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Abstract 

The key distribution problem is considered one of the most 

important issues for providing secure multicast 

communication. Logical Key Hierarchy (LKH) protocols 

are considered one of the best solutions proposed for 

solving the scalability of multicast key distribution 

protocols. The use of LKH protocols reduces the 

computation complexity cost from O(n), where n is the 

number of the whole group members to O(log(n)). In the 

present paper, a design of a high performance protocol for 

securing multicast communication is proposed. The 

proposed protocol is based on the idea of organizing the 

keys in a tree as in LKH protocols. In order to achieve 

lower computation overhead, the proposed protocol uses a 

multi-processor system. It has to be noted that LKH 

protocol relies heavily on one central point, therefore, it 

represents a single point of failure and for a large tree; the 

server’s throughput can represent a bottleneck. The use of 

multiple processors could solve this problem and enhance 

the server's throughput. The proposed protocol is analyzed 

according to: the number of processors, the tree height and 

the tree degree. The analysis shows that the use of 

multiprocessor system will enhance the system 

performance which is considered an important factor for 

both real time and wireless applications.  

Keywords: Centralized approaches and multiprocessor 

System, group communication, logical key hierarchy, 

multicast key distribution 

 

1   Introduction 

The key distribution problem is considered one of the most 

important issues for providing secure communication. 

Many protocols that address the key distribution problem 

for unicast or point-to-point communication [7, 9] have 

been studied. Extending these protocols for applications 

(such as teleconference, pay per view, collaborative 

work, …etc.) which are based on group communication is 

not a practical solution. In group communication, all group 

members share one key called group key. This key must be 

securely delivered to the group members; one solution to 

this problem is to use a central entity that shares a 

symmetric key with the entire group members. This central 

entity will have the role of generating the group key and 

distributing it to each group member encrypted by the 

shared symmetric key between this entity and the group 

member. After establishing the group key, in case of any 

change in the group (join, leave, merge, and division), the 

central entity will again generate another group key and 

encrypt it using each symmetric key shared between it and 

each group member. Therefore, the cost of computation and 

communication will be linearly dependent on the number of 

group members, i.e. the complexity cost will be of O(n), 

where n is the number of group members. For large groups 

or groups characterized by frequent change, this huge 

amount of computation and communication can decrease 

the group’s performance.  

In recent years, many approaches for solving the 

problem of group key distribution were proposed. These 

approaches can be classified as follows: 

Centralized approaches use one central entity to maintain 

the security of the whole group. For large groups, those 

protocols are not scalable. In addition, the central entity 

represents a single point of failure. 

Distributed subgroup approaches, where the whole group 

is divided into several subgroups. One subgroup controller 

maintains each subgroup. These protocols solve the 

problem of scalability. Another advantage of these 

protocols is that in case of failure of one subgroup 

controller, this does not lead to the failure of the whole 

group. 

Decentralized approaches, where the whole group 

members contribute in the group key generation. As for the 

centralized approaches, these protocols are not scalable for 

large groups since it requires large computations among 

the group members. 

In the present paper, a design of a high performance 

protocol for securing multicast communication is proposed. 

The proposed protocol is based on the idea of organizing 

the keys in a tree as in LKH protocols. In order to achieve 

lower computation overhead, the proposed protocol uses a 
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multi-processor system. It has to be noted that LKH 

protocol relies heavily on one central point, therefore, it 

represents single point of failure and for a large tree; the 

server’s throughput can represent a bottleneck. The use of 

multiple processors could solve this problem and enhance 

the server's throughput. The proposed protocol is analyzed 

according to: the number of processors, the tree height and 

the tree degree. The analysis shows that the use of 

multiprocessor system will enhance the system 

performance. Increasing the number of processors reduces 

the total execution time until reaching the system's 

saturation. Therefore, the use of multiprocessor system will 

significantly reduce the computation overhead which is 

considered an important factor for both real time and 

wireless applications. In addition, the proposed design is 

scalable. This is an important factor in real applications 

where the number of users changes repeatedly. The paper is 

organized as follows: in Section 2, a survey of group key 

distribution protocols is detailed. In Section 3, a 

background of multiprocessor systems is given. Then, the 

proposed protocol is detailed in Section 4. In Section 5, a 

performance evaluation of the proposed protocol is given. 

Finally, the paper concludes in Section 6. 

2   Related Work 

As a result of the spread use of Internet applications 

characterized by multicast communication, the need to 

establish a group key becomes a vital requirement. Group 

key distribution protocols play an important role to deliver 

security. They are considered the main part to obtain a 

secure system. A good key distribution protocol must 

satisfy the following requirements [19]: 

- Providing confidentiality, which means that only 

authorized group members have access to key update 

messages.  

- Providing backward secrecy by preventing a new group 

member to have access to previous messages exchanged 

before it joins the group. 

- Providing forward secrecy by preventing a leaving group 

member to have access to messages exchanged after it 

leaves the group. 

- Key independence, which means that the disclosure of 

any key does not lead to the disclosure of other keys. 

- Minimizing collusion attacks, which means that evicted 

members must not be able to work together and share 

their individual information to regain access to the group 

key.  

- Minimizing the key update message length in order to 

enhance system performance. 

- Minimizing the operations needed to perform re-key in 

order to enhance the key distribution center performance. 

- Minimizing storage requirements at both the key 

distribution center and each group member. 

In recent years, many approaches for solving the 

problem of group key distribution were proposed. These 

approaches can be classified as follows: centralized group 

key distribution protocols, distributed subgroup key 

distribution protocols and decentralized group key 

distribution protocols. In centralized group key distribution 

protocols, one central entity is incorporated to play the role 

of group manager. This controller shares a symmetric key 

with all group members. In case of any member change 

(leave, join, merge, or division), the manager has to 

perform many encryptions and broadcast several messages 

for the changed keys. For a large group and frequent 

member change, the manager’s throughput can represent a 

bottleneck for the group’s performance. Therefore, for 

large groups, these protocols are not scalable. In addition, 

the central entity represents a single point of failure. 

Examples of this technique can be found in [2, 5, 15, 17, 18, 

20, 22, 24, 26, 27]. The centralized approaches are 

generally based on the idea of Logical Key Hierarchy 

(LKH), which is introduced in [26]. In LKH, a key 

distribution center maintains a key tree as shown in Figure 

1. Each node in the tree represents a symmetric key. The 

leaves represent the group members. Each member knows 

all the symmetric keys from its leaf to the root. For 

example, U1 knows the set of keys: {k4, k2, k1}. It has to be 

noted that k1 represents the group key. If U5 joins the group, 

it will be assigned a symmetric key k8 as shown in Figure 2. 

To maintain backward secrecy, both k3 and k1 must be 

changed to k3new and k1new. The key server generates k3new 

and k1new and broadcasts the following message: {k1new}k1, 

{k3new}k3, {k3new, k1new}k8. U1, U2, U3 and U4 obtain k1new 

by decrypting the first part of the message using the old 

value k1, U3 and U4 obtain k3new by decrypting the second 

part of the message using the old value k3, and U5 obtains 

k3new and k1new by decrypting the third part. As stated in 

[26], the manager needs to perform 2h encryptions in case 

of a member join, where h represents the height of the tree 

and equals to log(n), n represents the total number of group 

members. In addition, the length of the transmitted message 

equals to 2h keys. If U4 leaves the group, to maintain 

forward secrecy, both k3 and k1 must be changed to k3new 

and k1new as shown in Figure 3.  The key server generates 

k3new and k1new and broadcasts the following message: 

{k3new, k1new}k6, {k1new}k2. U3 obtains the new values k3new 

and k1new by decrypting the first part of the message, and U1 

and U2 get the new value k1new by decrypting the second 

part of the message. As derived in [26], the encryption 

operations needed by the manager for the case of a member 

leave equals to 2h-1 and the length of the transmitted 

message equals to 2h-1 keys.  As mentioned in [26], the use 

of key tree will reduce the complexity cost from O(n) to 

O(log(n)). Further, the storage at each group member 

equals h+1 keys and the storage at the server equals 2n-1 

keys. It has to be noted that the centralized approaches rely 

heavily on one central point, which can represent a single 

point of failure. In addition for a large tree, the server’s 

throughput can represent a bottleneck. 

In distributed subgroup approaches, the whole group is 

divided into several subgroups. One Subgroup Controller 

(SC) that shares a symmetric key with the Group Controller 

(GC) maintains each subgroup. The role of SC is to 

establish a subgroup key to be used within the subgroup 
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and to translate messages sent from GC to the subgroup 

members. This approach solves the problem of scalability; 

any member change will only affect the subgroup where 

this member belongs. Another advantage is that the failure 

of one SC will not lead to the failure of the whole group. 

The disadvantage of this approach is the need of decrypting 

group messages at the SC and re-encrypting using the 

subgroup key. This solution reduces the communication 

and computation complexity to O(n/m), where m represents 

the number of subgroups. Examples of this approach can be 

found in [3, 6, 16, 21]. 

In decentralized group approaches, also called contributory 

protocols, each group member contributes to generate the 

group key. Decentralized approaches are characterized by 

having no group controller. The decentralized approach is 

generally based on large exponentiations using modulo 

operations. For information about modulo exponentiations, 

the reader can refer to [9]. Although this approach does not 

depend on a single entity to establish the group key, it 

suffers from the need of several modulo exponentiations, 

which makes it infeasible for large groups. Examples of 

this approach can be found in [4, 13, 25]. In the next 

section, a background of multiprocessor systems is given. 

3   Background of Multiprocessor Systems  

A multiprocessor system can be defined as a collection of 

autonomous processors, which can communicate with each 

other through a communication medium. The 

communication between processors can be done 

either through a shared memory medium or through links 

which interconnect processes directly with each other 

(message passing systems). In the shared memory model, 

processors can access in parallel memory locations which 

they share with all other processors. The communication 

between processors is achieved by writing information to 

common memory locations. In the message passing model 

(distributed memory system), each processor can read and 

write information only to a local memory, thus it must 

exchange information by sending messages via links to 

other processors. It is assumed that all processors of the 

message passing system execute the same algorithm and 

work correctly for any possible interconnection of 

processors [8]. Distributed-memory systems (DM) have 

some advantages over the shared-memory (SM) systems. 

First, DM systems require relatively design effort less than 

SM systems. Second, it is easily to expand (scalable) that is 

to say, as the number of processors increase, the memory 

size increases, the total memory bandwidth increases, 

processing capability of the system increases. Third nodes 

with different type of processors can be used to adapt the 

specialized problems (flexible). For the above reasons, we 

will focus on the parallel systems based on distributed 

memory.  

A Message Passing (MP) system involves connecting 
multiple independent nodes each contains a processor and 
its local memory. There is no sharing of primary memory,  

 

Figure 1: Hierarchical key tree 

 

Figure 2: Key tree update (case of join) 

 

Figure 3: Key tree update (case of leave) 

but each processor has its own memory. The contents of 

each memory can only be accessed by its processor. When 

a processor needs information owned by another processor, 

the information is sent as a message from one processor to 

the other. Messages can carry information between nodes, 

also synchronization node activities. There are no 

restrictions on the number of available processors. The 

processors of this type operate independently of one 

another [12]. A distributed memory system configuration is 

shown in Figure 4. In distributed memory systems, 
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communication mechanisms can be divided into two major 

classes: synchronous and asynchronous. In synchronous 

mechanism, when the sender transmits a message, it waits 

until the receiver responds to acknowledge that the message 

has been received. In asynchronous communication 

mechanism, no acknowledgment, which means that, after 

sending a message, the sender does not wait for 

acknowledgment and immediately continue its execution.  

In the next section, a design of a high performance 

implementation of a tree-based multicast key distribution 

protocol is illustrated. 

4   Design of High Performance Implementation of 

a Tree-Based Multicast Key Distribution Protocol 

The proposed protocol is based on the idea of organizing 

the keys in a tree as in LKH protocols as shown in Figure 5. 

The tree is maintained and organized by a Group Manager 

(GM). In case of any group change, GM has to perform 

several calculations. In order to achieve lower computation 

overhead, the proposed protocol uses a multi-processor 

system. It has to be noted that the centralized approaches 

rely heavily on one central point, therefore, it represents a 

single point of failure and for a large tree; the server’s 

throughput can represent a bottleneck. The use of multiple 

processors could solve this problem and enhance the 

server's throughput. In order to describe the system, the 

following parameters are used: 

M : number of processors 

Speed        : speed of any processor (Mhz -GhZ). 

bg   
        : global communication bandwidth =  

  the maximum rate at which the  

  interconnection   network can propagate 

  information once the  message enters the 

  network (bits/s) 

Smess     : message size (bits) 

Pmem     : processor memory size (Gbits) 

B : block size (bits) 

Th : symmetric key encryption algorithm 

  throughput (bits/s) 

h : tree height 

d : tree degree 

K : total keys number 

Ts   : time required to execute the sequential   

  version of the program (sec.) 

Tcomp   : computation time (sec.) 

Tcomm   : total communication time (sec.) 

Tpar  : total parallel time (sec.) 

 

In the next subsections, description of the proposed 

protocol will be detailed. The focus of this paper will be on 

the following cases: member join or member leave. 

 

Figure 4: A distributed-memory system configuration 

 

 

Figure 5: Example of 1 key hierarchy 

4.1   Member Join  

Assume a new member Ud joins the group, to preserve 

backward secrecy; all the keys along its path must be 

changed as shown in Figure 6. Therefore, the keys K(i, 1), 

where i ranges from 0 to h-1, must be changed to Knew(i, 1). 

It has to be noted that K(0, 1) is the group key shared by all 

members. Consequently, GM generates the new keys and 

calculates the following: 

 {Knew(0, 1)}K(0, 1), {Knew(1, 1)}K(1, 1), …, {Knew(h-1, 

1)}K(h-1, 1), 

{Knew(0, 1), Knew(1, 1), …, Knew(h-1, 1)}K(h, d) 

Therefore, GM needs to perform 2h keys encryptions. 

The encryption is done in Electronic Code Book (ECB) 

mode. There are two important aspects of any algorithm: (i) 

the amount of time required to execute the algorithm and (ii) 

the amount of memory space needed during run-time. 

Execution time, which refers to the total running time of 

the program, is the most obvious way of describing the 

performance of parallel programs. The aim of using parallel 

processing is to decrease the execution time of the problem 

implementation. In parallel systems, the total execution 

time (parallel time) Tpar is the sum of the computation 

time Tcomp, and the overhead time Tov. The sources of 

overhead are local communication overhead (access 

memory, memory contention, and synchronization), inter-

………….... 

……………

… 

K(0,1) 

K(1,1) K(1,2) K(1,d) 

K(h-1,1) 

K(h,1) K(h,d) 

U1 __________

_ 
Ud _______________________ Ud

h
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processor network latency (message latency) and 

application overhead [1, 11]. For simplicity, we will only 

concern with message latency time. Thus, Tpar is given as 

follows: 

Tpar = Tcomp+ Tcomm    (1) 

Where 

Tcomp=max{Tcomp(Pi)}   1-Mi0    (2) 

Tcomm =  




















tM

i

M

j

1

0

1

0 1)
j

P,
i

(P
 messT   (3) 

Tmess(Pi,Pj) = Sender overhead  

                        + [(Smess(Pi,Pj)/bg)* hop(Pi,Pj)]  

                                  + Receiver overhead   (4) 

where, Tcomp(Pi) is the computation time of processor Pi (i 

ranges from 0 to M-1), Tcomm is the total communication 

time, Tmess(Pi,Pj) is the time needed to send messages 

between Pi and Pj,  is the start up cost of initiating a 

message on any processor, 1 is the start up cost of 

initiating a bus by any processor, Smess (Pi,Pj) is the size of 

the message exchanged between Pi and Pj, hop(Pi,Pj) is the 

number of hops between Pi and Pj, sender overhead is the 

time for the processor to inject the message into the 

network (including both hardware and software 

components), and the receiver overhead is the time for the 

processor to pull the message from the network. It has to be 

noted that only one of the processors (for example P0) 

generates the new keys, distributes the tasks (encryption 

operations) to the other processors and collects encryption 

information from them. For the sake of fault tolerance, in 

case of P0 failure, any of the other processors (Pi and i 

ranges from 1 to M-1) can take the role of P0. Therefore, 

each processor has to store all symmetric keys (K), where 

K=
1d

1
1h

d






. To calculate the communication time 

Tcomm, the following assumptions are made: 

 The sender overhead, receiver overhead, , and 1 are 

very small with respect to the message latency. 

Therefore, it will be neglected in our calculations. 

 Asynchronous communication mechanism 

 The number of hops between Pi and Pj hop(Pi,Pj) 

equals one for all i,j (fully connection). 

 Time of key generation is very small with respect to 

the encryption time. So, it will be neglected in our 

calculations. 

 Only P0 and Pi exchange messages with each other, i.e. 

no communication between Pi and Pj, where i and j 

range from 1 to M-1.   

 

 

 

 

Figure 6: Example of a member joins 

Therefore, the communication time is given as follows:   

                   Tcomm=

 

gb

1M

1i i
P,0PmessS




                 (5) 

 In the following paragraphs, the sequential time Ts, the 

computation time Tcomp, the communication time Tcomm, 

and the total parallel time Tpar are calculated for different 

values of M. First, for M =1, only one processor is used, 

there is no communication time and the number of tasks to 

be performed is 2h encryptions. The sequential time Ts 

required to calculate these tasks is given by Equation (6).    

               
Th

B*2h

comp
T

s
T                      (6) 

For the case of M=2, using Equation (2) and Equation (5), 

the computation time Tcomp and the communication time 

Tcomm are given by Equation (7) and Equation (8). 

            
Th

B*h

comp
T                      (7) 

             

gb

B*h

comm
T      (8) 

Therefore, using Equations (1), (7) and (8), Tpar equals: 

             















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

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B*h
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Finally for 2 < M  h, as mentioned above the total 

number of tasks is 2h. While distributing tasks among 

processors, two cases arise: the first is the case where (h 

mod M = 0), each processor has to perform 2*
M

h







  tasks. 

The latter is the case where (h mod M ≠ 0), each processor 

has to perform 







2*

M

h  tasks and the remaining tasks are 

assigned to the first 









M

h
Mh *  processors. Therefore, 

the first 









M

h
Mh *  processors are assigned one more 

row (2 tasks); thus the number of tasks to be performed is 

21 *
M

h








  tasks. For the case where (h mod M) = 0, using 

Equation (2) and Equation (5), the computation time Tcomp 

and the communication time Tcomm are given by Equation 

(10) and Equation (11). 

Th

B*
M

h
*2

comp
T










     (10) 

gb

B*
M

h
-h*2

comm
T


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
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











    (11) 

Therefore, using Equation (1), Equation (10) and Equation 

(11), Tpar equals: 


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Th
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M

h
*2

par
T  (12) 

For the second case where (h mod M)  0, using 

Equation (2) and Equation (5), the computation time Tcomp, 

and the communication time Tcomm are given by Equation 

(13) and Equation (14). 

Th

B*1
M

h
*2

comp
T


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
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
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
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

    (14) 

Therefore, using Equation (1), Equation (13) and 

Equation (14), Tpar equals: 
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In the next subsection, description of the proposed 

protocol for the case of a member leaves will be detailed.  

4.2   Member Leave 

Assume Ud leaves the group, to preserve forward secrecy; 

all the keys along its path must be changed as shown in 

Figure 7. Therefore, the keys K(i, 1), where i ranges from 0 

to h-1, must be changed to Knew(i, 1). Consequently, GM 

generates the new keys and calculates the following: 

{Knew(0, 1)}Knew (1, 1), {Knew(0, 1)}K(1, 2), …, {Knew(0, 

1)}K(1, d), 

{Knew(1, 1)}Knew (2, 1), {Knew(1, 1)}K(2, 2), …, {Knew(1, 

1)}K(2, d), 

 . 

 .  

{Knew(h-1, 1)}K(h, 1), {Knew(h-1, 1)}K(h, 2), …, {Knew(h-1, 

1)}K(h, d-1) 

Therefore, GM needs to perform d*h-1 keys 

encryptions. The encryption is done in Electronic Code 

Book (ECB) mode. As in the join case, the sequential time 

Ts, the computation time Tcomp, the communication time 

Tcomm and the total parallel time Tpar are calculated for 

different values of M. First, for M=1, only one processor is 

used, there is no communication time and the number of 

tasks to be performed is d*h-1 encryptions. The sequential 

time Ts required to calculate these tasks is given by 

Equation (16).    

 
Th

B*1-h)*(d

comp
T

s
T     (16) 

For the case of M=2, two cases arise: the first for h 

even and the second for h odd. For the case where h is even, 

the master processor P0 has to calculate the last 

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h
 rows 
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h
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encryptions). Therefore, P0 sends 
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




 1

2

h
 keys to be  
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Figure 7: Example of a member leaves 

encrypted. After encrypting the keys, P1 sends 








2

hd
 

encrypted keys to P0. Using Equation (2) and Equation (5), 

the computation time Tcomp and the communication time 

Tcomm are given by Equation (17) and Equation (18). 

Th

B*
2

h*d

comp
T










      (17) 

 
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2
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
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







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

1

comm
T    (18) 

Therefore, using Equation (1), Equation (17) and Equation 

(18), Tpar equals: 

 



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par
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For the second case where h is odd, the master processor P0 

has to calculate the last 







 1

2

h
 rows (i.e 

 















 1*

2
dd

h
 key encryptions), while the other 

processor P1 has to calculate the first 
2

h
 rows (i.e 









d

h
*

2
 key encryptions). Therefore, P0 sends 








 1

2

h
 

keys to be encrypted. After encrypting the keys, P1 sends 









d

h
*

2
 encrypted keys to P0. Using Equation (2) and 

Equation (5), the computation time Tcomp and the 

communication time Tcomm are given by Equation (20) 

and Equation (21). 

Th

B*1
2

h
h*d

comp
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

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
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  (21) 

Therefore, using Equation (1), Equation (20) and Equation 

(21), Tpar equals: 


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B*
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h
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Th

B*1
2

h
h*d

par
T (22) 

Finally for 2 < M  h, as mentioned above the total number 

of tasks is d*h-1. While distributing tasks among 

processors two cases arise: the first is the case where ((h-1) 

mod M = 0) and the latter for the case where ((h-1) mod M 

≠ 0). For the case where ((h-1) mod M) = 0, each processor 

from P1 to PM-1 has to perform 








M

h
*d   tasks, while P0 

performs 

























 11

M

h
*d  tasks. Therefore, P0 

sends 








 1

M

h  keys to each processor (from P1 to PM-1). 

After encrypting the keys, each processor (from P1 to PM-1) 

sends 








d*

M

h  encrypted keys to P0. Using Equation (2) 

and Equation (5), the computation time Tcomp and the 

communication time Tcomm are given by Equation (23) 

and Equation (24). 

comp
T =

Th

B*11
M

h
*d



























                    (23) 

……………

… 

Knew(h-1,1) 

K(h,1) K(h,d-1) 

U1 ________________

_ 

Ud-1 _______________________ Ud
h 

Knew(1,1) K (1,2) K (1,d) ….

. 

Knew(0,1) 
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 
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                  (24) 

Therefore, using Equation (1), Equation (23) and Equation 

(24), Tpar equals: 

 


























































































gb

B*1
M

h
d

M

h
*1-M

Th

B*11
M

h
*d

par
T (25) 

For the second case where ((h-1) mod M)  0, two cases 

occur, the first for (h mod M) = 0 and the latter for (h mod 

M)  0. For the case where (h mod M) = 0, each processor 

from P1 to PM-1 has to perform 
















M

h
*d  tasks and P0 

has to perform



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















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*d  tasks. Therefore, P0 

sends 





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
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
1

M

h
 keys to each processor (from P1 to PM-1). 

After encrypting the keys, each processor (from P1 to PM-1) 

sends 
















d*

M

h  encrypted keys to P0. Using Equation (2) 

and Equation (5), the computation time Tcomp and the 

communication time Tcomm are given by Equation (26) 

and Equation (27). 
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Therefore, using Equation (1), Equation (26) and Equation 

(27), Tpar equals: 
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 (28) 

Finally, for the case where ((h-1) mod M)  0 and (h mod 

M)  0, P0 has to perform 
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keys, the processors from P1 to PM-1 send 
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Using Equation (2) and Equation (5), the computation time 

Tcomp and the communication time Tcomm are given by 

Equation (29) and Equation (30). 
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Therefore, using Equation (1), Equation (29) and Equation 

(30), Tpar equals: 
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In the next section, evaluation of the proposed protocol and 

experimental results will be depicted. 

5   Evaluation and Experimental Results 

The main reason for building parallel computers is to 

achieve higher performance. Experimentation, analytical 

modeling and simulation are three well-known techniques 

that can be used for quantifying parallel systems 

performance [23]. Experimental, involves implementing 

the application and measuring the performance on a real 

machine. Analytical models, abstract hardware and 

application details in a parallel system and capture complex 

system's feature by simple mathematical formulae. 

Simulations exploit computer resources to models and 
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imitate the behavior of a real system in a controlled manner 

[11, 14, 23]. In this work, the analytical modeling approach 

will be used to evaluate the system performance. In the 

next subsection, metrics used for quantifying the parallel 

systems will be introduced.  

5.1   Performance Metrics and Scalability  

Many performance metrics have been proposed to quantify 

the parallel systems. Among of them are execution time, 

speedup, efficiency, communication overheads, scalability 

and the degree of improvement [8, 10, 11]. Execution time 

also called parallel time Tpar is referred to the total running 

time of the program. It is the most obvious way of 

describing the performance of parallel programs. The aim 

of using parallel systems is to decrease the execution time 

of the problem implementation. Speedup Sp, relates the time 

taken to solve the problem on a single processor machine to 

the time taken to solve the same problem using parallel 

implementation. Speed-up Sp, of a parallel program running 

on M processors is defined as the ratio Ts/Tpar, where Ts is 

the time required to execute the best sequential version of 

the program, and Tpar is the time taken to execute the 

program on M processors. The ideal parallel system (of M 

processors) will solve the problem M times faster than the 

serial one (Sp=M) and it is said to be linear speedup. 

Efficiency, Ep, is defined as the ratio Sp/M. Optimum 

computation time, and therefore linear speed-up, equates to 

an efficiency of 1 (100%). To achieve this level of 

efficiency every processor must spent 100% of its time 

performing useful computation. In parallel systems, 

communication is the costly part; therefore high 

Computation To Communication Ratio (CTCR) is very 

beneficial. CTCR is defined by the average computation 

cost divided by the average communication cost on a given 

system. Degree of improvement is the percentage of 

improvement in system performance with respect to 

sequential execution and can be determined by (Ts-Tpar)/Ts. 

Finally, a parallel system is scalable if its performance 

continues to improve as the size of the system (problem 

sizes as well as the machine size) increase. The simplest 

definition of scalability is that the performance of a parallel 

system increases linearly with respect to the number of 

processors used for a given application [23]. In the next 

subsection, discussion of results will be detailed. 

5.2   Discussion of Results  

The proposed protocol is evaluated for both join and leave 

cases; and for different values of d and h. In our proposed 

design, we assume that the multiprocessor system is based 

on message passing system and uses the Advanced 

Encryption Standard (AES) protocol in ECB mode for 

encryption. In our implementation, we assume that each 

processor's speed is 2.5GhZ, Pmem equals 1Gbits, bg is 

4.2Gbps, Th equals 1.4Gbps and B is 128bits. Figures 8-12 

show the analysis of the proposed protocol according to the 

metrics given in Sec. 5.1. While Figure 8 illustrates the 

total execution time in case of a member joins, Figure 9 

shows the execution time in case of a member leaves. 

Whilst Figure 10 illustrates the system performance 

(computation time, communication time, speed up, 

efficiency and the improvement degree) in case of a 

member joins, Figure 11 shows the system performance in 

case of a member leaves. Figure 12 illustrates the execution 

time for the same number of users when a member leaves 

the tree. From the figures, the following observations are 

noted: 

 Figures 8-9 summarize the total execution time 

(parallel time) for different values of h for both join 

and leave cases. As the number of processors 

increases, the total execution time decreases 

irrespective of the value of h. Increasing the number 

of processors leads to the increase in the 

communication overhead which becomes an 

increasing factor and can exceed the total execution 

time.  Consequently, the system's efficiency will 

decrease. Therefore, the number of processors must 

not exceed a certain number which is called system's 

saturation. As shown in Figure 8, the saturation 

occurs when the number of processors equals (h/2). 

On the other hand, the leave case reaches this 

saturation at 







 1

M

h
M , for the binary tree, as 

shown in Figure 9. 

 Figure 10(a,b) and Figure 11(a,b) show that as the 

number of processors increases, the computation 

time decreases, while the communication time 

increases, for all values of h. The communication 

overhead time values of the join case are less than 

those values of the leave case for the same number 

of h. This is obvious since the distributed tasks 

required for re-keying in the join case is less than 

that in the leave case.  In case of a new member joins 

the tree, the computation time reduces by 

approximately 50% when the number of processors 

increases from one to two; for all values of h. While 

the total execution time reduces by 35% due to the 

communication overhead. On the other hand, in case 

of a member leaves the tree the computation time 

reduces by approximately 50% when the number of 

processors increases from one to two, while total 

execution time reduces by about 22%; for all values 

of h. 

 Figure 10(a) and Figure 11(a) show that when the 

problem size increases, the execution time decreases 

with respect to the increasing of the processor 

number. This leads to the conclusion that the 

proposed design is scalable according to the metrics 

given in Section 5.1. 

 In both join and leave cases, upon increasing the 

number of processors, the speedup will increase, and 

consequently the efficiency will decrease as 

illustrated in Figure10(c,d) and Figure 11(c,d). 

 Figure 10(e) shows the degree of improvement,   

compared to the sequential performance for join 

situation, when a new member joins the binary tree.   
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Figure 8: The total execution time (parallel time) after 

parallelization when a new member joins the tree 

 (for d=2 and different values of h)  

 

Figure 9: The total execution time (parallel time) after 

parallelization when a member  leaves the tree 

(for d=2 and different values of h) 
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(e) Improvement degree w.r.t before parallelization 

Figure 10: The system performance: computation time, communication time, speed  up, efficiency and the improvement 

degree, when a member joins the binary tree (for d=2 and different values of h) 
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 (e) Improvement degree 

Figure 11: The system performance: computation time, communication time, speed  up, efficiency and the improvement 

degree, when a member leaves the binary tree (for d=2 and different values of h)

 

(a) Number of users = 378 * 10
6  

 

(b) Number of users = 1007* 10
6 

Figure 12: The execution time for the same number of users when a member leaves the tree

the degree of improvement is 47.7%, 53.3%, 51.3%, 

60% and 62.2% for h= 7, 10, 13, 20 and 

30respectively. On the other hand, for the leave 

situation the improvement degree is 25.5%, 28%, 

32.2%, 35% and 37.8% for the same values of h as 

shown in Figure 11(e). From these figures, we can 

deduce that as increasing the number of h, the 

improvement degree increases. This is due to the fact 

that the computation time increases as increasing the 

tree height. This shows the advantage of using a 

multiprocessor system in enhancing the system 

performance. 

 Figure 12 describes the effect of increasing the value 

of d for the leave situation. It compares the system 

performance for the same number of users. This 

figure shows that, when the value of d increases both 

the computation and communication time increase. 

Therefore, the total execution time increases. 

Consequently, minimizing the value of d is the 

optimum solution, i.e. the binary tree is the best 

choice.  
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The analysis shows that the use of multiprocessor 

system will enhance the system performance. Increasing the 

number of processors reduces the total execution time until 

reaching the system's saturation. In addition, the proposed 

design is scalable. This is an important factor in real 

applications where the number of users changes repeatedly. 

6   Conclusions 

In the present paper, a design of a high performance 

implementation of a tree-based multicast key distribution 

protocol is proposed. In order to solve the problem of 

distributing a symmetric key between the whole group 

members, the group is organized in a logical key hierarchy 

as in LKH protocols. In order to achieve lower computation 

overhead, the proposed protocol uses a multi-processor 

system. It has to be noted that LKH protocol relies heavily 

on one central point, therefore, it represents a single point 

of failure and for a large tree; the server’s throughput can 

represent a bottleneck. The use of multiple processors 

could solve this problem and enhance the server's 

throughput. The proposed protocol is analyzed according to: 

the number of processors, the tree height and the tree 

degree. Experimental results illustrate the improved 

performance of the proposed protocol compared to 

sequential system even with significant communication 

overheads. This improvement is true for all values of h and 

d even with highly size tree. It outperforms the sequential 

performance for both join and leave situations. When a new 

member joins the binary tree, the degree of improvement is 

47.7%, 53.3%, 51.3%, 60% and 62.2% for h= 7, 10, 13, 20 

and 30 respectively. On the other hand, for the leave 

situation, the improvement degree is 25.5%, 28%, 32.2%, 

35% and 37.8% for the same values of h. The proposed 

protocol achieves lower communication time in case of a 

member joins the tree than its corresponding values of the 

leave situations. This is obvious since the distributed tasks 

required for re-keying in the join case is less than that in the 

leave case. In addition, the analysis shows that the 

proposed design is scalable according to the metrics given 

in Sec. 5.1. To test the scalability of the proposed protocol, 

it is tested on different problem sizes. The above results 

indicate that when the problem size d*h increases our 

protocol improves the overall system performance with 

respect to the increasing of the processor number. This 

leads to the conclusion that the proposed design is scalable. 

Another experiment which discusses the effect of 

increasing the value of d is done.  The experiment shows 

that when the value of d increases both the computation and 

communication time increase. Therefore, the total 

execution time increases. Consequently, minimizing the 

value of d is the optimum solution, i.e. the binary tree is the 

best choice. The abovementioned analysis shows that the 

use of multiprocessor system will significantly reduce the 

computation overhead which is considered an important 

factor for both real time and wireless applications. 
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