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Abstract

The primary objective of IEEE 802.22 standard is to determine vacant spectrum bands available in Digital Television channel (DTV)
and to utilize them for wireless rural broadband connectivity. Cognitive Radio aims at maximizing the utilization of the limited
radio bandwidth while accommodating the increasing number of services and applications in Wireless networks. For cognitive radio
networks to operate efficiently, Secondary Users (SU) should be able to exploit radio spectrum that is unused by the primary user.
A critical component of cognitive radio is thus spectrum sensing. The secondary user should sense the spectrum efficiently, utilize
the opportunities for transmission, and vacate the channel once primary user reoccupies it. In this paper, we propose approaches for
cooperative spectrum sensing as per the IEEE 802.22 standard. This paper describes several simulation scenarios that can be used
to evaluate spectrum sensing by single SU unit (local sensing) and multiple SUs in a cooperative setup. The detection accuracy and
performance of the proposed algorithms are described using performance metrics called probability of detection and probability of
false-alarm through extensive simulations using Matlab.
© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

The demand for radio spectrum has significantly increased due to recent growth in wireless services. The current
wireless systems are regulated by fixed spectrum assignment policy where a given spectrum band is assigned to a
licensed user on a long term basis and for larger geographic location. A recent investigation by FCC1 has shown
that most of such licensed spectrum remains unoccupied for large periods of time. In general, a large portion of
the assigned spectrum is used by users sporadically with high variance in time. As a result, under the current
fixed spectrum assignment policy, the utilisation of radio resource is quite inefficient. This limited availability and
inefficiency of spectrum usage necessitates a new communication paradigm to exploit the existing wireless spectrum
opportunistically.

Cognitive Radio (CR) addresses the issue of designing wireless communications systems which aims to enhance the
utilization of the Radio Frequency (RF) spectrum2. It is built on a Software Defined Radio (SDR) with the convergence
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of two key technologies: Digital radio and computer software. It is viewed as an intelligent wireless communication
system, which is aware of its environment and adapts to the statistical variations in the input stimuli. The cognitive
radio is widely regarded as one of the most promising technologies for future wireless communication systems.

The definition of cognitive radio as adopted by FCC1 is “A radio or system that senses its operational
electromagnetic environment and can dynamically and autonomously adjust its radio operating parameters to modify
system operation, such as maximize throughput, mitigate interference, facilitate interoperability, access secondary
markets”. As stated by Simon Haykin3, the cognitive radio adapts its internal states to statistical variations in
the incoming RF stimuli by making corresponding changes in certain operating parameters (e.g. transmit-power,
carrier frequency and modulation strategy) in real-time, with two primary objectives in mind, i) Highly reliable
communications whenever and wherever needed and ii) Efficient utilization of the radio spectrum. In addition to the
fact that cognitive radio is generally implemented as a control process (presumably as part of a software defined radio)
and imply some capability of autonomous operation, the following are some general capabilities found in CR4:

• Observation – the radio is capable of acquiring information about its operating environment.
• Adaptability – the radio is capable of changing its RF operating parameters.
• Intelligence – the radio is capable of applying information towards a purposeful goal.

To determine the presence or absence of primary user transmission, different spectrum sensing techniques
using matched filter, cyclostationary detection, wavelet detection and energy detection have been proposed in the
literature5–8. These sensing techniques can be helpful for each SU to make the decision locally in its hypothesis
testing space. Compared with other detectors, the energy detection is well suited for local sensing9 because it does not
require any prior knowledge about PU signal properties. Also, it has low computational complexity. The performance
metrics10 of spectrum sensing is defined by using two parameters: Probability of Detection (Pd ) and Probability of
false-alarm (Pf ). The performance limiting factors of the spectrum sensing can be due to noise uncertainty, channel
fading and shadowing effect. To overcome these, the SUs have to make collaborative decision which is known as
Cooperative Spectrum Sensing (CSS)11, 12. CSS schemes such as hard combination, soft combination and CSS using
machine learning schemes, Coalition game formation etc. have been proposed in the literature13–15.

1.1 Present work

This paper discusses a framework of local sensing using energy detection and cooperative sensing based on machine
learning to meet the functional requirement of IEEE 802.22 WRAN standard. The simulation results of the proposed
spectrum sensing algorithm leads to formulation of effective coalition formation game for efficient strategic interaction
among SU’s. The main contributions of this paper are:

• The Simulation scenario of spectrum sensing algorithm has been formulated to meet the requirements of IEEE
802.22 WRAN standard.

• Local sensing phase is carried out using energy detection to scan the complete available channel set from
54 MHz–682 MHz with channel bandwidth of 7 MHz.

• The Cooperative Spectrum Sensing (CSS) phase is based on the Machine Learning technique. The reason for
adopting learning algorithm in CSS is because of its ability to dynamically adapt and train at any time, able to
“learn” features and attributes of the system which is often difficult to formulate analytically. The performance of
our proposed algorithms is evaluated using detection probability and target false alarm rate.

1.2 Related work

The concept of cognitive radio was first proposed by Joseph Mitola III16 in 2000. The fundamental activities of
cognitive radio include (i) monitoring the available spectrum band in RF radio environment and capturing spectrum
hole information (observe), (ii) Estimating the captured spectrum signal information by identifying functional
relation between measurements and system configurations (orient), (iii) evaluating the outcome of orientation
phase by gathering knowledge to be exploited in future with the aim of improving decision capability (learn),
(iv) choosing appropriate spectrum band according to the spectrum characteristics and user information (decide), and
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Fig. 1. Cognitive cycle16 .

(v) performing actions by effectively utilizing available bands (act). This set of activities, referred to as cognitive
cycle16, is represented in Fig. 1.

In 2004, the IEEE 802.22 working group17 was formed to define the cognitive Wireless Regional Area Network
(WRAN) PHY and MAC specifications. While IEEE started 802.22 with a special interest of defining procedures
for cognitive operation in TV bands, after three years of preparation, FCC launched the TV band unlicensed service
project in 2006 with cognitive radio technology. The IEEE 802.22 WRAN standard aims to provide fixed wireless
access with a typical cell radius of 33km and maximum radius of 100km in rural and remote areas using Cognitive
Radio (CR) technology in TV white spaces. It helps to provide broadband access to rural areas with low cost. In most
of the existing work, the simulation scenario of CSS algorithm has been based on common theoretical assumptions
rather than meeting the operational requirements of WRAN standard.

The reminder of this paper is organized as follows. In Section 2, background and system model are briefly explained
which highlights local and cooperative sensing schemes with detailed description of algorithm. The simulation setup
and results are discussed in Section 3. Finally, the paper is concluded in Section 4.

2. Background and System model

Our work deals with local sensing scheme using energy detection model and cooperative sensing technique using
perceptron learning, which is briefly explained below.

2.1 Energy detection model

Energy detector18 is the optimal way of local spectrum sensing which does not require any prior knowledge about
primary signal. In order to measure the energy of the received signal, the output signal of band pass filter with
bandwidth W is squared and integrated over the observation interval T . Finally the output of the integrator is compared
with a threshold to detect whether the primary (licensed) user is present or not. The spectrum estimation can be
computed in frequency domain by averaging bins of a Fast Fourier Transform (FFT) using Periodogram approach.
The equation for a Periodogram19 is given as,

s(ω) = 1

N

∣∣∣∣∣
N∑

n=1

x(t)e− jωt

∣∣∣∣∣
2

(1)

In this, the processing gain is proportional to FFT size N and the averaging time (t). Increase in the size of FFT
improves the frequency resolution which is helpful in detecting narrow band signals. If we reduce the averaging time,
the SNR improves by reducing the noise power. In the application of spectrum sensing, the Periodogram method is
superior as it provides a better variance for the set of input data. Variance represents how far apart a particular set of
data is spread out in amplitude. The block diagram of energy detection model is shown in Fig. 2.
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Fig. 2. Energy detector model.

Typically, the variance of the entire FFT data will be larger than the FFT of the data in the segments due to the
larger data variations in the entire frame versus the variance of the segments. Because of this, a Periodogram will
generally produce a smoother graph and will enable the system to detect and display signals in the presence of noise.
The distribution of the total power over a specific range of frequencies is represented by power spectral density, which
is the Fourier transform of the autocorrelation function. However, assuming white noise, the autocorrelation function
reduces to an impulse.

The operation of energy detector is based on Binary Hypothesis testing problem which can be performed by each
SU to decide presence/absence of PU. The statistical inference drawn from Binary hypothesis test20 includes H0 and
H1 to represent presence and absence of PU respectively. Based on this, the received signal of the i th SU at sample
index n is given by,

xi (n) =
{

wi (n), H0

hi (n)s(n) + wi (n), H1
(2)

where wi (n) is the Additive White-Gaussian Noise (AWGN), s(n) is the primary user signal and hi (n) is the gain of
the sensing channel between PU and SU. The decision metric18 for the energy detector can be written as,

Mi =
N∑

n=0

|xi(n)|2 (3)

where N is the observation vector. The performance of energy detector can be evaluated by using two probabilities:
Probability of detection Pd and Probability of false alarm Pf . The probability of detection is to decide the presence of
primary user when it is truly present. In contrary, the Pf is to decide the presence of PU when it is actually not present.
It can be formulated as,

Pd = Pr (Mi > λ/H1)

Pf = Pr (Mi > λ/H0) (4)

where λ is decision threshold which can be selected for finding the optimum balance between Pd and Pf . By setting
a desired probability of false alarm and calculating the variance of a data set, the system sets a threshold to indicate
signals above the noise level. Each SU processes its received energy and compares with a local threshold. The received
signal strength of each SU varies based on its distance from Primary transmitter.

The description of local sensing algorithm is given in Algorithm 1 below. First, the primary user signal is added
with noise according to the distance from the primary user. The noise added signal, ‘signal−at−node’ acts as input
to different SU’s. For each of the 10 secondary users, periodograms are calculated for signal−at−node, and based
on which a Power Spectral Density (PSD) graph is obtained. The channel bandwidth is considered as 7 MHz in the
frequency range of (54–698 MHz) which is scanned in steps of channel width giving around 92 channels whose
decision can be either “occupied” or “available”. The average energy values at each channel are compared to a
threshold calculated based on a random probability of false alarm. If the energy value of the channel is greater than
the threshold, the channel is specified as “occupied” otherwise it is “available”.
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Algorithm 1. Local sensing based on energy detection
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Fig. 3. Perceptron network.

The collection of energy vectors of each SU is represented using a matrix shown below. In this matrix, the row
vectors and column vectors are considered as secondary users and number of channels respectively. Each secondary
user has an array of values specifying the availability of each of the 92 channels. These are called local decisions.

Yi (t) =
SU1

SU2

SUN

⎛
⎜⎜⎜⎜⎜⎜⎝

Ch1 Ch2 . . . ChN

x1(n) x1(n) . . . x1(n)

x2(n) x1(n) . . . x2(n)

xN (n) xN (n) . . . xN (n)

⎞
⎟⎟⎟⎟⎟⎟⎠

Based on the local decisions of the N SU’s, the fusion center will take a final decision as explained in the next
sub-section.

2.2 Cooperative spectrum sensing model

All SUs report the estimated energy level (decision vectors) to the Fusion Centre (FC) through a reporting channel to
make the final decision. We compute the final decision based on the soft combination of the local decisions (weighted
average method). The weights corresponding to each secondary user is computed using the energy values as captured
by every secondary user. For every channel, we calculate the mean energy value and the weight for each secondary
user is the ratio of the corresponding energy value and the mean computed for the channel. This weight essentially
captures how variant is the energy levels to the mean in that particular channel. For every channel, the mean value
calculated is as follows,

mean =
10∑

N=1

xi (n)/N (5)

The weight of each secondary user is determined by using the mean value. The weight assigned to every secondary
user is multiplied to the local decision value and the cumulative sum obtained from all the secondary users (N) is
used to determine the final decision of the FC. This linear combination of the weights and the local decision vectors
produce the Target Output. The model proposed further is evaluated by comparing its results to the target output of
the weighted average method. In this paper, we propose CSS scheme based on perceptron networks. The schematic
representation of perceptron networks21 are shown in Fig. 3.
The FC collects local sensing results (decision vectors) of each SU and it acts as input to the perceptron network. The
decision vector is denoted as,

Y = (X1, X2 . . . X N ) (6)

The weight vectors (w) are determined by the method proposed earlier using the mean of the energy values. The
bias value (b) is used for shifting the hyperplane away from the origin. The hardlimit function determines the network
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Algorithm 2. Proposed cooperative spectrum sensing scheme

output which gives the final decision of FC about availability of primary channel. The input (n) to the hardlimit
function is determined as,

n =
m∑

i=1

wi xi + b (7)

Since the reporting channel is bi-directional, the FC sends its final decision to all SUs. The goal of the perceptron
is to correctly classify the set of externally applied stimuli (energy vectors) into one of the two classes H0 or H1. The
algorithm steps involved in the proposed CSS scheme is shown in Algorithm 2.

3. Simulation Setup and Results

The performance of the proposed cooperative sensing scheme has been analyzed with perceptron learning model
using MATLAB. We consider a CR simulation scenario with one primary transmitter which operates in the frequency
range of (54–698)MHz with channel bandwidth of 7 MHz. Multiple secondary users are randomly deployed in a grid
topology of area 120×120 Sq.km, using one FC as shown in Fig. 4. The distance coordinates of each SU varies during
each iteration. We have carried out 100 iterations. The value of SNR for each SU changes based on the distance from
the primary transmitter.

The signal power estimation (power per unit frequency) has been carried out using Periodogram approach as
explained in Section 2. The estimation of Power Spectral Density (PSD) for each SU varies based on the distance
coordinates. Based on the signal estimation, each SU identifies the channel availability by scanning the complete set
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Fig. 4. Node placement.

Fig. 5. Channel availability results of band 1 during (a) iteration 6; (b) iteration 83.

of primary frequency bands. The FC collects all the sensing information from each SU and makes the global decision.
The channel availability results of each secondary user and FC for band 1 is shown in Fig. 5(a) and (b) during iteration
6 and 83. The blue bar represents status of primary user band in that region and the red bar represents the decision
of FC. These band availability diagrams are based on the local decisions of the corresponding secondary user. Further,
it is evident from these figures that the uncertainty of channel availability information may lead to interference to
the primary user. Figure 6 depicts the channel availability results of FC. The white stem represents the availability of
spectrum holes in particular channel. On comparison of Fig. 5 with Fig. 6, we can see that the FC provides a more
accurate channel availability status. The local decisions of the secondary user for some channels are incorrect and the
correct decision is communicated to secondary user by the FC.

Our proposed CSS scheme makes correct decisions by maintaining the target probability of error rate as 0.1. The
FC decides the final availability of channel information using perceptron learning module with low error rate. The
simulation result of FC is shown in Fig. 7. The perceptron module in FC uses 70% of local sensing energy vectors as
training set to meet the desired target output.
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Fig. 6. Channel scanning results of FC.

Fig. 7. (a), (b) Perceptron network output versus target output.

The output obtained from the perceptron model is called the network output. To determine the performance of
perceptron learning on CSS scheme, we consider network output versus target output. The target output determines the
probability of error rate. Figure 7 shows the comparison of the network output with the target output. The highlighted
section (marked by arrow) shows the mismatch between the target output and network output and that is an error
instance. As we can see for 50 iterations (different secondary user positions), we have less than 10% error rate. Here,
we have depicted the performance for only Channel 1 and Channel 2. The network output of our proposed algorithm
meets the target false-alarm rate of 0.1 for all the simulation conducted.

4. Conclusion

In this paper, we have developed a cooperative spectrum sensing algorithm using perceptron learning scheme for
Cognitive radios. The simulation scenario has been formulated to meet the requirements of IEEE 802.22 WRAN
standard. The proposed CSS scheme has the capability to learn from the radio environment to achieve cognitive tasks.
Further, it is observed that the Perceptron learning module improves the decision capability of FC and significantly
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reduces the error rate to meet the target false-alarm rate. As future work, the proposed scheme can be extended to
make effective strategic interaction among SU’s using the approach called coalition game formulation.
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