the TELEPHONE NETWORK case study,

readfile writefile, createS$destroySSreadCHAN, writeCHAN, seekCHAN closeC$
readAS writeAS, seekASetc., in the UNIX FILING SYSTEM case study,

[0 the operations in the CAVIAR case study.

O O O

In fact the vast majority of operations mentioned in both collections of case studies are deter-
ministic, as one might expect, and the vast majority of those that remain fit the canonical non-
deterministic template, as listed below.

Appendix B: Some Canonical Nondeterministic Examples

Allocating a page in a heap-managed memory is the obvious canonical example, but there are
many others. From Jones and Shaw (1990) we might mention:

[0 add_connectiorfrom the NDB case study,

0 build_tripple from the ISTAR case study,

0 spawn_proofandadd_empty proofrom the MUFFIN case study,
[0 some versions afewfrom the HEAP STORAGE case study,

etc. From Hayes (1993) we might mention:

0 openCScreatefrom the UNIX FILING SYSTEM case study.

All of these can be recast as regular relations by using the techniques described in section 6.
They also vary with regard to whether the assigned objegtvisible in the interface or not.

References
Banach R. (1994); Regular Relations and Bicartesian Squares, Theoretical Computer Science,
129 to appear.

Carboni A., Kelly G.M., Pedicchio M.C. (1993); Some Remarks on Mal'cev and Goursat
Categories, Sydney School of Mathematics and Statistics Re§8119, Applied
Categorical Structures, to appear.

GoursatE. (1889); Sur les Substitutions Orthogonales, Ann. Bci.Norm. Sup.3(6), 9-102.
Hayes I. J. (1993); Specification Case Studies (2nd ed.), Prentice-Hall.

Hayes I. J., Sanders J. W. (1993); Refinement With Input/Output Transformations, Working
paper.

Hayes . J., Jones C. B. (1989); Specifications Are Not (Necessarily) Executable, IEE Software
Engineering J4, 320-338.

Jaoua A., Mili A., Boudriga N., Durieux J. L. (1991); Regularity of Relations: A Measure of
Uniformity, Theoretical Computer Science9, 323-339.

Jones C. B. (1990); Systematic Software Development Using VDM (2nd ed.), Prentice-Hall.

Jones C. B., Shaw R. C. (1990); Case Studies in Systematic Software Development, Prentice-
Hall.

Mal’cev A. I. (1954); On the General Theory of Algebraic Systems, Mat. Sbornik NB553-
20.

Mili A. (1990); An Introduction to Program Fault Tolerance, Prentice-Hall.

Mili A., Xiao-Yang W., Quing Y. (1986); Specification Methodology: An Integrated
Relational Approach, Software Practice and Experiet®,e,003-1030.

Parnas D. L. (1992); Tabular Representation of Relations, Communications Research
Laboratory, Report 260, Faculty of Engineering, McMaster University.

Ross K. A., Wright C. R. B. (1992); Discrete Mathematics, Prentice-Hall.

Schmidt G., Strohlein T. (1993); Relations and Graphs, Discrete Mathematics for Computer
Scientists, Springer.

Spivey J. M. (1993); The Z Notation: A Reference Manual (2nd ed.), Prentice-Hall.
Suppes P. (1960); Axiomatic Set Theory, Dover (1972).
Tarski A. (1941); On the Calculus of Relations, J. Symbolic Ldgi¢3-89.

	ON REGULARITY IN SOFTWARE DESIGN
	R. Banach
	Computer Science Department, Manchester University,
	Manchester, M13 9PL, U. K.

	Abstract
	A regular relation R, is one for which R = R R^ R, where “” is relational composition and “^” is ...
	1 Introduction
	2 REGULAR RELATIONS
	3 DETERMINISTIC SPECIFICATIONS AND REIFICATION
	4 INVERSE DETERMINISTIC SPECIFICATIONS
	5 A SIMPLE NONDETERMINISTIC EXAMPLE
	6 NONDETERMINISTIC SPECIFICATIONS: THE CANONICAL EXAMPLE
	7 OTHER NONDETERMINISTIC EXAMPLES
	8 THE REGULAR DESIGN PHILOSOPHY
	9 CONCLUSIONS
	Acknowledgements
	Appendix A: Some Deterministic Examples
	Appendix B: Some Canonical Nondeterministic Examples
	References

