
International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 80

Design of a High Performance Implementation of a Tree-

based Multicast Key Distribution Protocol
Heba Kamal Aslan1 and Ghada Farouk Elkabbany2

(Corresponding author: Heba Kamal Aslan)

Informatics Dept., Electronics Research Institute, 11-a Helmi Hussein St., Manial, Cairo, Egypt
1

Informatics Dept., Electronics Research Institute, Cairo, Egypt
2

 (E-mail: {hebaaslan, ghada_kabbany}@yahoo.com)
 (Received Nov. 16, 2011; revised and accepted Feb. 1, 2012)

Abstract

The key distribution problem is considered one of the most

important issues for providing secure multicast

communication. Logical Key Hierarchy (LKH) protocols

are considered one of the best solutions proposed for

solving the scalability of multicast key distribution

protocols. The use of LKH protocols reduces the

computation complexity cost from O(n), where n is the

number of the whole group members to O(log(n)). In the

present paper, a design of a high performance protocol for

securing multicast communication is proposed. The

proposed protocol is based on the idea of organizing the

keys in a tree as in LKH protocols. In order to achieve

lower computation overhead, the proposed protocol uses a

multi-processor system. It has to be noted that LKH

protocol relies heavily on one central point, therefore, it

represents a single point of failure and for a large tree; the

server’s throughput can represent a bottleneck. The use of

multiple processors could solve this problem and enhance

the server's throughput. The proposed protocol is analyzed

according to: the number of processors, the tree height and

the tree degree. The analysis shows that the use of

multiprocessor system will enhance the system

performance which is considered an important factor for

both real time and wireless applications.

Keywords: Centralized approaches and multiprocessor

System, group communication, logical key hierarchy,

multicast key distribution

1 Introduction

The key distribution problem is considered one of the most

important issues for providing secure communication.

Many protocols that address the key distribution problem

for unicast or point-to-point communication [7, 9] have

been studied. Extending these protocols for applications

(such as teleconference, pay per view, collaborative

work, …etc.) which are based on group communication is

not a practical solution. In group communication, all group

members share one key called group key. This key must be

securely delivered to the group members; one solution to

this problem is to use a central entity that shares a

symmetric key with the entire group members. This central

entity will have the role of generating the group key and

distributing it to each group member encrypted by the

shared symmetric key between this entity and the group

member. After establishing the group key, in case of any

change in the group (join, leave, merge, and division), the

central entity will again generate another group key and

encrypt it using each symmetric key shared between it and

each group member. Therefore, the cost of computation and

communication will be linearly dependent on the number of

group members, i.e. the complexity cost will be of O(n),

where n is the number of group members. For large groups

or groups characterized by frequent change, this huge

amount of computation and communication can decrease

the group’s performance.

In recent years, many approaches for solving the

problem of group key distribution were proposed. These

approaches can be classified as follows:

Centralized approaches use one central entity to maintain

the security of the whole group. For large groups, those

protocols are not scalable. In addition, the central entity

represents a single point of failure.

Distributed subgroup approaches, where the whole group

is divided into several subgroups. One subgroup controller

maintains each subgroup. These protocols solve the

problem of scalability. Another advantage of these

protocols is that in case of failure of one subgroup

controller, this does not lead to the failure of the whole

group.

Decentralized approaches, where the whole group

members contribute in the group key generation. As for the

centralized approaches, these protocols are not scalable for

large groups since it requires large computations among

the group members.

In the present paper, a design of a high performance

protocol for securing multicast communication is proposed.

The proposed protocol is based on the idea of organizing

the keys in a tree as in LKH protocols. In order to achieve

lower computation overhead, the proposed protocol uses a

mailto:ghada_kabbany%7D@yahoo.com

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 81

multi-processor system. It has to be noted that LKH

protocol relies heavily on one central point, therefore, it

represents single point of failure and for a large tree; the

server’s throughput can represent a bottleneck. The use of

multiple processors could solve this problem and enhance

the server's throughput. The proposed protocol is analyzed

according to: the number of processors, the tree height and

the tree degree. The analysis shows that the use of

multiprocessor system will enhance the system

performance. Increasing the number of processors reduces

the total execution time until reaching the system's

saturation. Therefore, the use of multiprocessor system will

significantly reduce the computation overhead which is

considered an important factor for both real time and

wireless applications. In addition, the proposed design is

scalable. This is an important factor in real applications

where the number of users changes repeatedly. The paper is

organized as follows: in Section 2, a survey of group key

distribution protocols is detailed. In Section 3, a

background of multiprocessor systems is given. Then, the

proposed protocol is detailed in Section 4. In Section 5, a

performance evaluation of the proposed protocol is given.

Finally, the paper concludes in Section 6.

2 Related Work

As a result of the spread use of Internet applications

characterized by multicast communication, the need to

establish a group key becomes a vital requirement. Group

key distribution protocols play an important role to deliver

security. They are considered the main part to obtain a

secure system. A good key distribution protocol must

satisfy the following requirements [19]:

- Providing confidentiality, which means that only

authorized group members have access to key update

messages.

- Providing backward secrecy by preventing a new group

member to have access to previous messages exchanged

before it joins the group.

- Providing forward secrecy by preventing a leaving group

member to have access to messages exchanged after it

leaves the group.

- Key independence, which means that the disclosure of

any key does not lead to the disclosure of other keys.

- Minimizing collusion attacks, which means that evicted

members must not be able to work together and share

their individual information to regain access to the group

key.

- Minimizing the key update message length in order to

enhance system performance.

- Minimizing the operations needed to perform re-key in

order to enhance the key distribution center performance.

- Minimizing storage requirements at both the key

distribution center and each group member.

In recent years, many approaches for solving the

problem of group key distribution were proposed. These

approaches can be classified as follows: centralized group

key distribution protocols, distributed subgroup key

distribution protocols and decentralized group key

distribution protocols. In centralized group key distribution

protocols, one central entity is incorporated to play the role

of group manager. This controller shares a symmetric key

with all group members. In case of any member change

(leave, join, merge, or division), the manager has to

perform many encryptions and broadcast several messages

for the changed keys. For a large group and frequent

member change, the manager’s throughput can represent a

bottleneck for the group’s performance. Therefore, for

large groups, these protocols are not scalable. In addition,

the central entity represents a single point of failure.

Examples of this technique can be found in [2, 5, 15, 17, 18,

20, 22, 24, 26, 27]. The centralized approaches are

generally based on the idea of Logical Key Hierarchy

(LKH), which is introduced in [26]. In LKH, a key

distribution center maintains a key tree as shown in Figure

1. Each node in the tree represents a symmetric key. The

leaves represent the group members. Each member knows

all the symmetric keys from its leaf to the root. For

example, U1 knows the set of keys: {k4, k2, k1}. It has to be

noted that k1 represents the group key. If U5 joins the group,

it will be assigned a symmetric key k8 as shown in Figure 2.

To maintain backward secrecy, both k3 and k1 must be

changed to k3new and k1new. The key server generates k3new

and k1new and broadcasts the following message: {k1new}k1,

{k3new}k3, {k3new, k1new}k8. U1, U2, U3 and U4 obtain k1new

by decrypting the first part of the message using the old

value k1, U3 and U4 obtain k3new by decrypting the second

part of the message using the old value k3, and U5 obtains

k3new and k1new by decrypting the third part. As stated in

[26], the manager needs to perform 2h encryptions in case

of a member join, where h represents the height of the tree

and equals to log(n), n represents the total number of group

members. In addition, the length of the transmitted message

equals to 2h keys. If U4 leaves the group, to maintain

forward secrecy, both k3 and k1 must be changed to k3new

and k1new as shown in Figure 3. The key server generates

k3new and k1new and broadcasts the following message:

{k3new, k1new}k6, {k1new}k2. U3 obtains the new values k3new

and k1new by decrypting the first part of the message, and U1

and U2 get the new value k1new by decrypting the second

part of the message. As derived in [26], the encryption

operations needed by the manager for the case of a member

leave equals to 2h-1 and the length of the transmitted

message equals to 2h-1 keys. As mentioned in [26], the use

of key tree will reduce the complexity cost from O(n) to

O(log(n)). Further, the storage at each group member

equals h+1 keys and the storage at the server equals 2n-1

keys. It has to be noted that the centralized approaches rely

heavily on one central point, which can represent a single

point of failure. In addition for a large tree, the server’s

throughput can represent a bottleneck.

In distributed subgroup approaches, the whole group is

divided into several subgroups. One Subgroup Controller

(SC) that shares a symmetric key with the Group Controller

(GC) maintains each subgroup. The role of SC is to

establish a subgroup key to be used within the subgroup

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 82

and to translate messages sent from GC to the subgroup

members. This approach solves the problem of scalability;

any member change will only affect the subgroup where

this member belongs. Another advantage is that the failure

of one SC will not lead to the failure of the whole group.

The disadvantage of this approach is the need of decrypting

group messages at the SC and re-encrypting using the

subgroup key. This solution reduces the communication

and computation complexity to O(n/m), where m represents

the number of subgroups. Examples of this approach can be

found in [3, 6, 16, 21].

In decentralized group approaches, also called contributory

protocols, each group member contributes to generate the

group key. Decentralized approaches are characterized by

having no group controller. The decentralized approach is

generally based on large exponentiations using modulo

operations. For information about modulo exponentiations,

the reader can refer to [9]. Although this approach does not

depend on a single entity to establish the group key, it

suffers from the need of several modulo exponentiations,

which makes it infeasible for large groups. Examples of

this approach can be found in [4, 13, 25]. In the next

section, a background of multiprocessor systems is given.

3 Background of Multiprocessor Systems

A multiprocessor system can be defined as a collection of

autonomous processors, which can communicate with each

other through a communication medium. The

communication between processors can be done

either through a shared memory medium or through links

which interconnect processes directly with each other

(message passing systems). In the shared memory model,

processors can access in parallel memory locations which

they share with all other processors. The communication

between processors is achieved by writing information to

common memory locations. In the message passing model

(distributed memory system), each processor can read and

write information only to a local memory, thus it must

exchange information by sending messages via links to

other processors. It is assumed that all processors of the

message passing system execute the same algorithm and

work correctly for any possible interconnection of

processors [8]. Distributed-memory systems (DM) have

some advantages over the shared-memory (SM) systems.

First, DM systems require relatively design effort less than

SM systems. Second, it is easily to expand (scalable) that is

to say, as the number of processors increase, the memory

size increases, the total memory bandwidth increases,

processing capability of the system increases. Third nodes

with different type of processors can be used to adapt the

specialized problems (flexible). For the above reasons, we

will focus on the parallel systems based on distributed

memory.

A Message Passing (MP) system involves connecting
multiple independent nodes each contains a processor and
its local memory. There is no sharing of primary memory,

Figure 1: Hierarchical key tree

Figure 2: Key tree update (case of join)

Figure 3: Key tree update (case of leave)

but each processor has its own memory. The contents of

each memory can only be accessed by its processor. When

a processor needs information owned by another processor,

the information is sent as a message from one processor to

the other. Messages can carry information between nodes,

also synchronization node activities. There are no

restrictions on the number of available processors. The

processors of this type operate independently of one

another [12]. A distributed memory system configuration is

shown in Figure 4. In distributed memory systems,

k1new

k2 k3new

k4 k5 k6 k7

 U5 U1 U2 U3 U4

k8

k1

k2 k3

k4 k5 k6 k7

 U1 U2 U3 U4

k1new

k2 k3new

k4 k5 k6

 U1 U2 U3

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 83

communication mechanisms can be divided into two major

classes: synchronous and asynchronous. In synchronous

mechanism, when the sender transmits a message, it waits

until the receiver responds to acknowledge that the message

has been received. In asynchronous communication

mechanism, no acknowledgment, which means that, after

sending a message, the sender does not wait for

acknowledgment and immediately continue its execution.

In the next section, a design of a high performance

implementation of a tree-based multicast key distribution

protocol is illustrated.

4 Design of High Performance Implementation of

a Tree-Based Multicast Key Distribution Protocol

The proposed protocol is based on the idea of organizing

the keys in a tree as in LKH protocols as shown in Figure 5.

The tree is maintained and organized by a Group Manager

(GM). In case of any group change, GM has to perform

several calculations. In order to achieve lower computation

overhead, the proposed protocol uses a multi-processor

system. It has to be noted that the centralized approaches

rely heavily on one central point, therefore, it represents a

single point of failure and for a large tree; the server’s

throughput can represent a bottleneck. The use of multiple

processors could solve this problem and enhance the

server's throughput. In order to describe the system, the

following parameters are used:

M : number of processors

Speed : speed of any processor (Mhz -GhZ).

bg
 : global communication bandwidth =

 the maximum rate at which the

 interconnection network can propagate

 information once the message enters the

 network (bits/s)

Smess : message size (bits)

Pmem : processor memory size (Gbits)

B : block size (bits)

Th : symmetric key encryption algorithm

 throughput (bits/s)

h : tree height

d : tree degree

K : total keys number

Ts : time required to execute the sequential

 version of the program (sec.)

Tcomp : computation time (sec.)

Tcomm : total communication time (sec.)

Tpar : total parallel time (sec.)

In the next subsections, description of the proposed

protocol will be detailed. The focus of this paper will be on

the following cases: member join or member leave.

Figure 4: A distributed-memory system configuration

Figure 5: Example of 1 key hierarchy

4.1 Member Join

Assume a new member Ud joins the group, to preserve

backward secrecy; all the keys along its path must be

changed as shown in Figure 6. Therefore, the keys K(i, 1),

where i ranges from 0 to h-1, must be changed to Knew(i, 1).

It has to be noted that K(0, 1) is the group key shared by all

members. Consequently, GM generates the new keys and

calculates the following:

 {Knew(0, 1)}K(0, 1), {Knew(1, 1)}K(1, 1), …, {Knew(h-1,

1)}K(h-1, 1),

{Knew(0, 1), Knew(1, 1), …, Knew(h-1, 1)}K(h, d)

Therefore, GM needs to perform 2h keys encryptions.

The encryption is done in Electronic Code Book (ECB)

mode. There are two important aspects of any algorithm: (i)

the amount of time required to execute the algorithm and (ii)

the amount of memory space needed during run-time.

Execution time, which refers to the total running time of

the program, is the most obvious way of describing the

performance of parallel programs. The aim of using parallel

processing is to decrease the execution time of the problem

implementation. In parallel systems, the total execution

time (parallel time) Tpar is the sum of the computation

time Tcomp, and the overhead time Tov. The sources of

overhead are local communication overhead (access

memory, memory contention, and synchronization), inter-

…………....

……………

…

K(0,1)

K(1,1) K(1,2) K(1,d)

K(h-1,1)

K(h,1) K(h,d)

U1 __________

_
Ud _______________________ Ud

h

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 84

processor network latency (message latency) and

application overhead [1, 11]. For simplicity, we will only

concern with message latency time. Thus, Tpar is given as

follows:

Tpar = Tcomp+ Tcomm (1)

Where

Tcomp=max{Tcomp(Pi)} 1-Mi0  (2)

Tcomm = 




















tM

i

M

j

1

0

1

0 1)
j

P,
i

(P
 messT  (3)

Tmess(Pi,Pj) = Sender overhead

 + [(Smess(Pi,Pj)/bg)* hop(Pi,Pj)]

 + Receiver overhead (4)

where, Tcomp(Pi) is the computation time of processor Pi (i

ranges from 0 to M-1), Tcomm is the total communication

time, Tmess(Pi,Pj) is the time needed to send messages

between Pi and Pj,  is the start up cost of initiating a

message on any processor, 1 is the start up cost of

initiating a bus by any processor, Smess (Pi,Pj) is the size of

the message exchanged between Pi and Pj, hop(Pi,Pj) is the

number of hops between Pi and Pj, sender overhead is the

time for the processor to inject the message into the

network (including both hardware and software

components), and the receiver overhead is the time for the

processor to pull the message from the network. It has to be

noted that only one of the processors (for example P0)

generates the new keys, distributes the tasks (encryption

operations) to the other processors and collects encryption

information from them. For the sake of fault tolerance, in

case of P0 failure, any of the other processors (Pi and i

ranges from 1 to M-1) can take the role of P0. Therefore,

each processor has to store all symmetric keys (K), where

K=
1d

1
1h

d






. To calculate the communication time

Tcomm, the following assumptions are made:

 The sender overhead, receiver overhead, , and 1 are

very small with respect to the message latency.

Therefore, it will be neglected in our calculations.

 Asynchronous communication mechanism

 The number of hops between Pi and Pj hop(Pi,Pj)

equals one for all i,j (fully connection).

 Time of key generation is very small with respect to

the encryption time. So, it will be neglected in our

calculations.

 Only P0 and Pi exchange messages with each other, i.e.

no communication between Pi and Pj, where i and j

range from 1 to M-1.

Figure 6: Example of a member joins

Therefore, the communication time is given as follows:

 Tcomm=

 

gb

1M

1i i
P,0PmessS




 (5)

 In the following paragraphs, the sequential time Ts, the

computation time Tcomp, the communication time Tcomm,

and the total parallel time Tpar are calculated for different

values of M. First, for M =1, only one processor is used,

there is no communication time and the number of tasks to

be performed is 2h encryptions. The sequential time Ts

required to calculate these tasks is given by Equation (6).

Th

B*2h

comp
T

s
T  (6)

For the case of M=2, using Equation (2) and Equation (5),

the computation time Tcomp and the communication time

Tcomm are given by Equation (7) and Equation (8).

Th

B*h

comp
T  (7)

gb

B*h

comm
T  (8)

Therefore, using Equations (1), (7) and (8), Tpar equals:























gb

B*h

Th

B*h
 parT (9)

……………

…

Knew(h-1,1)

K(h,1) K(h,d)

Knew(1,1) K(1,d)

………

…....

K(1,2)

Knew(0,1)

U1 Ud Ud
h ____________ _______________

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 85

Finally for 2 < M  h, as mentioned above the total

number of tasks is 2h. While distributing tasks among

processors, two cases arise: the first is the case where (h

mod M = 0), each processor has to perform 2*
M

h







 tasks.

The latter is the case where (h mod M ≠ 0), each processor

has to perform 







2*

M

h tasks and the remaining tasks are

assigned to the first 









M

h
Mh * processors. Therefore,

the first 









M

h
Mh * processors are assigned one more

row (2 tasks); thus the number of tasks to be performed is

21 *
M

h








 tasks. For the case where (h mod M) = 0, using

Equation (2) and Equation (5), the computation time Tcomp

and the communication time Tcomm are given by Equation

(10) and Equation (11).

Th

B*
M

h
*2

comp
T










 (10)

gb

B*
M

h
-h*2

comm
T


















 (11)

Therefore, using Equation (1), Equation (10) and Equation

(11), Tpar equals:































































gb

B*
M

h
-h*2

Th

B*
M

h
*2

par
T (12)

For the second case where (h mod M)  0, using

Equation (2) and Equation (5), the computation time Tcomp,

and the communication time Tcomm are given by Equation

(13) and Equation (14).

Th

B*1
M

h
*2

comp
T











 (13)

gb

B*1
M

h
-h*2

comm
T



















 (14)

Therefore, using Equation (1), Equation (13) and

Equation (14), Tpar equals:











































































gb

B*1
M

h
-h*2

Th

B*1
M

h
*2

par
T (15)

In the next subsection, description of the proposed

protocol for the case of a member leaves will be detailed.

4.2 Member Leave

Assume Ud leaves the group, to preserve forward secrecy;

all the keys along its path must be changed as shown in

Figure 7. Therefore, the keys K(i, 1), where i ranges from 0

to h-1, must be changed to Knew(i, 1). Consequently, GM

generates the new keys and calculates the following:

{Knew(0, 1)}Knew (1, 1), {Knew(0, 1)}K(1, 2), …, {Knew(0,

1)}K(1, d),

{Knew(1, 1)}Knew (2, 1), {Knew(1, 1)}K(2, 2), …, {Knew(1,

1)}K(2, d),

 .

 .

{Knew(h-1, 1)}K(h, 1), {Knew(h-1, 1)}K(h, 2), …, {Knew(h-1,

1)}K(h, d-1)

Therefore, GM needs to perform d*h-1 keys

encryptions. The encryption is done in Electronic Code

Book (ECB) mode. As in the join case, the sequential time

Ts, the computation time Tcomp, the communication time

Tcomm and the total parallel time Tpar are calculated for

different values of M. First, for M=1, only one processor is

used, there is no communication time and the number of

tasks to be performed is d*h-1 encryptions. The sequential

time Ts required to calculate these tasks is given by

Equation (16).

 
Th

B*1-h)*(d

comp
T

s
T  (16)

For the case of M=2, two cases arise: the first for h

even and the second for h odd. For the case where h is even,

the master processor P0 has to calculate the last 








2

h
 rows

(i.e 







1

2

hd
 key encryptions), while the other processor

P1 has to calculate the first 








2

h
 rows (i.e 









2

hd
 key

encryptions). Therefore, P0 sends 







 1

2

h
 keys to be

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 86

Figure 7: Example of a member leaves

encrypted. After encrypting the keys, P1 sends 








2

hd

encrypted keys to P0. Using Equation (2) and Equation (5),

the computation time Tcomp and the communication time

Tcomm are given by Equation (17) and Equation (18).

Th

B*
2

h*d

comp
T










 (17)

 

gb

B*1d
2

h





















1

comm
T (18)

Therefore, using Equation (1), Equation (17) and Equation

(18), Tpar equals:

 
































































gb

1d
2

h
1 B*

Th

B*
2

h*d

par
T (19)

For the second case where h is odd, the master processor P0

has to calculate the last 







 1

2

h
 rows (i.e

 















 1*

2
dd

h
 key encryptions), while the other

processor P1 has to calculate the first
2

h
 rows (i.e









d

h
*

2
 key encryptions). Therefore, P0 sends 








 1

2

h

keys to be encrypted. After encrypting the keys, P1 sends









d

h
*

2
 encrypted keys to P0. Using Equation (2) and

Equation (5), the computation time Tcomp and the

communication time Tcomm are given by Equation (20)

and Equation (21).

Th

B*1
2

h
h*d

comp
T



























 (20)

gb

B*
2

h
*d1

2

comm
T





























h

 (21)

Therefore, using Equation (1), Equation (20) and Equation

(21), Tpar equals:
















































































































gb

B*
2

h
*d1

2

h

Th

B*1
2

h
h*d

par
T (22)

Finally for 2 < M  h, as mentioned above the total number

of tasks is d*h-1. While distributing tasks among

processors two cases arise: the first is the case where ((h-1)

mod M = 0) and the latter for the case where ((h-1) mod M

≠ 0). For the case where ((h-1) mod M) = 0, each processor

from P1 to PM-1 has to perform 








M

h
*d tasks, while P0

performs

























 11

M

h
*d tasks. Therefore, P0

sends








 1

M

h keys to each processor (from P1 to PM-1).

After encrypting the keys, each processor (from P1 to PM-1)

sends








d*

M

h encrypted keys to P0. Using Equation (2)

and Equation (5), the computation time Tcomp and the

communication time Tcomm are given by Equation (23)

and Equation (24).

comp
T =

Th

B*11
M

h
*d



























 (23)

……………

…

Knew(h-1,1)

K(h,1) K(h,d-1)

U1 ________________

_

Ud-1 _______________________ Ud
h

Knew(1,1) K (1,2) K (1,d) ….

.

Knew(0,1)

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 87

 

gb

B*1
M

h
d

M

h
*1-M

comm
T



















 (24)

Therefore, using Equation (1), Equation (23) and Equation

(24), Tpar equals:

 


























































































gb

B*1
M

h
d

M

h
*1-M

Th

B*11
M

h
*d

par
T (25)

For the second case where ((h-1) mod M)  0, two cases

occur, the first for (h mod M) = 0 and the latter for (h mod

M)  0. For the case where (h mod M) = 0, each processor

from P1 to PM-1 has to perform 
















M

h
*d tasks and P0

has to perform

























 1

M

h
*d tasks. Therefore, P0

sends
















1

M

h
 keys to each processor (from P1 to PM-1).

After encrypting the keys, each processor (from P1 to PM-1)

sends
















d*

M

h encrypted keys to P0. Using Equation (2)

and Equation (5), the computation time Tcomp and the

communication time Tcomm are given by Equation (26)

and Equation (27).

Th

B*
M

h
*d

comp
T










 (26)

 

gb

B*1
M

h

M

dh
*1-M

comm
T



















 (27)

Therefore, using Equation (1), Equation (26) and Equation

(27), Tpar equals:

 

































































gb

B*1
M

h

M

dh
*1-M

Th

B*
M

h
*d

par
T

 (28)

Finally, for the case where ((h-1) mod M)  0 and (h mod

M)  0, P0 has to perform

























 11

M

h
*d tasks,

and Pj, where 

















M

h
*Mhj1 has to perform

















 1

M

h
*d tasks, finally the remaining processors

has to perform 








M

h
*d . Therefore, P0 sends









 2

M

h

keys to 







 1

M

h
*Mh processors and









 1

M

h
 keys to



















M

h
*MhM processors. After encrypting the

keys, the processors from P1 to PM-1 send

 




































 11

M

h
*d1dh encrypted keys to P0.

Using Equation (2) and Equation (5), the computation time

Tcomp and the communication time Tcomm are given by

Equation (29) and Equation (30).

Th

B*1
M

h
*d

comp
T











 (29)

 

gb

B*1
M

h
h*dh

M

h
2M

comm
T



































 (30)

Therefore, using Equation (1), Equation (29) and Equation

(30), Tpar equals:

 























































































gb

B*1
M

h
h*dh

M

h
2M

Th

B*1
M

h
*d

par
T (31)

In the next section, evaluation of the proposed protocol and

experimental results will be depicted.

5 Evaluation and Experimental Results

The main reason for building parallel computers is to

achieve higher performance. Experimentation, analytical

modeling and simulation are three well-known techniques

that can be used for quantifying parallel systems

performance [23]. Experimental, involves implementing

the application and measuring the performance on a real

machine. Analytical models, abstract hardware and

application details in a parallel system and capture complex

system's feature by simple mathematical formulae.

Simulations exploit computer resources to models and

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 88

imitate the behavior of a real system in a controlled manner

[11, 14, 23]. In this work, the analytical modeling approach

will be used to evaluate the system performance. In the

next subsection, metrics used for quantifying the parallel

systems will be introduced.

5.1 Performance Metrics and Scalability

Many performance metrics have been proposed to quantify

the parallel systems. Among of them are execution time,

speedup, efficiency, communication overheads, scalability

and the degree of improvement [8, 10, 11]. Execution time

also called parallel time Tpar is referred to the total running

time of the program. It is the most obvious way of

describing the performance of parallel programs. The aim

of using parallel systems is to decrease the execution time

of the problem implementation. Speedup Sp, relates the time

taken to solve the problem on a single processor machine to

the time taken to solve the same problem using parallel

implementation. Speed-up Sp, of a parallel program running

on M processors is defined as the ratio Ts/Tpar, where Ts is

the time required to execute the best sequential version of

the program, and Tpar is the time taken to execute the

program on M processors. The ideal parallel system (of M

processors) will solve the problem M times faster than the

serial one (Sp=M) and it is said to be linear speedup.

Efficiency, Ep, is defined as the ratio Sp/M. Optimum

computation time, and therefore linear speed-up, equates to

an efficiency of 1 (100%). To achieve this level of

efficiency every processor must spent 100% of its time

performing useful computation. In parallel systems,

communication is the costly part; therefore high

Computation To Communication Ratio (CTCR) is very

beneficial. CTCR is defined by the average computation

cost divided by the average communication cost on a given

system. Degree of improvement is the percentage of

improvement in system performance with respect to

sequential execution and can be determined by (Ts-Tpar)/Ts.

Finally, a parallel system is scalable if its performance

continues to improve as the size of the system (problem

sizes as well as the machine size) increase. The simplest

definition of scalability is that the performance of a parallel

system increases linearly with respect to the number of

processors used for a given application [23]. In the next

subsection, discussion of results will be detailed.

5.2 Discussion of Results

The proposed protocol is evaluated for both join and leave

cases; and for different values of d and h. In our proposed

design, we assume that the multiprocessor system is based

on message passing system and uses the Advanced

Encryption Standard (AES) protocol in ECB mode for

encryption. In our implementation, we assume that each

processor's speed is 2.5GhZ, Pmem equals 1Gbits, bg is

4.2Gbps, Th equals 1.4Gbps and B is 128bits. Figures 8-12

show the analysis of the proposed protocol according to the

metrics given in Sec. 5.1. While Figure 8 illustrates the

total execution time in case of a member joins, Figure 9

shows the execution time in case of a member leaves.

Whilst Figure 10 illustrates the system performance

(computation time, communication time, speed up,

efficiency and the improvement degree) in case of a

member joins, Figure 11 shows the system performance in

case of a member leaves. Figure 12 illustrates the execution

time for the same number of users when a member leaves

the tree. From the figures, the following observations are

noted:

 Figures 8-9 summarize the total execution time

(parallel time) for different values of h for both join

and leave cases. As the number of processors

increases, the total execution time decreases

irrespective of the value of h. Increasing the number

of processors leads to the increase in the

communication overhead which becomes an

increasing factor and can exceed the total execution

time. Consequently, the system's efficiency will

decrease. Therefore, the number of processors must

not exceed a certain number which is called system's

saturation. As shown in Figure 8, the saturation

occurs when the number of processors equals (h/2).

On the other hand, the leave case reaches this

saturation at 







 1

M

h
M , for the binary tree, as

shown in Figure 9.

 Figure 10(a,b) and Figure 11(a,b) show that as the

number of processors increases, the computation

time decreases, while the communication time

increases, for all values of h. The communication

overhead time values of the join case are less than

those values of the leave case for the same number

of h. This is obvious since the distributed tasks

required for re-keying in the join case is less than

that in the leave case. In case of a new member joins

the tree, the computation time reduces by

approximately 50% when the number of processors

increases from one to two; for all values of h. While

the total execution time reduces by 35% due to the

communication overhead. On the other hand, in case

of a member leaves the tree the computation time

reduces by approximately 50% when the number of

processors increases from one to two, while total

execution time reduces by about 22%; for all values

of h.

 Figure 10(a) and Figure 11(a) show that when the

problem size increases, the execution time decreases

with respect to the increasing of the processor

number. This leads to the conclusion that the

proposed design is scalable according to the metrics

given in Section 5.1.

 In both join and leave cases, upon increasing the

number of processors, the speedup will increase, and

consequently the efficiency will decrease as

illustrated in Figure10(c,d) and Figure 11(c,d).

 Figure 10(e) shows the degree of improvement,

compared to the sequential performance for join

situation, when a new member joins the binary tree.

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 89

Figure 8: The total execution time (parallel time) after

parallelization when a new member joins the tree

 (for d=2 and different values of h)

Figure 9: The total execution time (parallel time) after

parallelization when a member leaves the tree

(for d=2 and different values of h)

Computation time

µsec.

M=1

M=2

M=3

M=4

0

0.3

0.6

0.9

1.2

h=7

Computation time

µsec.

M=1

M=2
M=3

M=4

M=5

0

0.5

1

1.5

h=10

Computation time

µsec.

M=1

M=2

M=3
M=4

M=5

0

0.5

1

1.5

2

2.5

h=13

Computation time

µsec.

M=1

M=7

M=2

M=3

M=4

M=5
M=6

M=8
M=9

M=10

0

0.5

1

1.5

2

2.5

3

3.5

h=20

Computation time

µsec.

M=1

M=2

M=3
M=4

M=5
M=6

M=7

M=8 M=9
M=10

M=15

0

1

2

3

4

5

h=30

 (a) Computation time

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 90

Communication time

µsec.

0

0.2

0.4

0.6

h=7

Communication time

µsec.

0

0.4

0.8

h=10

Communication time

µsec.

M=2

M=3
M=4

M=5 M=6

0

0.2

0.4

0.6

0.8

h=13

Communication time

µsec.

M=2

M=3

M=4

M=5
M=6

M=7
M=8

M=9 M=10

0

0.4

0.8

1.2

h=20

Communication time

µsec.

M=2

M=3

M=4
M=5

M=6
M=7

M=8=9

M=10 M=15

0

0.4

0.8

1.2

1.6

h=30

(b) Communication time

Speedup

0

0.5

1

1.5

2

2.5

h=7

Speedup

M=2
M=3

M=5

0

0.5

1

1.5

2

2.5

h=10

Speedup

M=2

M=3M=4
M=6

0

0.5

1

1.5

2

2.5

h=13

Speedup

M=2

M=3
M=4

M=6
M=7

M=8
M=9 M=10

0

0.5

1

1.5

2

2.5

h=20

Speedup

M=2

M=3
M=4

M=5
M=6 M=7

M=8
M=9

M=10

0

0.5

1

1.5

2

2.5

h=30

(c) Speedup

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 91

EfficiencyM=2

M=3
M=4

0

0.4

0.8

h=7

Efficiency
M=2

M=3
M=4 M=5

0

0.4

0.8

h=10

Efficiency
M=2

M=3

M=4 M=5
M=6

0

0.4

0.8

h=13

Efficiency
M=2

M=3

M=4
M=5

M=6
M=7

M=8
M=9

M=10

0

0.4

0.8

h=20

Efficiency
M=2

M=8

M=3

M=4
M=5

M=6
M=7

M=9
M=10

M=15

0

0.4

0.8

h=30

 (d) Efficiency

Improvement degree %

M=2
M=3

M=4

0

20

40

60

h=7

Improvement degree

%
M=5

M=2
M=3

M=4

0

20

40

60

h=10

Improvement degree%

M=2

M=3

M=4
M=5 M=6

0

20

40

60

h=13

Improvement degree %
M=9

M=2

M=3

M=4

M=5 M=6
M=7

M=8 M=10

0

20

40

60

h=20

Improvement degree %
M=9

M=2

M=3
M=4

M=5 M=6 M=7
M=8 M=10 M=15

0

20

40

60

h=30

(e) Improvement degree w.r.t before parallelization

Figure 10: The system performance: computation time, communication time, speed up, efficiency and the improvement

degree, when a member joins the binary tree (for d=2 and different values of h)

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 92

Computation time

µsec.M=1

M=2

M=3

0

0.5

1

1.5

h=7

Computation time

µsec.M=1

M=2

M=3

0

0.5

1

1.5

2

h=10

Computation time

µsec.

M=1

M=2

M=3
M=4

0

0.5

1

1.5

2

2.5

h=13

Computation time

µsec.

M=1

M=4
M=5

M=2

M=3

0

0.5

1

1.5

2

2.5

3

3.5

h=20

Computation time

µsec.

M=4
M=5

M=6

M=1

M=2

M=3

0

1

2

3

4

5

h=30

(a) Computation time

Communication

µsec.

M=2

M=3

0

0.5

1

h=7

Communication

µsec.

M=2

M=3

0

0.5

1

h=10

Communication

µsec.

M=2

M=3

M=4

0

0.5

1

h=13

Communication

µsec.

M=2

M=3

M=4

M=5

0

0.5

1

1.5

h=20

Communication

µsec.

M=2

M=3

M=4

M=5
M=6

0

0.5

1

1.5

2

2.5

3

h=30

(b) Communication time

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 93

Speedup

M=2
M=3

0

0.5

1

1.5

2

h=7

Speedup

M=2
M=3

0

0.5

1

1.5

2

h=10

Speedup

M=2
M=3

M=4

0

0.5

1

1.5

2

h=13

Speedup

M=4

M=2
M=3

M=5

0

0.5

1

1.5

2

h=20

Speedup

M=2
M=3

M=4
M=5

M=6

0

0.5

1

1.5

2

h=30

(c) Speedup

Efficiency
M=2

M=3

0

0.4

0.8

h=7

Efficiency
M=2

M=3

0

0.4

0.8

h=10

Efficiency
M=2

M=3

M=4

0

0.4

0.8

h=13

Efficiency

M=2

M=3

M=4

M=5

0

0.4

0.8

h=20

Efficiency
M=2

M=3

M=4
M=5

M=6

0

0.4

0.8

h=30

(d) Efficiency

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 94

Improvement degree %

M=2
M=3

0

20

40

60

h=7

Improvement degree %

M=2
M=3

0

20

40

60

h=10

Improvement degree %

M=2
M=3

M=4

0

20

40

60

h=13

Improvement degree %

M =2

M =3
M =4 M =5

0

20

40

60

h=20

Improvement degree %

M=2

M=4
M=5

M=3

M=6

0

20

40

60

h=30

 (e) Improvement degree

Figure 11: The system performance: computation time, communication time, speed up, efficiency and the improvement

degree, when a member leaves the binary tree (for d=2 and different values of h)

(a) Number of users = 378 * 10
6

(b) Number of users = 1007* 10
6

Figure 12: The execution time for the same number of users when a member leaves the tree

the degree of improvement is 47.7%, 53.3%, 51.3%,

60% and 62.2% for h= 7, 10, 13, 20 and

30respectively. On the other hand, for the leave

situation the improvement degree is 25.5%, 28%,

32.2%, 35% and 37.8% for the same values of h as

shown in Figure 11(e). From these figures, we can

deduce that as increasing the number of h, the

improvement degree increases. This is due to the fact

that the computation time increases as increasing the

tree height. This shows the advantage of using a

multiprocessor system in enhancing the system

performance.

 Figure 12 describes the effect of increasing the value

of d for the leave situation. It compares the system

performance for the same number of users. This

figure shows that, when the value of d increases both

the computation and communication time increase.

Therefore, the total execution time increases.

Consequently, minimizing the value of d is the

optimum solution, i.e. the binary tree is the best

choice.

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 95

The analysis shows that the use of multiprocessor

system will enhance the system performance. Increasing the

number of processors reduces the total execution time until

reaching the system's saturation. In addition, the proposed

design is scalable. This is an important factor in real

applications where the number of users changes repeatedly.

6 Conclusions

In the present paper, a design of a high performance

implementation of a tree-based multicast key distribution

protocol is proposed. In order to solve the problem of

distributing a symmetric key between the whole group

members, the group is organized in a logical key hierarchy

as in LKH protocols. In order to achieve lower computation

overhead, the proposed protocol uses a multi-processor

system. It has to be noted that LKH protocol relies heavily

on one central point, therefore, it represents a single point

of failure and for a large tree; the server’s throughput can

represent a bottleneck. The use of multiple processors

could solve this problem and enhance the server's

throughput. The proposed protocol is analyzed according to:

the number of processors, the tree height and the tree

degree. Experimental results illustrate the improved

performance of the proposed protocol compared to

sequential system even with significant communication

overheads. This improvement is true for all values of h and

d even with highly size tree. It outperforms the sequential

performance for both join and leave situations. When a new

member joins the binary tree, the degree of improvement is

47.7%, 53.3%, 51.3%, 60% and 62.2% for h= 7, 10, 13, 20

and 30 respectively. On the other hand, for the leave

situation, the improvement degree is 25.5%, 28%, 32.2%,

35% and 37.8% for the same values of h. The proposed

protocol achieves lower communication time in case of a

member joins the tree than its corresponding values of the

leave situations. This is obvious since the distributed tasks

required for re-keying in the join case is less than that in the

leave case. In addition, the analysis shows that the

proposed design is scalable according to the metrics given

in Sec. 5.1. To test the scalability of the proposed protocol,

it is tested on different problem sizes. The above results

indicate that when the problem size d*h increases our

protocol improves the overall system performance with

respect to the increasing of the processor number. This

leads to the conclusion that the proposed design is scalable.

Another experiment which discusses the effect of

increasing the value of d is done. The experiment shows

that when the value of d increases both the computation and

communication time increase. Therefore, the total

execution time increases. Consequently, minimizing the

value of d is the optimum solution, i.e. the binary tree is the

best choice. The abovementioned analysis shows that the

use of multiprocessor system will significantly reduce the

computation overhead which is considered an important

factor for both real time and wireless applications.

References

[1] M. Abdel-Baky, New Routing Techniques for High

Message Passing Systems Performance, A Ph.D.

Thesis, Dept. of Mathematics, Faculty of Science,

Cairo University, 2000.

[2] H. K. Aslan, “Two-level controllers hierarchy for a

scalable and distributed multicast security protocol,”

Computers & Security, vol. 24, no. 5, pp.399-408,

2005.

[3] M. Bouassida, I. Chrisment, and O. Festor, “Group

Key Management in Manets”, International Journal of

Network Security, vol. 6, no. 1, pp. 67-79, 2008.

[4] C. Boyd, “On key agreement and conference key

agreement,” Lecture Notes in Computer Science, vol.

1270, pp. 294-302, Springer-Verlag, 1997.

[5] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D.

Saha, “Key management for secure internet multicast

using boolean function minimization techniques,” in

Proceedings of the IEEE INFOCOM, pp. 689-698,

New York, USA, 1999.

[6] B. Decleene, L. Dondeti, S. Griffin, T. Hardjono, D.

Kiwior, J. Kurose, D. Towsley, S. Vasudevan, and C.

Zhang, “Secure group communications for wireless

networks,” in Proceedings of the Milcon, pp. 113-117,

2001.

[7] M. T. El-Hadidi, N. H. Hegazi, and H. K. Aslan,

“Logic-based analysis of a new hybrid encryption

protocol for authentication and key distribution,” IFIP

SEC'98 Conference, pp. 173-183,1998.

[8] H. El-Rewini and M. Abd-El-Barr, Advanced Comp-

uter and Parallel Processing, John Wiley & Sons, Inc.,

2005.

[9] W. Ford, Computer Communications Security- Prin-

cipals, Standard Protocols and Techniques, Prentice-

Hall, New Jersey, 1994.

[10] I. Foster, Designing and Building Parallel Programs,

Addison-Wesley, 1995.

[11] J. Hennessy and D. Patterson, Computer Architecture:

a Quantitative Approach, Morgan Kaufmann Pub-

lishers, 2003.

[12] K. Hwang, Advanced Computer Architecture: Par-

allelism, Scalability, Programmability, McGraw-Hill,

Inc., 1993.

[13] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-

tolerant key agreement for dynamic collaborative

groups,” in Proceedings of the 7th ACM Conference in

Computer and Communication Security, pp. 235-244,

Athens, Greece, 2000.

[14] Z. Lan, V. Taylor, and G. Bryan, “Dynamic load

balancing of SAMR applications on distributed

systems,” in Proceedings of the 2001 ACM/IEEE

conference on Supercomputing (CDROM), pp.36-36,

Denver, Colorado, 2001.

[15] D. A. McGrew and A. T. Sherman, Key Establishment

in Large Dynamic Groups Using One-way Function

http://portal.acm.org/citation.cfm?id=582070&dl=GUIDE&coll=GUIDE&CFID=31129802&CFTOKEN=41521905
http://portal.acm.org/citation.cfm?id=582070&dl=GUIDE&coll=GUIDE&CFID=31129802&CFTOKEN=41521905
http://portal.acm.org/citation.cfm?id=582070&dl=GUIDE&coll=GUIDE&CFID=31129802&CFTOKEN=41521905
http://portal.acm.org/citation.cfm?id=582070&dl=GUIDE&coll=GUIDE&CFID=31129802&CFTOKEN=41521905
http://portal.acm.org/citation.cfm?id=582070&dl=GUIDE&coll=GUIDE&CFID=31129802&CFTOKEN=41521905

International Journal of Network Security, Vol.15, No.2, PP.80-96, Mar. 2013 96

Trees, Technical Report No. 0755, TIS Labs at

Network Associates, Inc., Glenwood, MD, 1998.

[16] S. Mittra, “Iolus: a framework for scalable secure

multicasting,” in Proceedings of the ACM SIGCOMM’

97, pp. 277-288, New York, USA, 1997.

[17] J. A. M. Naranjo, L. G. Casado, and J. A. Lopez-

Ramos, “Group oriented renewal of secrets and its

application to secure multicast,” Journal of

Information Science and Engineering, vol. 27, no. 4,

pp. 1303-1313, 2011.

[18] A. Perrig, D. Song, and J. D. Tygar, “ELK, a new

protocol for efficient large-group key distribution,” in

Proceedings of IEEE Symposium on Security and

Privacy, pp. 247-262, Oakland, California, USA, 2001.

[19] S. Rafaeli and D. Hutchison, “A survey of key

management for secure group communication,” ACM

Computing Surveys, vol. 35, no. 3, pp. 309-329, 2003.

[20] M. M. Rasslan, Y. H. Dakroury, and H. K. Aslan, “A

new secure multicast key distribution protocol using

combinatorial boolean approach,” International Jour-

nal of Network Security, vol. 8, no. 1, pp. 75-89, 2011.

[21] S. Setia, S. Koussih, and S. Jajodia, “Kronos: a sca-

lable group re-keying approach for secure multicast,”

in Proceedings of IEEE Symposium on Security and

Privacy, pp. 215-228, Oakland, California, USA, 2000.

[22] S. Setia, S. Zhu, and S. R. Jajodia, A Scalable and

Reliable Key Distribution Protocol for Multicast group

Rekeying, Technical Report, George Mason University,

January 2002.

[23] A. Sivasubramaniam, A. Singla, U. Ramachandran,

and H. Venkateswaran, “An application-driven study

of parallel system overheads and network bandwidth

requirements,” IEEE Transaction on Parallel and

Distributed Systems, vol. 10, no. 3, pp. 183-192, 1999.

[24] R. Srinivasan, V. Vaidehi, R. Rajaraman, S. Kanagaraj,

R. Chidambaram Kalimuthu, and R. Dharmaraj,

“Secure Group Key Management Scheme for Multicast

Networks”, International Journal of Network Security,

vol.11, no.1, pp. 33-38, 2010.

[25] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-

Hellman key distribution extended to group

communication,” in Proceedings of the 3rd ACM

Conference on Computers and Communications

Security, pp. 31-37, New York, USA, 1996.

[26] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group

communications using key graph,” in Proceedings of

the ACM SIGCOMM’ 98, pp. 68-79, Canada, 1998.

[27] C. K. Wong, S. S. Lam, D. Y. Lee, and Y. R. Yang,

“Protocol design for scalable and reliable group

rekeying,” in Proceedings of SPIE Conference on

Scalability and Traffic Control in IP Networks, pp.

908-922, Denver, CO, 2001.

Heba Kamal Aslan is an Associate Professor at

Electronics Research Institute, Cairo-Egypt. She received

her B. Sc. degree, M. Sc. degree an Electronics and

Communications Engineering from Faculty of Engineering,

Cairo University, Egypt in 1990, 1994 and 1998

respectively. Aslan has supervised several masters and Ph.

D. students in the field of computer network security. Her

research interests include: Key Distribution Protocols,

Authentication Protocols, Logical Analysis of Protocols

and Intrusion Detection Systems.

Ghada Farouk ElKabbany is an Assistant Professor at

Electronics Research Institute, Cairo-Egypt. She received

her B. Sc. degree, M. Sc. degree and Ph. D. degree in

Electronics and Communications Engineering from Faculty

of Engineering, Cairo University, Egypt. Her research

interests include: High Performance Computing (HPC),

Robotics and Computer Network Security.

