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Abstract When a malicious user’s sybil nodes comprise a large

) o fraction of the nodes in the system, that one user is able
Decentralized distributed systems such as peer-to-peery, «out vote” the honest users in a wide scope of collabora-
systems are particularly vulnerable gybil attackswhere e tasks. Examples of such collaborative tasks range from
a malicious user pretends to have multiple identities @xhll Byzantine consensus [18] and voting schemes for email
sybil node$. Without a trusted central authority, defending spam [31] to implicit collaboration in redundant routinglan
against sybil attacks is quite challenging. Among the small 4514 replication in Distributed Hash Tables (DHTS) [7]. The
number of decentralized approaches, our recent SybilGuardgyact form of such collaboration and the exact fraction of
protocol [43] leverages a key insight on social networks to gy | nodes these collaborative tasks can tolerate may dif-
bound the number of sybil nodes accepted. Although its difar from case to case. However, a generic requirement is

rection is promising, SybilGuard can allow a large number {hat the number of sybil nodes (compared to the number of
of sybil nodes to be accepted. Furthermore, SybilGuard as+,gnest users) needs to be properly bounded.

sumes that social networks are fast mixing, which has never
been confirmed in the real world.

This paper presents the novel SybilLimit protocol that
leverages the same insight as SybilGuard but offers dramat
ically improved and near-optimal guarantees. The number
of sybil nodes accepted is reduced by a facto©df/n),
or around 200 times in our experiments for a million-node
system. We further prove that SybilLimit's guarantee is at
most alogn factor away from optimal, when considering
approaches based on fast-mixing social networks. Finally,
basgd on thrge Iarge-scale real-world social n_etworks, we sybil attacks is much harder. Among the small number
provide the first evidence that real-world social networks f hes. the simplest h is 10 bind identi-
are indeed fast mixing. This validates the fundamental as-o' @pproacnes, e simplest one perhaps Is to bind ident

sumption behind SybilLimit's and SybilGuard’s approach. ties to !P addres;es or IP prefixes. Another apprpach IS
to require every identity to solve puzzles that require hu-

man effort, such as CAPTCHASs [36]. Both approaches can
provide only limited protection—the adversary can readily
steal IP addresses with different prefixes in today’s Inter-

Decentralized distributed systems (such as peer-to-peepet [32], while CAPTCHAs can be re-posted on an adver-

systems) are particularly vulnerable sgbil attacks[11], sgry’s website to be solved by users seeking access to that
where a malicious user pretends to have multiple identitiess'te'

(calledsybil identitiesor sybil node¥ In fact, such sybil at-  The SybilGuard approach. Recently, we proposed Sybil-
tacks have already been observed in the real world [19, 40]Guard [43], a new protocol for defending against sybil at-
in the Maze peer-to-peer system. Researchers have alstacks without relying on a trusted central authority. Sybil
demonstrated [35] that it is surprisingly easy to launchilsyb Guard leverages a key insight regardisgcial networks
attacks in the widely-used eMule system [12]. (Figure 1). In a social network, the vertices (nodes) are-ide

To defend against sybil attacks, simply monitoring each
node’s historical behavior is often insufficient becaudalsy
nodes can behave nicely initially, and then launch an attack
Although a trusted central authority can thwart such aack
by issuing credentials to actual human beings or requiring
payment [22], finding such a single entity that every user
worldwide is willing to trust can be difficult or impossible
(especially if that entity requires users to provide séresit
information).

Without a trusted central authority, defending against

1. Introduction



Honest nodes Sybil nodes

Number of attack edgesy  SybilGuard  SybilLimit

(unknown to protocol) accepts accepts
o(v/11/ logn) O(vilogn) O(logn)
Q(y/n/logn) to -

o(n log n) unlimited O(logn)
below~ 15,000 ~ 2000 ~ 10

above~ 15,000 and

Edges
below~ 100, 000

unlimited ~ 10

Figure 1. The social network. Table 1. Number of sybil nodes accepted per

attack edge (out of an unlimited number of
sybil nodes), both asymptotically for n hon-
est nodes and experimentally for a million
honest nodes. Smaller is better.

tities in the distributed system and the (undirected) edges
correspond to human-established trust relations in thie rea
world. The edges connecting the honest region (i.e., the re-
gion containing all the honest nodes) and the sybil region

(i.e., the region containing all the sybil identities cesht . . )
by malicious users) are calleattack edges SybilGuard cial network; are fa_st mixing, an assumption that had never
ensures that the number of attack edges is independent ofot been validated in the real world.

the number of Sybll identities, and is limited by the number Syb|||_|m|t A near-optima| pr0t000| for real-world so-

of trust relation pairs between malicious users and honestcja| networks. In this paper, we present a new protocol that
users. SybilGuard observes that if malicious users creatgeverages the same insight as SybilGuard but offers dramat-
too many sybil identities, the graph will have a snlio-  jcally improved and near-optimal guarantees. We call the
tient cut—i.e., a small set of edges (the attack edges) whoseprotocolSybilLimit because i) it limits the number of sybil
removal disconnects a large number of nodes (all the sybilnodes accepted and ii) it is near-optimal and thus pushes
identities). On the other hand, “fast mixing” [26] sociatne  the approach to the limit. For any= o(n/logn), Sybil-
works do not tend to have such cuts. SybilGuard leverages,_jmit can bound the number of accepted sybil nodes per

the small quotient cut to limit the size of sybil attacks. attack edge withirD (log n) (see Table 1). This is @(y/n)
SybilGuard is a completely decentralized protocol and factor reduction from SybilGuard®(,/nlog n) guarantee.
enables any honest nodé (called theverifier) to decide In our experiments on the million-node synthetic sociat net

whether or not toacceptanother node5 (called thesus-  work used in [43], SybilLimit accepts on average around 10
pec). “Accepting” means that’ is willing to do collabo-  sybil nodes per attack edge, yielding nearly 200 times im-
rative tasks withS. SybilGuard’s provable (probabilistic) provement over SybilGuard. Putting it another way, with
guarantees hold fofl — ¢)n verifiers out of then honest  SybilLimit, the adversary needs to establish nearly 100,00
nodes, where is some small constant close to 0. (The re- real-world social trust relations with honest users in orde
maining nodes get degraded, not provable, protection.) Asfor the sybil nodes to out-number honest nodes, as com-
suming fast-mixing social networks and assuming the num-pared to 500 trust relations in SybilGuard. We further prove
ber of attack edges is(/n/ logn), SybilGuard guarantees that SybilLimit is at most dogn factor from optimal in
that any such verifier, with probability at ledst § (6 being the following sense: for any protocol based on the mixing
a small constant close to 0), will accept at mO$t,/n log n) time of a social network, there is a lower bound(®fl)
sybil nodes per attack edge and at le@dst- ¢)n honest on the number of sybil nodes accepted per attack edge. Fi-
nodes. nally, SybilLimit continues to provide the same guarantee
While its direction is promising, SybilGuard suffers from even whery grows too(n/ log ), while SybilGuard’s guar-
two major limitations. First, although the end guarantees antee is voided oncg = Q(y/n/logn). Achieving these
of SybilGuard are stronger than previous decentralized apnear-optimal improvements in SybilLimit is far from trivia
proaches, they are still rather weak in the absolute senseand requires the combination of multiple novel techniques.
Each attack edge allow®(,/nlogn) sybil nodes to be  SybilLimit achieves these improvements without compro-
accepted. In a million-node synthetic social network, the mising on other properties as compared to SybilGuard (e.g.,
number of sybil nodes accepted per attack edge is nearlyguarantees on the fraction of honest nodes accepted).
2000 [43]. The situation can get worse: When the number  Next, we consider whether real-world social networks
of attack edgeg = Q(y/n/logn) (or g > 15,000 in the are sufficiently fast mixing for protocols like SybilGuard
million-node synthetic social network), SybilGuard can no and SybilLimit. Even though some simple synthetic social
longer bound the number of accepted sybil ncates|. Sec- network models [17] have been shown [6, 14] to be fast
ond, SybilGuard critically relies on the assumption that so mixing under specific parameters, whether real-world so-



cial networks are indeed fast mixing is controversial [2]. tacks and related problems have also been studied in sensor
In fact, social networks are well-known [3, 15, 24, 38] networks [28, 30], but the approaches and solutions usually
to have groups or communities where intra-group edgesrely on the unique properties of sensor networks (e.g., key
are much denser than inter-group edges. Such charactepredistribution). Margolin et al. [23] proposed using cesh
istics, on the surface, could very well prevent fast mixing. wards to motivate one sybil node to reveal other sybil nodes,
To resolve this question, we experiment with three large-which is complimentary to bounding the number of sybil
scale (up to nearly a million nodes) real-world social net- nodes accepted in the first place.

work datasets crawled fromww. f r i endst er . com wwv. Social networks are one type of trust networks. There
l'ivejournal.com anddbl p.uni-trier.de. We are other types of trust networks, e.g., based on historical
find that despite the existence of social communities, eveninteractions/transactions between users [8, 13, 37]. As in
social networks of such large scales tend to mix well within LOCKSS [21], Ostra [25], and SybilGuard [43], SybilLimit

a rather small number of hops (10 to 20 hops), and Sybil-assumes a social network with a much stronger associated
Limit is quite effective at defending against sybil attacks trust than these other types of trust networks [8, 13, 37].
based on such networks. These results provide the first evitOCKSS uses social networks for digital library mainte-
dence that real-world social networks are indeed fast mix-nance, and not as a general defense against sybil attacks. Os
ing. As such, they validate the fundamental assumptiontra leverages social networks to prevent the adversary from
behind the direction of leveraging social networks to limit sending excessive unwanted communication. In compari-

sybil attacks. son, SybilLimit's functionality is more general: Because
SybilLimit already bounds the number of sybil nodes, it
2. Related work can readily provide functionality equivalent to Ostra by al

locating each node a communication quota. Furthermore,
different from Ostra, SybilLimit has strong, provable end

Thke nigatnr/]e rezulths n DS:Jceur’i initial pager on sybil uarantees and has a complete design that is decentralized.
attacks [11] showed that sybil attacks cannot be prevente Ee relationship between SybilGuard and SybilLimit is dis-

unless special a_s_sumptions are made. Some researchers [ ssed in more detail in Sections 4 and 5.3. Unlike many
propoged gxplomng theaotstrap graphof.DHTs. Here, other works [8, 13, 33, 37] on trust networks, SybilLimit
the insight is that the large number of sybil nodes will all be does not use trust propagation in the social network

introduced (dlrgqtly or indirectly) into the DHT by a small Mislove et al. [24] also studied the graph properties of
number of malicious users. Bootstrap graphs may appeatr,

S several online real-world social networks. But Mislove et
similar to our approach, but they have the drawback that an

honest user may also indirectly introduce a large number ofal' did not focus on mixing time properties or their appro-
- N _~ priateness for defending against sybil attacks. Fina
other honest users. Such possibility makes it difficult 3 di D vag y loyea

. . . .__liminary version of this work appeared as [41].
tinguish malicious users from honest users. Instead of sim- y bp [41]

ply counting the number of nodes introduced directly and
indirectly, SybilLimit distinguishes sybil nodes from hon 3. System model and attack model
est nodes based on graph mixing time. It was shown [9]
that the effectiveness of the bootstrap graph approach dete SybilLimit adopts a similar system model and attack
riorates as the adversary creates more and more sybil nodesjodel as SybilGuard [43]. The system haBonest human
whereas SybilLimit's guarantees hold no matter how many beings asonest userseach with onénonest identity/node
sybil nodes are created. Some researchers [5] assume thatonest nodes obey the protocol. The system also has one
the attacker has only one or small number of network posi-or more malicious human beings aslicious userseach
tions in the Internet. If such assumption holds, then alllsyb with one or more identities/nodes. To unify terminology, we
nodes created by the attacker will have similar network co-call all identities created by malicious userssgbil identi-
ordinates [29]. Unfortunately, once the attacker has moreties/nodesSybil nodes are byzantine and may behave arbi-
than a handful of network positions, the attacker can fabri-trarily. All sybil nodes are colluding and are controlled by
cate arbitrary network coordinates. an adversary A compromised honest node is completely
In reputation systems, colluding sybil nodes may artifi- controlled by the adversary and hence is considered as a
cially increase a (malicious) user’s rating (e.g., in Ebay) sybil node and not as an honest node.
Some systems such as Credence [37] rely on a trusted cen- There is an undirected social network among all the
tral authority to prevent this. There are existing distréuli nodes, where each undirected edge corresponds to human-
defenses [8, 13, 33] to prevent such artificial rating in- established trust relations in the real world. The advgrsar
creases. These defenses, however, cannot bound the nummay create arbitrary edges among sybil nodes in the social
ber of sybil nodes accepted, and in fact, all the sybil nodesnetwork. Each honest user knows her neighbors in the so-
can obtain the same rating as the malicious user. Sybil at¢ial network, while the adversary has full knowledge of the



entire social network. The honest nodes havandirected is sufficiently long, it “forgets” where it started. This fi-
edges among themselves in the social network. For exposinal distribution of the last node (or edge) traversed ischll
tory purposes, we sometimes also considefthendirected  the node (or edgestationary distributior{26] of the graph.
edges a@m directed edges. The adversary may eavesdropThe edge stationary distribution (of any graph) is always a
on any messages sent in the protocol. uniform distribution, while the node stationary distritout
Every node is simultaneously a suspect and a verifiermay not be. Mixing time [26] describes how fast we ap-
As in SybilGuard, we assume that each suspedtas a proach the stationary distribution as the length of the walk
locally generated public/private key pair, which serves to increases. More precisely, mixing time is the walk length
prevent the adversary from “stealing’s identity afterS needed to achieve a certaiariation distancg26], A, to the
is accepted. When a verifié accepts a suspegt V' ac- stationary distribution. Variation distance is a valué¢inl ]
tually acceptsS’s public key, which can be used later to that describes the “distance” between two distributions—
authenticates. We do not assume a public key infrastruc- see [26] for the precise definition. A small variation dis-
ture, and the protocol does not need to solve the public keytance means that the two distributions are similar. For a
distribution problem since the system is not concerned with graph (family) withn nodes, we say that it st mixing
binding public keys to human beings or computers. A ma-if its mixing time is O(log n + log %). In this paper, we
licious user may create multiple different key pairs for her only care abouf\ = @(%), and we will simply say that a

different sybil nodes. fast mixing graph ha® (log n) mixing time. The following
known result follows directly from the definition of mixing
4. Background: SybilGuard time and a useful interpretation of variation distance (The

orem 5.2 in [20]). This result is all we need in this paper

To better understand the improvements of SybilLimit about mixing time:

over SybilGuard and the challenges involved, this section Theorem 1 Consider any fast mixing graph witlh nodes.
provides a concise review of SybilGuard. A random walk of lengti®(logn) is sufficiently long such
Random walks and random routes. SybilGuard uses a that with probability at least — % the last node/edge tra-
special kind of random walk, calleédindom routesin the versed is drawn from the node/edge stationary distribution
social network. In a random walk, at each hop, the currentof the graph.

node flips a coin on-the-fly to select a uniformly random In SybilGuard, a random walk starting from an hon-

edge to direct the walk (the walk is allowed to turn back). . . : L
est node in the social network is calledcapingf it ever
For random routes, each node uses a pre-computed random

permutation, 1 zs...2;” whered is the degree of the node, Crosses any attack edge.
as aone-to-one mappinffom incoming edges to outgoing Theorem 2 (from [43]) In any connected social network
edges. A random route entering via edgwill always with n nodes and attack edges, the probability of a length-
exit via edger;. This pre-computed permutation, mut- [ random walk starting from a uniformly random honest
ing table serves to introducexternal correlationacross node being escaping is at magy/n.
multiple random routes. Namely, once two random routes
traverse the same directed edge, they will merge and stay’ccepting honest nodes.In SybilGuard, each node per-
merged (i.e., theyconvergd. Furthermore, the outgoing forms a random route of length= ©(y/nlogn). A ver-
edge uniquely determines the incoming edge as well; thusifier V- only accepts a suspegt if S’s random route in-
the random routes can back-traced These two properties ~ tersects withV’s.  Theorem 2 tells us thak’’s random
are key to SybilGuard’s guarantees. As a side effect, suchroute will stay in the honest region with probability at leas
routing tables also introdudaternal correlationwithin a 1 — g//n = 1 —o(1) for g = o(y/n/logn). Theorem 1
single random route. Namely, if a random route visits the further implies that with high probability, a random route
same node more than once, the exiting edges will be corre©(v/nlogn) long will include®©(y/n) independent random
lated. We showed [43] that such correlation tends to be negnodes draWI’l from the nOde Stationary distribution. It then
ligible, and moreover, in theory it can be removed entirely follows from the generalized Birthday Paradox [1, 27] that
using a more complex design. Thus, we ignore internal cor-an honest suspestwill have a random route that intersects
relation from now on. with V’s random route with probability — § for any given
Without internal correlation, the behavior of a single (small) constant > 0.
random route is exactly the same as a random walk. InBounding the number of sybil nodes acceptedTo inter-
connected and non-bipartite graphs, as the length of a ransect withV’s non-escaping random route, a sybil suspect’s
dom walk goes toward infinity, the distribution of the last random route must traverse one of the attack edges. Con-
node (or edge) traversed becomes independent of the starsider Figure 2 where there is only a single attack edge. Be-
ing node of the walk. Intuitively, this means when the walk cause of the convergence property, all the random routes



Honest nodes Sybil nodes e Sybil nodes accepted by SybilGuardThe total num-
ber of sybil nodes accepte@(g/nlogn), iso(n).

e Escaping probability in SybilGuard.  The es-
caping probability of the verifier's random route,
O(gy/nlogn/n),iso(1).

e Bad sample probability in SybilGuard. When esti-
mating the random route length, the probability of a
bad sampleQ(g/nlogn/n),iso(1).

Figure 2. Routes over the same edge merge. Thus to allow for largeg, SybilLimit needs to resolve alll
three issues above. Being more “robust” in only one aspect

from all sybil suspects must merge completely once theywill not help.
traverse the attack edge. All these routes differ only in how  SybilLimit has two component protocols,sgcure ran-
many hops of the route remain after crossing the attack edgedom route protoco{Section 5.1) and ®erification protocol
(between 1 andi— 1 hops for a length-route). Because the  (Section 5.2). The first protocol runs in the background and
remaining parts of these routes are entirely in the honest remaintains information used by the second protocol. Some
gion, they are controlled by honest nodes. Thus, there will parts of these protocols are adopted from SybilGuard, and
be fewer thard = O(y/nlogn) random routes that emerge we will indicate so when describing those parts. To high-
from the sybil region. In general, the number of such routes light the major novel ideas in SybilLimit (as compared to
will be O(gy/nlogn) for g attack edges. SybilGuard is de- SybilGuard), we will summarize these ideas in Section 5.3.
signed such that only one public key carrbgisterecdat the Later, Section 6 will present SybilLimit's end-to-end guar
nodes on each random route. This means that the adversargntees.
can register only)(g+/n logn) public keys for all the sybil
nodes combined. In order to accept a suspedt must find 5.1. Secure random route protocol
an intersection between its random route &slrandom
route and then confirm thatis properly registered at the in-
tersecting node. As a result, om}(/nlog n) sybil nodes
will be accepted per attack edge. o o(y/n/ logn), the
total number of sybil nodes acceptedis).

intersection

Protocol description. We first focus on all the suspects
in SybilLimit, i.e., nodes seeking to be accepted. Fig-
ure 3 presents the pseudo-code for how they perform ran-

o . dom routes—this protocol is adapted from SybilGuard with
Estimating the needed length of random routes.While little modification. In the protocol, each node has a pub-

the length of the random routes@(\/nlogn), the value  |ic/hrivate key pair, and communicatesly with its neigh-

of n is unknown. In SybilGuard, nodes locally determine o in the social network. Every pair of neighbors share a
the ngeded length of the random routes via sampling. Eacmnique symmetric secret key (teelge keyestablished out-
node is assumed to know a rough upper boundn the ¢ hand [43]) for authenticating each other. A sybil node
mixing time. To obtain a sample, a nodefirst performs a M, may disclose its edge key with some honest ndde
random walk of lengtt¥/, ending at some nod8. NextA another sybil nodé//,. But because all neighbors are au-
and B each perform random routes to determine how 10ng thenticated via the edge key, whaii, sends a message to

the routes need to be to intersect. A sampl@asl (ile., 4 4 will still route the message as if it comes froh, .
potentially influenced by the adversary) if any of the three |, the protocol, every node has a pre-computed random per-

random walks/routes in the process is escaping. APPIYINg mytationz: ...z, (d being the node’s degree) as its rout-

Theorem 2 shows that the probability of a sample being bading taple. The routing table never changes unless the node

is at mosBgl/n = o(1) for g = o(v/n/logn). adds new neighbors or deletes old neighbors. A random
route entering via edgealways exits via edge;. A sus-

5. SybilLimit protocol pectS starts a random route by propagating along the route
its public key K¢ together with a counter initialized to 1.

As summarized in Table 1, SybilGuard accepts Every node along the route increments the counter and for-

O(y/nlogn) sybil nodes per attack edge and further re- wards the message until the counter reachgthe length

quiresg to beo(y/n/logn). SybilLimit, in contrast, aims ~ of arandom route. In SybilLimity is chosen to be the mix-

to reduce the number of sybil nodes accepted per attackng time of the social network; given a fast-mixing social

edge toO(logn) and further to allow fory = o(nlogn). network,w = O(logn).

This is challenging, because SybilGuard’s requirement on Let “A— B” be the last (directed) edge traversed$ig

g = o(y/n/logn) is fundamental in its design and is simul- random route. We call this edge tteél of the random route.

taneously needed to ensure: Node B will see the counter having a value eofand thus



Executed by each suspect:
1. S picks a uniformly random neighbaf;
2. Ssendstd’: (1, S's public keyKs, MAC(1||Ks)) with the MAC generated using the edge key betwfamdY’;

Executed by each node3 upon receiving a messagéi, K s, MAC) from some neighbor A:

1. discard the message if the MAC does not verify er 1 ori > w;

2. if (i = w) { recordK s under the edge namés"y— K " where K 4, and K5 are A's and B’s public key, respectively
else{

3. look up the routing table and determine to which neighligrtbie random route should be directed;

4. Bsendstd: (i+ 1, Kg,MAC((i + 1)||Ks)) with the MAC generated using the edge key betwBesndC';

}

Figure 3. Protocol for suspects to do random routes and regis ter their public keys.

S. 1 S W }%D in different s-instances are completely independent. Note
\2 Ka “, however, that all suspects share the samginstances—
Kg > W\ this is critical to preserve the desirable convergencé#ac
{ ) Ve traceability property among their random routes in the same
_Ks_ \,{ Ke s-instance.
Aw™B A B Kp Similarly, every verifier performs random routes. To
forward routes  reversed routes reversed routes avoid undesirable correlation between the verifiers’ ramdo
routes and the suspects’ random routes, SybilLimit uses an-
Figure 4. (i) Suspect S propagates Kg for w otherr independent instances (calleeinstance} for all
hops in an s-instance. (i) K4 and Kp propa- verifiers. Verifiers do not need to register their public keys
gated back to suspect S in an s-instance. (iii) they only need to know their tails. Thus in each v-instance,
K¢ and Kp propagated back to a verifier  V in SybilLimit invokes the protocol in Figure 3 once for each
a v-instance. verifier, with reversed routing tables (Figure 4).

Performance overheadsWhile SybilLimit uses the same
record Ks under the name of that tail (more specifically, technique as SybilGuard to do random routes, the overhead
under the name ofK 4, — K" where K4 and K5 are A’s incurred is different because SybilLimit uses multiple in-
andB's public key, respectively). Notice th&t may poten-  stances of the protocol with a shorter route length. Inter-
tially overwrite any previously recorded key under the name estingly, usingd(,/m) instances of the random route pro-
of that tail. WhenB recordsKs, we say thatS registers  tocol does not incur extra storage or communication over-
its public key with that tail. Our verification protocol, de- head by itself. First, a node does not need to stfem)
scribed later, requires thatknow A’s and B's public keys  routing tables, since it can keep a single random seed and
and IP addresses. To do so, similar to SybilGuard, Sybil-then generate any routing table on the fly as needed. Sec-
Limit invokes the protocol in Figure 3 a second time, where ond, messages in different instances can be read“y com-
every node uses a “reversed” routing table (i.e., a randompined to reduce the number of messages. Remember that
route entering via edge; will exit via edgei). This enables  in all ©(,/m) instances, a node communicates only with its
A and B to propagate their public keys and IP addresses neighbors. Given that the number of neighbeis usually
backward along the route, so thsitcan learn about them  quite small on average (e.g., 20), a node needs to send only

(Figure 4). d messages instead 6f(,/m) messages. Finally, the total
Different from SybilGuard, SybilLimit invokes inde- number of bits a node needs to send in the protocol is linear

pendent instances (calledinstancesof the previous pro-  with the number of random routes times the length of the

tocol for the suspects. The value o&hould be®(\/m), routes. Thus, the total number of bits sent indlmaessages

and later we will explain how nodes can automatically pick in SybilLimitis ©(y/mlogn), as compared t®(/nlogn)

the appropriate. In every s-instance, each suspect uses thein SybilGuard.

protocol in Figure 3 to perform one random route and to  All these random routes need to be performed only one

register its public key with the tail. Across all s-instagce time (until the social network changes) and the relevant in-
suspect will thus register its public key withtails. Addi- formation will be recorded. Further aggressive optimiza-

tionally in every s-instance, SybilLimit invokes the protd tions are possible (e.g., propagating hashes of public keys
a second time for each suspect using reversed routing fablesnstead of public keys themselves). We showed [43] that

so that the suspects know their tails. The routing tabled use in a million-node system with average node degree be-



Honest nodes Sybil nodes e In every s-instance, among all the directed edges in
the honest region, sybil nodes can register their pub-
lic keys only with tainted tails. This is because nodes
communicate with only their neighbors (together with
proper authentication) and also because the counter in
the registration message is incremented at each hop.

non-escaping Eisﬁalping

escaping e In every s-instance (v-instance), if an honest susfect
(an honest verifiel’) has a non-escaping tail— B”,
Figure 5. Escaping and non-escaping tails. thenS (V) knowsA’s andB’s public keys.

ing 10, an average node using SybilGuard needs to send!Ser and node dynamics.Most of our discussion so far
400KBs of data every few days. Under the same parame@SSumes that the social network is static and all nodes are
ters, an average node using SybilLimit would send around©nline. All techniques in SybilGuard to efficiently deal it
400 x v/10 ~ 1300KB of data every few days, which is user/node dynamics, as well as techniques to properly over-

still quite acceptable. We refer the reader to [43] for farth write stale registration information for preventing cértat-
details. tacks [43], apply to SybilLimit without modification. We

. . . do not elaborate on these due to space limitations.
Basic security properties. The secure random route pro-

tocol provides some interesting basic security guarantee
We first formalize some notions. An honest suspgttas
onetail in every s-instance, defined as the tail of its random
route in that s-instance. We similarly define théails of Protocol description. After the secure random route pro-
a verifier. A random route starting from an honest node is tocol stabilizes, a verifiev’ can invoke the verification pro-
calledescapingf it ever traverses any attack edge. The tail tocol in Figure 6 to determine whether to accept a suspect
of an escaping random route is calledesmtaping tailFig- S. S must satisfy both théntersection conditior{Step 2—

ure 5), even if the escaping random route eventually comes4 in Figure 6) and théalance conditior(Step 5-7) to be
back to the honest region. By directing the random route in accepted.

specific ways, the adversary can control/influence to which  The intersection condition requires th#$ tails andV’s
directed edge an escaping tail corresponds. But the advetails must intersect (instance number is ignored when de-
sary has no influence over non-escaping tails. termining intersection), witht' being registered at the in-

In any given s-instance, for every attack edge connectingtersecting tail. In contrast, SybilGuard has an intersecti
honest nodel and sybil node\/, imagine that we performa  condition on nodes (instead of on edges or tails). For the
random route starting from the edgkf“— A”, until either a balance conditiony” maintains- counters corresponding to
subsequent hop traverses an attack edge or the length of thiés  tails (Figure 7). Every accepted suspect increments the
route reaches. Because the adversary can fake a series of‘load” of some tail. The balance condition requires that ac-
routes that each end on one of the edges on this route, theseeptingS should not result in a large “load spike” and cause
edges are callethintedtails. Intuitively, the adversary may the load on any tail to excedd- max(logr, a). Herea is
register arbitrary public keys with these tails. In a given s the current average load across ls tails andh > 1 is
instance, one can easily see that the set of tainted tails issome universal constant that is not too small (we/use4
disjoint from the set of non-escaping tails from honest sus-in our experiments). In comparison, SybilGuard does not
pects. The reason is that random routes are back-traceableave any balance condition.

and starting from a non-escaping tail, one can always traceperformance overheads.The verification protocol can be

back to the starting node of the random route, encounteringmade highly efficient. Except for Steps 1 and 3, all steps in

only honest nodes. This means that an honest suspect wilthe protocol involve only local computation. Instead of di-

never need to compete with the sybil nodes for a tail, as Iongrecﬂy sending(r) public keys in Step 15 can readily use

as its random route is non-escaping. a Bloom Filter [26] to summarize the set of keys. In Step 3,
After the secure random route protocol stabilizes (i.€., al for every intersecting tail itk , VV needs to contact one node.

propagations have completed), the following properties ar On average, the number of intersections between a verifier

%5.2. Verification protocol

guaranteed to hold: V and an honest suspegin the honest region i9(1) with
e In every s-instance, each directed edge in the honestr = ©(y/m), resulting inO(1) messages. The adversary
region allows only one public key to be registered. may intentionally introduce additional intersections e t

sybil region betweer’s and S’s escaping tails. However,
if those extra intersecting nodes (introduced by the adver-
sary) do not replyl” can blacklist them. If they do reply and

e In every s-instance, an honest suspgatan always
register its public key with its non-escaping tail (if any)
in that s-instance.



1. S sends td/ its public keyK g andS’s set of tails{(j, K4, K) | S’s tail in the jth s-instance is the edgel*~B”
andK 4 (Kpg)is A’s (B's) public key};

Il Apply theintersection condition (the instance number is ignored when determining inteigeyt

2. V computes the set of intersecting tals= { (i, K4, Kp) | (i, Ka, Kp) isV's tail and(j, K4, Kp) is S’s tail};

3. Forevery(i, K4, Kp) € X,V authenticate® using K 5 and asks3 whethers is registered underk y,— K"
If not, remove(i, K 4, Kp) from X;

4. If X is empty then reject and return;

Il Apply thebalance condition(c; is the counter fol/’s tail in the ith v-instance)

5. Leta= (14 Y;_, ¢;)/r andb = h-max(logr,a); /I see textfor description df

6. Letcy,in be the smallest counter among thegs corresponding tdi, K 4, K ) that still remain inX

(with tie-breaking favoring smallei);
7. If (¢min + 1 > b) then rejectS; otherwise, increment,,;,, and accepf;

Figure 6. Protocol for V to verify S. V has r counters cy, ...c, initialized to zero at start-up time.

V's tails Load (c/'s) . . versary can fakev distinct random routes of length that
1 S _m'Fe.rsects with 3 of V's cross the attack edge and enter the honest region. Notice
: tails: j, k andl . Tailj that here SybilLimit reduces the number of such routes by

5 has the smallest load, so V

J 10711 ¢ increments its load, checking
Kk 20 to make sure the load does

: not exceed the threshold.

using aw that is much smaller thah Further, because we
are concerned only with tails now, in the given s-instance,
the adversary will have onlyw slots. Withr s-instances,

| 15 the adversary will have - w = ©(y/mlog n) such slots to-

é tal, for all the sybil nodes. This reduction fra@1(n log? n)

r slots to®(y/m log n) slots is the first key step in SybilLimit.
Figure 7. Balance condition example. But doing » random routes introduces two problems.

] ] ] The first is that it is impossible for a degrdenode to
if V' is overwhelmed by the overhead of such replies, then pae more that distinct random routes, if we directly use

the adversary is effectively launching a DoS attack. Ngtice SybilGuard’s approach. SybilLimit observes that one can
that the adversary can launch such a DoS attack agéinst ;se many independent instances of the random route pro-
even if 1 were not running SybilLimit. Thus such attacks qc0| while still preserving the desired convergencetbac

are orthogonal to SybilLimit. traceability property. The second problem is more seri-
] ) o ) ous. SybilGuard relies on the simple fact that the number
5.3. Key ideas in SybilLimit, vis-a-vis SybilGuard of distinct routes from the adversarylis All slots on the

same route must have the same public key registered. This

This section highlights the key novel ideas in SybilLimit ensures that the total number of sybil nodes registered is
that eventually lead to the substantial end-to-end improve [. In SybilLimit, there arer - w distinct routes from the
ments over SybilGuard. adversary. Thus, a naive design may end up accepting
Intersection condition. To help convey the intuition, we 7 - w = ©(y/mlogn) sybil nodes, which is even worse
will assumeg = 1 in the following. In SybilLimit, each than SybilGuard. SybilLimit’s key idea here is to perform
node uses = O(y/m) random routes of lengthy = intersections on edges instead of on nodes. Because the
O(logn) instead of a single random route of length= stationgry distribution on edges is alwqys uniform in any
O(y/nlogn) as in SybilGuard. In SybilGuard, each node graph, it ensures that tHbp-side of the B|rthd_ay Paradox
along a random route corresponds to a “slot” for registering holds. Namely©(y/m) slots are both sufficient andec-
the public key of some node. The adversary can fatis- essaryfor intersection to happen (with high probability).
tinct random routes of lengtithat cross the attack edge and Together with earlier arguments on the number of slots in

enter the honest region. This means that the adversary willSyPilLimit, this will eventually allow us to prove that the
havel + 2 + ... + 1 = ©(I2) = O(nlog? n) slots for the number of sybil nodes with tails intersecting witfis non-

sybil nodes in SybilGuard. escaping tails (more precisely;’s uniform non-escaping
In SybilLimit, the tail of each random route corresponds tails—see later) i§)(logn) per attack edge.
to a “slot” for registration. In any given s-instance, the ad Balance condition. In SybilGuard, the verifier's random

1As an engineering optimization, a degréeode in SybilGuard can route is either escaping or non-escaping, resulting in in *a

performd random routes of lengt® (/7 log 1), but this does not improve or-nothing” effect. For Syb”GU.ard to work, this single ran
SybilGuard’s asymptotic guarantees. dom route must be non-escaping. Because of the laofe




O(y/nlogn), the escaping probability will b€(1) onceg all, SybilLimit exactly leverages external correlationamy
reache€)(/n/logn). Using much shorter random routes random routes. The following is the main theorem on Sybil-
of lengthw in SybilLimit decreases such escaping proba- Limit's guarantee:
bility. But on the other hand, because a verifier in Sybil- ) )
Limit needs to do- such routes, it remains quite likely that Theorem 3 Assume that the social network’s honest region
someof them are escaping. In fact, with= ©( /m) and is fast mixing and; = o(n/logn). For any given constants
w = O(log n), the probability of at least one of theroutes  (Potentially close to zera) > 0 andd > 0, there is a set of
being escaping in SybilLimit is even larger than the prob- (1 — €)n honest verifiers and universal constantgandr,
ability of the single lengtH-random route being escaping Such that usings = wg logn andr = ro+/m in SybilLimit
in SybilGuard. Thus, so far we have only made the “all-or- will guarantee that for any given verifiér in the set, with
nothing” effect in SybilGuard fractional. probability at leastl — §, V accepts at mosD(logn) sybil
SybilLimit relies on its (new) balance condition to ad- hodes per attack edge and at le@st— ¢)n honest nodes.

dress this fraction of escaping routes. To obtain some intu- - . -
o . : o . For the remaining small fraction ofn honest verifiers,
ition, let us imagine the verifieV’s tails as bins that can

. SybilLimit provides a degraded guarantee that is not prov-
accommodate up to a certain load. WHeraccepts a sus- able. Because of space limitations, we will provide mostl
pectsS, out of all of s tails that intersect witt$’s tails, S ‘ b ! P y

conceptually increments the load of the least loaded tail/b Intuitions in t_he following and leave formal/complete pfeo
. . _to our technical report [42].

Because of the randomness in the system, one would conjec-

ture that all ofV’s tails should have similar load. If this is 1. Intersection condition

indeed true, then we can enforce a quota on the load of eacl?' '

tail, which will in turn bound the number of sybil nodes ac- o o _

cepted byl’’s escaping tails. Later, we will show that the Preliminaries: Classifying tails and nodes. As prepara-

balance condition bounds the number withity log 7). tion, we first carefully classify tails and nodes. Table 2

Benchmarking technique. The SybilLimit protocol in Fig- sgmmari;(_es the key definitions we .Wi" use. Consider a
ures 3 and 6 assumes that ©(,/m) is known. Obviously, ~ 9VEN verifier” (or SPSPGCS)_ qnd agiven v-instance (c_)r S
without global knowledge, every node in SybilLimit needs !nstance). We clqssﬁy Its tall_lnto 3 p0_§5|b|lltle§:_ ) thea

to estimater locally. Recall that SybilGuard also needs IS aheéscaping tairecall Section 5'1)' iiy the tail IS not es
to estimate some system parameter (more specifically, the*aPing and is drawn from the (uniform edge stationary dis-
length of the walk). SybilGuard uses the sampling teCh_trlbqun (i.e., auniform tail), or iii) the tail is not escaping
nique to do so, which only works fay — o(+/n/ logn). and is drawn from some unknown distribution on the edges

To allow anyg = o(n/ log n), SybilLimit avoids sampling (i.e., anon-uniform tai).? In agiven y—instance, t_he routing
completely. Instead, it use a novel and perhaps counteri@bles of all honest nodes will entirely determine whether

intuitive benchmarking techniquthat mixes the real sus- VS (@il is escaping and in the case of a non-escaping tall,
pects with some randorbenchmark suspectbat are al- which edge is the tail. Thus, the adversary has no influence
ready known to be mostly honest. The technique guaran—Over non—escaplrég tails. K he distributi f th

tees that a node will never over-estimateegardless of Because we do not know the distribution of the non-

the adversary’s behavior. If the adversary causes an undeHniform tails, feV\_’ prob_abilistic properties can be_ de_riv_ed
estimation forr, somewhat counter-intuitively, the tech- for them. Escaping tails are worse because their distribu-

hique can ensure that SybilLimit still achieves its end guar 10N IS controlled by the adversary. Assuming that the hon-
antees despite the under-estimatediVe will leave the de- est region of the social network is fast mixing, our techhica
tailed discussion to Section 7. report [42] proves the following:

Lemma 4 Consider any given constant (potentially close
6. Provable guarantees of SybilLimit to zero)e > 0. We can always find a universal constant

wp > 0, such that there exists a sgt of at least(1 — ¢)n

While the intersection and balance conditions are sim-honest nodes (callenbn-escaping nodgsatisfying the fol-

ple at the protocol/implementation level, it is far from ob- lowing property: If we perform a length- random walk
vious why the designs provide the desired guarantees. Westarting from any non-escaping node with = wg log n,
adopt the philosophy that all guarantees of SybilLimit must then the tail is a uniform tail (i.e., a uniformly random di-
be proved mathematically, since experimental methods carfected edge in the honest region) with probability at least
cover only a subset of the adversary’s strategies. Ourl — 0(910%)-
PI’OOfS pay spec.ial atiention to the correlation among var- 2A finite-length random walk can only approach but never retheh
ious events, which turns out to be a key challenge. We gationary distribution. Thus a small fraction of tails Mie non-uniform
cannot assume independence for simplicity because aftefalso see Theorem 1).




Table 2. Terminology used in proofs (see text for precise defi nitions)
escaping route | random route from an honest node that traverses an attaek edg

escaping tail tail of an escaping route
tainted tail any edge in the honest region on a lengtihandom route starting from an attack edge
uniform tail non-escaping tail from the uniform edge distribution

non-uniform tail | non-escaping tail that is not a uniform tail
non-escaping node honest node such that a lengthrandom walk has a uniform tail with— o(1) probability
escaping node | honest node that is not a non-escaping node
uniform tail set | the set of all uniform tails of a given honest node
tainted tail set | set of all tainted tails

As a reminder, the probability in the above lemma is de-is defined to be the number of elements of the fdinz).
fined over the domain of all possible routing table states—We double count in different instances because for every
obviously, if all routing tables are already determined th element(i, ¢), an arbitrary public key can be registered un-
tail will be some fixed edge. der the name of in theith s-instance. For two tail sef§

It is still possible for the tail of a non-escaping node to and7s, we define theumber of intersectiorisetween them
be escaping or non-uniform—it is just that such probabil- as: Z(j,e)eTg (# intersections betweenandT}). For ex-
ity is O(£%2) = o(1) for g = o(n/logn). An honest  ample,{(1,e1),(2,e1)} and{(2,e1), (3, 1)} have 4 inter-
node that is not non-escaping is called estaping node  sections.T; and75 intersectif and only if the number of
By Lemma 4, we have at most escaping nodes; such intersection between them is larger than
nodes are usually near the attack edges. Notice that givenl_ 0 ion b h i dh i
the topology of the honest region and the location of the ail intersection between the verifier and honest sus
attack edges, we can fully determine the probability of the
tail of a length« random walk starting from a given notte
being a uniform tail. In turn, this means whether a ndde

is escaping is not affected by the adversary. In the remainifier V' and an honest suspestwill satisfy the intersec-
der of this paper, unless specifically mentioned, when wet_ dii ith b b'rl)'t 1 — 5 wh o
say “honest node/verifier/suspect”, we mean “non—escapinqlil?t?‘ ignbtleilr(l)g ;Vr'] aﬁr:(r)osnf:ltle%y ;hosvgnesorns?an?\/'rﬁr;is is

(honest) node/verifier/suspect”. We will not, however, ig- b it o bability. th il both h
nore escaping nodes in the arguments since they may poteﬁ[ue ecause witll — 5 probabiiity, they will both have

logn H H
tially disrupt the guarantees for non-escaping nodes. (1= 0(F5=)) - r = (1 = o(1))r > 0.5 uniform tails
For each verifier V, define its tail set as: wheng = o(n/logn). A straight-forward application of
{(i,e) | eis Vs tail in theith v-instancg.  V’s uniform the Birthday Paradox will then complete the argument. No-

pects. The intersection conditiorrequires that for a veri-
fier V' to accept a susped, V's tail set andS’s tail set
must intersect witht' being registered at some intersecting
tail. We claim that for any given constatit> 0, a ver-

tail sett/ (V') is defined as: tice that we are not able to make arguments on the distri-
bution of non-uniform tails and escaping tails, but uniform
UV) = {(i,e) | eis V's tail in theith v-instance and tails by themselves are sufficient for intersection to happe

e is a uniform tai} Tail intersection between the verifier and sybil suspects.

Notice that the distribution o (V") is not affected by the E’y de?r?nmn, all unlfgrm ta|IstoiV are '? t?ﬁ rlontatst(jr;e%;on:[
adversary’s strategy. We similarly define the tail set and rom he secure random route property, the tainted tav'se

uniform tail set for every suspegt We define theainted contains all tails that the sybil nodes can possibly havieén t
tail setV as:V — L V. where honest region. We would like to bound the number of sybil
-V = Yi=1 Vi

nodes with (tainted) tails intersecting witfis uniform tails.

V; ={(i,e) | eis atainted tail in theth s-instanc V’s non-uniform tails and escaping tails will be taken care
of later by the balance condition.
Again, the definition ofV is not affected by the behavior Each tail inV allows the adversary to potentially regis-

of the adversary, as all these tails are in the honest regionter a public key for some sybil node. The adversary has

Further notice that in a given s-instance for each attackedg complete freedom on how to “allocate” these tails. For ex-

we can have at most tainted tails. Thu$V;| < g x w and ample, in one extreme, it may cred¥&| sybil nodes each

V| < rgw = O(rglogn). with one tainted tail. In such a case, most likely not all thes
With slight abuse of notation, we say that a tail et |V sybil nodes will be accepted because each has only one

tersectswith a tail ¢ as long as the tail set contains an ele- tainted tail. In the other extreme, it can create one sybil

ment(i, e) for somei. Thenumber of intersectionwith e node and register its public key with all tails¥n
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We need to understand what is the adversary’s optimal
strategy for such an allocation. Interestingly, we can prov
that regardless of what(V) is, to maximize the number of
sybil nodes with tails intersecting witli(1"), the adversary
should always creatlV| sybil nodes and allocate one tail
for each sybil node. To understand why, let random variable
X be the number of intersections betw&@andi/ (V). Itis
obviously impossible for more thak sybil nodes to have
tails intersecting witli/(V). On the other hand, with the
previous strategy, the adversary can always craatybil
nodes with tails intersecting with (V).

With this optimal strategy (of the adversary), we know
that it suffices to focus on the probabilistic propertyof
A tricky part in reasoning abouX is that those tails irv
are neither uniformly random nor independent. For exam-
ple, they are more likely to concentrate in the region near
the attack edges. However, each tailiGV') is still uni-
formly random. From linearity of expectation, we know
that each tail i/ (V') has on expectatioéfn—‘ = O(T-‘”%)
intersections wittv. This in turn means:

1
EIX]<r rglogn

LO(

) = O(glogn), for anyr = O(y/m)

m

A Markov inequality [26] can then show that for any given
constantd > 0, with probability at leastl — §, X is
O(glogn).

6.2. Balance condition

In this section, for any verifiet’, we treat all of its
non-uniform tails as escaping tails. Obviously, this only

increases the adversary’s power and makes our arguments

pessimistic. The goal of the balance condition is to bound
the number of sybil nodes accepted Bis escaping tails,
without significantly hurting honest suspects (who are sub-
ject to the same balance condition). While the condition is
simple, rigorously reasoning about it turns out to be quite
tricky due to the external correlation among random routes
and also adversarial disruption that may intentionallyseau
load imbalance. This introduces challenges particulanty f
proving why most honest suspects will satisfy the balance
condition despite all these disruptions.

Effects on sybil suspects.We first study how the bar of

b = h-max(logr,a) (Steps 5-7 in Figure 6) successfully
bounds the number of sybil nodes accepted'ts/escaping
tails. The argument is complicated by the fact that when
a > logr, the barb is a floating one. Namely, as more
suspects are acceptedand thush will increase, allowing
further suspects to be accepted. Ifralhonest suspects are
accepted, the bar may rise@(% ). We use such a floating
bar because is unknown (otherwise we could directly set
the bar to beé(2)).
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But on the other hand, it may also appear that as the es-
caping tails accept sybil nodes, the rising bar will allowfu
ther sybil nodes to be accepted. The key observation here
is that, as shown by the previous section, the number of
sybil nodes accepted bly's uniform tails is always prop-
erly bounded (by the intersection condition). The fraction
of escaping tails is(1) < +. Thus, if the load on all these
escaping tails increases by some valuehile the load on
all uniform tails remain unchanged, the bar will only rise
o(1) - . Following such argument, we will see that the
amount by which the bar rises each time is upper bounded
by a geometric sequence with a ratioagl). The sum of
this geometric sequence obviously converges, and in fact
is dominated by the very first term in the sequence. This
prevents undesirable cascading/unbounded rising of the ba
Our technical report [42] formally proves that under any
constanth, V's escaping tails will accept onl@(glogn)
sybil nodes despite the floating bar.

Effects on honest suspectsNext, we briefly sketch our
proof [42] that most non-escaping honest suspects will sat-
isfy the balance condition for a sufficiently large constant
h. We first consider the load oW’s uniform tails. By def-
inition, these tails are in the honest region. The load of a
uniform tail may increase when it intersects with:

1. Uniform tails of non-escaping honest suspects.

2. Non-uniform tails of non-escaping honest suspects.
Forg = o(n/logn), a tail of a non-escaping node is
non-uniform WithO(gl‘)%) = o(1) probability. Thus,
with r s-instances and at mostnon-escaping nodes,
the expected number of such tailsd&n). By ap-
plying a Markov’s inequality, we obtain that there are
o(rn) such tails with probability at leagt— ¢ for any
given constand > 0.

3. Uniform or non-uniform tails of escaping honest
suspects. By Lemma 4, there are at mostn such

tails, where: is a constant that can be made close to 0.

4. Tainted tails. As explained in Section 6.1, there are
O(rglogn) = o(rn) such tails forg = o(n/logn).

Considering first the load imposed by only the first type
of tails in this list, we are able to prove [42] that with- §
probability, most non-escaping suspects will satisfy llo¢h
intersection condition and the balance condition and thus
will be accepted. This proof is fairly tricky/involved due t
the external correlation among random routes. Harder still
is taking into account the load imposed by the last 3 types of
tails. In particular, the adversary has many differenttetra
gies for when to increase the load of whichlot tail, and
finding the optimal strategy of the adversary is challenging
Fortunately, as argued above, the total number of tails from
suspects in the last 3 tail typesdsn for some smalk’.

We can apply a similar argument as in Section 6.1 to show



that with probability ofl — §, the number of intersections
between these'rn tails and/ (V) is at moste”n for some
smalle”. This means that the total load imposed in the last
3 tail types is at most”’n. Finally, we prove that after dou-
bling the constant obtained earlier, even if the adversary
completely controls where and when to imposedtheload,

the adversary can cause orl{n honest suspects to be re-
jected. Becaus€’ can be made small and close to 0, this
ensures that most non-escaping honest suspects will rema
accepted.

7. Estimating the number of routes needed

We have shown that in SybilLimit, a verifiéf will ac-
cept (1 — e)n honest suspects with probability — § if
r ron/m. The constant, can be directly calculated

1 — o(1), having anr of ro/m will enable us to reach the
threshold (e.g., 95%) and stop doublingurther. Thus,V/
will never over-estimate (within a factor of 2).

Under-estimation will not compromise SybilLimit's
guarantees. It is possible for the adversary to cause an
under-estimation of by introducing artificial intersections
between the escaping tails &f and the escaping tails of
‘suspects i T. This may cause the threshold to be reached
'Beforer reaches/m.

What if SybilLimit operates under an< rq/m? Inter-
estingly, SybilLimit can bound the number of sybil nodes
accepted withinO(logn) per attack edge not only when
r = roy/m, butalso fon < ro/m (see [42] for proofs). To
obtain some intuition, first notice that the number of sybil
nodes with tails intersecting with"’s uniform tails (Sec-
tion 6.1) can only decrease wheris smaller. Second, the

from the Birthday Paradox and the desired end probabilisticarguments regarding the number of sybil nodes accepted

guarantees. On the other hamdjs unknown to individual
nodes’® Adapting the sampling approach from SybilGuard

by V's escaping tails and non-uniform tails (Section 6.2)
hinges only upon théraction of those tails, and not the

(as reviewed in Section 4) is not possible, because that apvalue ofr.

proach is fundamentally limited tp= o(y/n/ logn).

Benchmarking technique. SybilLimit uses a novel and
perhaps counter-intuitivenchmarking technique ad-

dress the previous problem, by mixing the real suspects Withthe benchmark set. Namely,

some randonbenchmark nodethat are already known to
be mostly honest. Every verifiéf maintains two sets of
suspects, thdenchmark sefX and thetest setl. The
benchmark sek is constructed by repeatedly performing
random routes of lengtlr and then adding the ending node
(called thebenchmark nodeto K. Let K+ and K~ be the
set of honest and sybil suspectsin respectively. Sybil-
Limit does not know which nodes i belong toK +. But

a key property here is that because the escaping probabilit
of such random routes ig 1), even without invoking Sybil-
Limit, we are assured thék | /| K| = o(1). Thetest sefl’
contains the real suspects tlatvants to verify, which may
or may not happen to belong 6. We similarly definel’*
andT—. Our technique will hinge upon the adversary not
knowing K or T* (see later for how to ensure this), even
though it may knowkK * U T+ andK~ UT~.

To estimater, a verifierVV starts fromr = 1 and then
repeatedly doubles. For everyr value,V verifies all sus-
pects inK andT'. It stops doubling: when most of the
nodes inK (e.g., 95%) are accepted, and then makes a fina
determination for each suspectin

No over-estimation. Oncer reaches/m, most of the
suspects inK ™ will indeed be accepted, regardless of the
behavior of the adversary. Further, becal&e |/| K| =

3SybilLimit also requires that the random route lengitbe the mix-
ing time of the graph, which is also unknown. However, as ibiSy
Guard [43], SybilLimit assumes that the nodes know a rougieupound
on the graph’s mixing time. Such an assumption is reasormdause the
mixing time should beO (log n), which is rather insensitive to.
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Usingr < roy/m, however, will decrease the probabil-
ity of tail intersection between the verifier and an honest
suspect. Here, we leverage a second important property of
conditioned upon the random
routes for picking benchmark nodes being non-escaping,
the adversary will not know which nodes are picked as
benchmark nodes. (If the adversary may eavesdrop mes-
sages, we can readily encrypt messages using edge keys.)
As a result, given an honest suspect, the adversary cannot
tell whether it belongs td¢ ™ or T'*. If most (e.g., 95%) of
the suspects i are accepted, then most suspectsih
must be accepted as well, sindé™|/|K| = 1 — o(1). If
ymost suspects il ™ are accepted under < rg+/m, the
adversary must have intentionally caused intersection be-
tweenV and the suspects ik +. Because the adversary
cannot tell whether an honest suspect belondétoor 7+,
it cannot introduce intersectiormly for suspects ink *;
it must introduce intersections for suspectslin as well.
Thus, most suspects ifit will be accepted as well under
the givenr.

Further discussions.The benchmarking technique may ap-
pear counter-intuitive in two aspects. First, if SybilLimi
uses an under-estimatedt will be the adversary that helps
lit to accept most of the honest nodes. While this is true,
SybilLimit is still needed to bound the number of sybil
nodes accepted and also to prevefrom growing beyond
ro/m. Second, the benchmark skt is itself a set with
o(1) fraction of sybil nodes. Thus, it may appear that an
application can just as well use the nodeirirectly, and
avoid the full SybilLimit protocol. However, the séf is
constructed randomly and may not contain some specific
suspects thdt” wants to verify.

For a more rigorous understanding of the benchmarking



1. V starts with two sets of suspecfs,andT’; 8. Lower bound
2. Letsetd = andr = 1;
3. While (AN K|/|K| < 95%) { G :
4. Foreverysusped € (K UT)\ A), verify § _ S_yb|IL|m|t bounds the number of sybil nodes ac<_:ept_ed

. N | within O(logn) per attack edge. A natural question is

using the protocol in Figure 6; )
) ) whether we can further improve the guarantees. For exam-

5. If S'is acceptedd = AU {S}; : S
6. Doubler: ple, it may appear that SybilLimit does not currently have

any mechanism to limit the routing behavior of sybil nodes.

} One could imagine requiring nodes to commit (cryptograph-
ically) to their routing tables, so that sybil nodes could no
perform random routes in an inconsistent fashion. We will
show, however, that such techniques or similar techniques
can provide at mostlag n factor of improvement, because
the total number of sybil nodes accepted is lower bounded
by Q(1) per attack edge.

SybilLimit entirely relies on the observation that if the

technique, we can view the process as a sampling algorithmgdversary creates too many sybil nodes, then the resulting
for estimating the fraction of the suspects accepted inghe s social network will no longer have(log n) mixing time.

T+ U K. We take| K | samples from the set and observe Our technical report [42] proves that for any given constant
that fractionf of the samples are accepted. Classic estima-¢; @nyg € [1, 7], and any grapliz with n honest nodes and
tion theory [4] tells us that ifK | = 9(52 log %), then the O(logn) mixing time, it is always possible for the adversary
fraction of the accepted suspectdirt is within f + e with to introducec - g sybil nodes vigy attack edges so that the
probability of at least — §. It is important to see that the ~augmented graph’s mixing time ©(logn’) wheren’ =
needed size okt (and thusK) is independent of the size 7 + ¢ - g. There are actually many ways to create such an

of T. Simple simulation experiments show thaf| = 30 ~ augmented graph. One way (as in our proof) is to pjck
gives us an averageof 0.0322. nodes arbitrarily fromG and attach to each of them (using

) ) a single attack edge) a group oybil nodes. It does not
~ Care must be taken when implementing the benchmarkypatter how the: sybil nodes in a group are connected with
ing technique. The technique hinges on the fact that theg,ch other, as long as they are connected. Now because the

_adversary c_ann_ot distinguis_h suspectgin from s_uspects augmented graph has the same mixing time @€log ')
in 7. A naive implementation would gradually increase 54 3 “normal” social network with’ nodes, as long as the

and invoke the verification protocol from Figure 6 multiple  r416c0] solely relies on mixing time, we cannot distinguis
times (under different) for each suspect. This will leak  hege sybil nodes from honest nodes. In other words, all

(probabilistic)_information t_o the adversary. Namely,hé_t protocols based on mixing time will end up acceptiag )
adversary notices th&t still increases even after a certain sybil nodes per attack edge.

honest susped is accepted, then the conditional probabil-
ity that S belongs tal'™ increases. Under the increased ) ] ) ]
the adversary may then favor other suspecfsiruT+and 9. Experiments with online social networks
causeS to be rejected. This will then violate the assumption
that K is a uniform sample o+ U T .

7. V accepts all suspects ihn 7', and
rejects all suspects il \ 4;

Figure 8. Pseudo-code for the benchmarking
technique.

Goal of experiments.We have proved that SybilLimit can
To ensure that{* is a uniform sample of ™ U T, bound the number of sybil nodes accepted withiflog n)
we automatically consider a suspetthat is accepted un-  per attack edge, which improved upon SybilGuard’s guar-
der a certain* to be accepted under largewvalues, with-  antee ofO(y/nlogn). However, these provable guarantees
out re-verifying this. Figure 8 presents the pseudo-code,of SybilLimit (and SybilGuard as well) critically rely on¢h
which maintains a setl including all suspects accepted so assumption that social networks have small ((¥logn))
far. Now imagine that the adversary notices thastill in- mixing time. Our experiments thus mainly serve to vali-
creases despite those suspects.ihbeing accepted. This date such an assumption, based on real-world social net-
tells the adversary that the suspectsdirare less likely to  works. Such validation has a more general implication be-
belong toK ™ than those suspects not ih However, the  yond SybilLimit—these results will tell us whether the ap-
adversary can no longer reverse the determinations alreadyroach of leveraging social networks to combat sybil attack
made for those suspects.i The adversary can still influ- is valid. A second goal of our experiments is to gain bet-
ence future determinations on those suspects ndt iBut ter understanding of the hidden constant in SybilLimit's
all these suspects have the same probability of beidgin O(logn) guarantee. Finally, we will also provide some
So it does not help the adversary to favor some over othersexample numerical comparisons between SybilGuard and
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SybilLimit. However, it isnot our goal to perform a de- social relationships with fewer than 100 people. We limit
tailed experimental comparison, because SybilLimit’s im- the degree of the nodes by removing random edges from a
provement over SybilGuard is already rigorously proved. node if its degree is above 100.

Social network data sets\We use three crawled online so- ~ Next we remove all nodes in the graph with degree
cial network data sets in our experimengsiendster, Live- smaller than 5. This decision reflects our expectation that
Journal, andDBLP (Table 3). They are crawls dft t p: / / a new user of SybilLimit will establish a minimum num-

v fri endster. com http://ww.|ivejournal . ber of edges (e.qg., 5) with existing users. This requirement

com andhttp://dbl p.uni-trier.de, respectively. €nsures that the new user has at least some reasonable con-

The DBLP data set is publicly available, but the other two Nectivity to the social network. Before the user estabsshe
are not. We also experiment with Kleinberg’s synthetic so- these edges, the user can still use other nodes as proxies to
cial network [17], which we used [43] to evaluate Sybil- Verify suspects, except that it cannot be verified by other
Guard. nodes. The final preprocessing step is to select the largest
Strictly speakingDBLP is a bibliography database and connected component i_n the resulting graph. This I_argest
not a social network. To derive the “social network” from C€onnected component is what we use in our experiments.
DBLP, we consider two people having an edge between Table 3 presents the b.aS|c_ statistics of the four social net-
them if they have ever co-authored a paper. Because ofVOrks after preprocessing (if needed).
the closely clustered co-authoring relationships amorg re Experimental methodology. We choose to use simulation
searchers, we expect such a social network to be moran all of our experiments for two important reasons. First,
slowly mixing than standard social networks. Thus, we use we are mainly concerned with how the graph properties of
DBLP as a bound on the worst-case scenario. Obviouslythese real-world social networks affect SybilLimit’s ered s
DBLP is guaranteed to be free of sybil nodes. Although it curity guarantees. Performance is not the focus of our eval-
is theoretically possible fdtriendster andLiveJournal to be uation; as explained earlier, it is unlikely for SybilLimd
polluted with sybil nodes already, we expect such pollution incur excessive performance overheads. Second, simulatio
to be limited because of the lack of motivation to launch allows us to study large (i.e., million-node) social netksor

large-scale sybil attacks Friendster andLiveJournal. All results are obtained after the secure random route proto
Preprocessing of data set3/\Ve preprocesEriendster, Live- col in SybilLimit has stabilized. .
Journal, andDBLP in the following way before using them. Exactly as in [43], we place the attack edges in the

(Kleinberg does not need preprocessing.) First, the original Social networks in two different ways. Inand, we re-
Friendster andLiveJournal data sets have directed edges be- Peatedly pick uniformly random nodes in the graph and
tween users instead of undirected edges, while SybilLimit Markthem. Incl uster, we start from a uniformly ran-
operates on an undirected graph. During the crawl to ob-dom node and then perform a breadth-first search from that

tain Friendster and LiveJournal, a directed edgel — B is ~ node. All nodes encountered amearked In bothrand

added to the graph ifl lists B as its friend. FoliveJour-  andcl uster, those edges between marked nodes and un-
nal, we consider that there is an undirected edge betweeriharked nodes are considered attack edges. We keep mark-
A and B if and only if there are two directed edgés— B ing nodes until the total number of attack edges reaches our
and B — A in the original data. FoFriendster, we find targetg. We find that the results usirgd ust er placement
onwww. f ri endst er. comthat if A lists B as A’s friend, are usually slightly better than usin@nd, under the same

then B must also lists4 as B’s friend. In other words, the - Thus_, all results presented below are the pessimistic re-

friendship relation is always mutual. This does not negessa Sults using and.

ily mean that the originafriendster data set must contain  Results: Mixing time of real-world social networks. In

both A— B and B — A, since it is possible that the crawl SybilLimit, the only parameter affected by mixing time is

stops after crawlingd’s friend list but before crawling3’s the length of the random routes). Namely,w should be

friend list. Thus forFriendster, if there is a directed edge at least as large as the mixing time. It is not possible to

A— B, or B— A, or both, we consider that there is an directly show that our data sets ha¥¢log n) mixing time,

undirected edge betweehandB. sinceO(log n) is asymptotic behavior. It is not necessary to
The second step of our preprocessing limits the degreedo so either, since all we need to confirm is that rather small

of all nodes in the graph to be 100 or fewer. SybilLimit in- w values are already sufficient for SybilLimit to work well.

herits the idea from SybilGuard that an honest node should For Friendster andLiveJournal, we usew = 10 (see Ta-

not have an excessive number of neighbors. This restrictionble 3). Random routes do not seem to reach good enough

helps bound the number of additional attack edges the admixing for SybilLimit with w values much smaller thaio

versary gets when an honest node is compromised. We picKe.g., 5) in these two social networks. We use= 15

the limit 100 because this appears to be reasonable in thdor DBLP. As expectedDBLP has a worse mixing property

real world: a typical human being is likely to have strong than the other social networks. Our results will show that
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3 %] T T T T
LO 14 b _ ing tails =
Data set Friendster  LiveJournal DBLP Kleinberg @E 1.2 + yn?)?/ 3222{3528 chi .
Data set source [34] [39] [10] [17] 8% 1t total + ]
Date crawled Nov-Dec 2005 May 2005 April 2006  not applicable é é 0.8 :
o B A
# nodes 932,512 900,822 106,002 1,000,000 =0 0.6 »
# undirected edges 7,835,974 8,737,636 625932 10935294 28 8‘2‘ I [
& 02r g iy
w used in SybilLimit 10 10 15 10 OS2 ol w w
r used in SybilLimit 8,000 12,000 3,000 10,000 0 20 40 60 80 100
# of attack edges in thousands
Table 3. Social network data sets. Figure 9. Friendster
% g T T T T % g T T T T % g T T T T
|0T 14 by non-escaping tails = |0T 14 by non-escaping tails = |0T 14 by non-escaping tails =
g2 12}t by escaping tails -« - g2 12}t by escaping tails -+ 1 g2 12}t by escaping tails -+ g
g*g,: 1k total -+ [ | g*g,: 1tk total -+ 1 g*g,: 1tk total -+ 4
9O c [ n 2
L0 0.8 + e = L0 0.8 + F L0 0.8 + F
< L i < <
8‘5 0.6 + A I 8‘5 0.6 + g 8‘5 0.6 + R
Bg 04r /1 Zg o4y Bg 04
e o2 4 o U 2e o2 e 02F & W S
55 g lefee e 52 2 ghert
0O 20 40 60 80 100 0 1 2 3 4 5 0O 20 40 60 80 100
# of attack edges in thousands # of attack edges in thousands # of attack edges in thousands
Figure 10. LiveJournal Figure 11. DBLP Figure 12. Kleinberg

these smallv values are already sufficient to enable good from a number of verifiers, yielding similar results. For all
enough mixing in our large-scale social networks (with cases, we experiment withup to the point where the num-
to aroundL0® nodes) for SybilLimit to work well. ber of sybil nodes accepted reachesThe figures further

It is worth noting that social networks are well-known break down the sybil nodes accepted into those accepted by
to have groups or communities where intra-group edges arel’’s non-escaping tails versus those accepted lsyescap-
much denser than inter-group edges [3, 15, 24, 38]. In fact,ing tails. The first componentis bounded by the intersection
there are explicitly-defined communitiesliiveJournal for condition while the second is bounded by the balance con-
users to join, while people iDBLP by definition form re-  dition. In all figures, the number of sybil nodes accepted
search communities. Our results thus show that somewhagrows roughly linearly withy. The asymptotic guarantee
counter-intuitively and despite such groups, the spatse-in  of SybilLimit is O(logn) sybil nodes accepted per attack
group edges in these real-world social networks are suffi-edge. Figures 9 to 12 show that tiiXlog n) asymptotic
cient to provide good mixing properties. term translates to around between 10 Kiiendster, Live-
Journal, andKleinberg) to 20 (inDBLP). As a concrete nu-

Results: SybilLimit's gnd guarantge_s.\_Ne use theu \_/aI— merical comparison with SybilGuard, SybilGuard [43] uses
ues from Table 3 to simulate SybilLimit and determine the . - :
random routes of length= 1906 in the million-nodeKlein-

number of sybil nodes accepted. Our simulator does not im- . .
plement the estimation process far Rather, we directly berg graph. Because SybilGuard acceptybil nodes per

use ther values from Table 3, which are obtained based attack edge, this translates]l@OG sybil n.odes gccgpted per
) attack edge foKleinberg. Thus numerically irKleinberg,
on the value ofn and the Birthday Paradox. We ugdor S .
. . . SybilLimit reduces the number of sybil nodes accepted by
the universal constarit in all our experiments. We have nearlv200-fold over SvbilGuard
observed (results notincluded) that= 2.5 is already suffi- y y '
cient in most cases, while excessively lafgge.g., 10) can One can also view Figures 9 to 12 from another perspec-
unnecessarily weaken the guarantees (though not asymptotive. The three data seBsiendster, LiveJournal, andKlein-
ically). We always simulate the adversary’s optimal sggate  berg all have roughly one million nodes. Therefore, in or-
(i.e., worst-case for SybilLimit). der for the number of sybil nodes accepted to reacthe
Figures 9 to 12 present the number of sybil nodes ac-number of attack edges needs to be around 100,000. Put
cepted by a randomly chosen verifiér(as a fraction of the it another way, the adversary needs to establish 100,000
number of honest nodes), in each social network. We social trust relationships with honest users in the system.
present a fraction to allow comparison across social net-As a quick comparison undedleinberg, SybilGuard will
works with differentn. We have repeated the experiments acceptn sybil nodes oncey reaches around 500 (since
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[ = 1906). Some simple experiments further show that with
g > 15,000, the escaping probability of the random routes
in SybilGuard will be above 0.5 and SybilGuard can no
longer provide any guarantees at all. FinallgLP is much

smaller (with 100,000 nodes) and because of the slightly

largerw needed foDBLP, the number of sybil nodes ac-
cepted will reactn roughly whenyg is 5,000.

Finally, we have also performed experiments to inves- [7]
tigate SybilLimit's guarantees on much smaller social net-
works with only 100 nodes. To do so, we extract 100-node
subgraphs from our social network data sets. As a concise [8]
summary, we observe that the number of sybil nodes ac- [0

cepted per attack edge is still around 10 to 20.

10. Conclusion

This paper presented SybilLimit, a near-optimal defense
against sybil attacks using social networks. Compared [11]
to our previous SybilGuard protocol [43] that accepte

O(y/nlogn) sybil nodes per attack edge, SybilLimit ac-

cepts onlyO(logn) sybil nodes per attack edge.
thermore, SybilLimit provides this guarantee even when [14]

Fur-

the number of attack edges growsd@:/logn). Sybil-
Limit’'s improvement derives from the combination of multi-
ple novel techniques: i) leveraging multiple independent i

stances of the random route protocol to perform many short [15

random routes, ii) exploiting intersections on edges axbte

of nodes, iii) using the novel balance condition to deal with [16]
escaping tails of the verifier, and iv) using the novel bench-

marking technique to safely estimateFinally, our results
on real-world social networks confirmed their fast mixing

property, and thus validated the fundamental assumption be

hind SybilLimit's (and SybilGuard’s) approach. As future
work, we intend to implement SybilLimit within the context
of some real-world applications and demonstrate its wtilit
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A. Proofs

The proofs in this appendix establish the asymptotic guaesnof SybilLimit. For all constants used or derived in the
proofs, we aim for simplicity instead of pursuing the optimall results are forn sufficiently large, and assuming that the
honest region of the social network h@glog n) mixing time.

A.l. Preliminaries: Classifying Tails and Nodes

Lemma 5 Consider any given constaat> 0. We can always find a universal constant > 0, such that there exists a set
H of atleast(1 — €)n honest nodes (callegbn-escapingodes) where if we perform a lengthrandom walk starting from
any non-escaping node with = wg log n, then

e The tail is non-escaping with probability of at least- O(gk’%).

e The tail is a uniformly random directed edge in the honestoegf the social network with probability of at least
1—O(en),

Proof: We letG denote the entire social network with all honest nodes abd sgdes. The sybil nodes i@ may deviate
from the protocol in arbitrary way. We defirt€ to be the social network with only honest nodes and edgesgestivonest
nodes.GG’ is not known by SybilLimit. According to our system model ¢8en 3),G’ hasn nodes andn undirected edges.
We will later draw connections between random walké&fito random walks irG’.

To prove the lemma, it suffices to show that we can find two usaleconstants; > 0 andce > 0 such that the
probability of the tail being non-escaping is at least clglo% and the probability of the tail being uniformly random is at
leastl — czglo%. According to our assumptiol’ is fast mixing withO(log n) mixing time. This means that we can find
a universal constant, such that random walks of length = wq log n in G’ is sufficient to achieve a variation distance of
L or lower. We letc; = wo/€; andey = 2¢1 + 1.

We first intend to find a set dfl — ¢;)n nodes such that starting from any of them, a lengtrandom walk inG is
non-escaping with probability of at leakt- % Let p; be the probability of a length random walk being escaping if we
start the random walk from honest noddor 1 < ¢ < n. It has been proved [43] that + ps + ... + p, < gw. Among
all thesep;’s, We claim that there must be at led$t— ¢;)n of them that are at mosﬁ— This is true because otherwise
there must be,n values that are larger thaﬂ’rﬁ’i which will make the summation Iarger thaw. Without loss of generality,
we can thus assume < 20 for 1 < i < (1 — €)n. The setH is then constructed as the set containing node 1 through
node(l — e)n. ObV|ous|H| > (1 — €1)n and the probability of a length-random walk starting from any node fii being
escaping is at Mot = ¢; 91"’%"

Consider any nodéf € H, and we will draw a connection between the random walk sigiftomV” in G and the random
walk starting fromV in G’. In G’, let ] be the probability ol/’s tail being directed edgefor 1 < i < 2m. Given how we
pickedw, earlier, we know that the distributiarj has a variation distance of at moj;stfrom the stationary distribution (i.e.,
the uniform distribution on the directed edges).

Now consider the grapty. For now let us assume that the adversary never allows aapiescrandom walk to return
to the honest region. Let; be the probability of the tail being directed edagtar 1 < ¢ < 2m. Notice that we will have
> i1 2ma; < 1 by definition. It is not difficult to see that; < a; for all ¢ andzl " (a; — a;) < c1glogn/n. Now if the
adversary does direct some escapmg random walks back tmt’r&st region, the probabilities may increase fronto b;.
However, we must also ha\E 1(bi — a;) < c1glogn/n. Notice that there can still be random walks that do not retar
the honest region. We us$g,,+1 < c¢1glogn/n to denote such probability—this will ma@f;"l*l b; = 1.

We would like to eventually reason about the variation disésbetween the distribution 6f and the uniform distribution.
To do so, we define),,  ; = 0. The variation distance betweefiandb; is:

2m—+1 2m

1
05 3 Jaf—bi| < 05l Z P —bil)
i=1

lo 2m
< 05804 Z|a—a1|+|az—bz|>>
I
< 2019 ogn
n
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Finally, because the distributiarj has a variation distance of at mgsfrom the uniform distribution, the variation distance
betweeny; and the uniform distribution is at mo%tlglo% + % < cgglo%. From the property of variation distance [20],
we know that if we pick an edge from distributiép with at least probability of — @‘710%, the edge is a uniformly random
directed edge in the honest regian.

Comment. It is important to notice that the honest region of the sangork, together with the location of the attack edges,
uniguely determine which nodes are escaping and non-eggdpiother words, this is not affected by the routing tables

Lemma 6 Consider any given non-escaping verifiéor suspectS) and itsr tails in ther v-instances (or s-instances). For
any given constant > 0, with probability of at least — §:

e The number of escaping tails and non-uniform tailé)(é""%) ST

e The number of uniform tails il — O(-‘”"%)) ST

Proof: The second claim directly follows from the first claim. L&t be the total number of escaping and non-uniform
tails in all » instances. To prove the first claim, it suffices to show thatdlexists some universal constant Pr[X >
clglo% -r] < 6. Lemma 5 tells us that in any given instance, the probalofify’s tail being escaping or non-uniformis at

MOStO (L1282 ) < ¢, 411%™ for some universal constant. Letc; = c2/d. We thus haveB[X] < ¢y L%8%y = §o; L1872,
Invoking a Markov inequality oX will yield that Pr[X > ¢; gh)%r] <46.0

Comment. We use Markov inequality instead of a Chernoff bound in theopbecause we want the result to hold even for
smallr values.

A.2. Why the Number of Accepted Sybil Nodes Is Properly Boundd

We would like to prove these result for any< rq/m, instead of only for- = ry/m. This will allow us to use the
benchmarking technique described in Section 7 to estimate

Lemma 7 Consider any given constany > 0, § > 0, and any given honest verifiéf. Letwy be from Lemma 5p =
wp logn, andr < ro/m. Then with probability of at least— ¢, the number of sybil nodes with tails intersecting viitfi”)
isO(glogn).

Proof: Let X denote the number of intersections betw&éi’) and the tainted tail s&. It suffices to show that there exists
some universal constaat, such thatPr[X > ¢;glogn] < 4.

Consider any tail id{/ (V). In each s-instance, there are at mpsttainted tails. Because the tail fra#(1") is a uniformly
random edge, the probability of it intersecting with thosiated tails in the given s-instance is at mgst/(2m). With total
r s-instances, the expected number of intersections willt lmecstrgw/(2m). Finally, we trivially havelt/(V')| < r and
thusE[X] < r2gw/(2m) = rdwoglogn/2. Lete; = rdwqy/(25) and then invoke a Markov inequality o¥i. We will then
havePr[X > ciglogn] < 6.0

Comment. Notice that Lemma 7 holds for both non-escaping verifiersestéping verifiers.

Lemma 8 Consider any given constan§ > 0, h > 0, § > 0, and any given honest verifiéf. Letw, be from Lemma 5,
w = wp logn, andr < roy/m. Assume thay = o(logn/n). Then with probability of at least — 24, the number of sybil
nodes accepted by’s non-uniform tails and escaping tails (3(g log n).

Proof: Define random variabl€ to be the number of non-uniform tails and escaping tails thdéias. From the balance
condition, we know that the number of sybil nodes acceptett lsynon-uniform tails and escaping tails is at mast h -
max(logr, a), wherea is the average number of suspects accepted by all tails ofetiéer. Lemma 6 tells us that with
probability of at least — ¢, @ is 0(9“’%) -r. Conditioned upon thap = 0(9“’%) -r, we consider two cases:

e a <logr: We have®)-h-max(logr,a) = Qhlogr = O((g 1ogn)%) =0((g logn)M) = O(glogn)
(assuming,/mlogm = O(n)).
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e a > logr: Let X be the number of suspects acceptediiy non-uniform tails and escaping tails. LEt be the
number of suspects accepted Bis uniform tails. There are: honest suspects that can be accepted. Furthermore,
Lemma 7 tells us that with probability of at ledst- §, the number of sybil nodes accepted by these uniform tails is
O(glogn) = o(n) < nwheng = o(n/logn). Thus with probability of at least — ¢, Y < 2n. The load on the
non-uniform tails and escaping tails must satisfy the badarondition, which implies:

X _, X+Y _ X+
Q ~ r - r
N 1X Sh.X—|—2n
O(Q?lg"),r r
1
= X < (X +2n)-0(L220)
n

glogn

= X < O(glogn)/(1 - O(222")) = O(glogn) /(1 - o(1)) = O(glogn)

O
A.3. Why Honest Suspects will Satisfy the Intersection Contdon

Lemma 9 Assume thay = o(logn/n) and consider any give constafit> 0. We can always find a universal constant
ro > 1 such that ifr = ry+/m, then for any given non-escaping verifiérand any given non-escaping suspéct/(V') and
U(S) intersect with probability of at least — ¢.

Proof: Directly follows from Lemma 6 and the Birthday Paradox.
A.4. Why Honest Suspects Will Satisfy the Balance Condition

In this section, we prove why most honest suspects will fyatiee balance condition. Together with Lemma 9, this will
complete the proof for SybilLimit's guarantee on the fraotof honest nodes accepted. The proof in this section turhs o
to be the most tricky among all our proofs. For better exgianawe will construct our proofs based on connections agnon
the following 4 cases on how the load of the verifier’s tails xcremented. In all cases, we still require the load onyever
tail to be no larger thah - maz(logr, a).

A Every accepted non-escaping honest susféatrements the load of every tail (V') that intersects witl$’s uniform
tails. The load ofi’’s tails does not increase in other cases. In other words, §dditional load is imposed on tails in
U(V), and ii) those tails not it¥ (V') (i.e., non-uniform tails and escaping tails) always havesa lof O.

B Every accepted non-escaping honest susf@cstrements the load of one tail, out of all tailszif{1") that intersect with
S's uniform tails. We allow the adversary to determine thépaiked. The load ol/’s tails does not increase in other
cases.

C Every accepted non-escaping honest susgeiocrements the load of the least loaded tail (with tie bregkbased on
instance number), out of all tails (1) that intersect with’s uniform tails. The load o¥’s tails does not increase in
other cases.

D Every accepted non-escaping honest susfeaocrements the load of the least loaded tail (with tie bregiased on
instance number), among all tails #(V") that intersect withS’s tails (notice that it is $’s tails” instead of ‘S’s
uniform tails”). Additionally, for tails inZ{(V'), the adversary may increase their load arbitrarily at angtpaf time,
subject to the condition that the total increase load (fltadls in 2/ (V') combined) isn for some smalk > 0. For tails
notini/(V'), the adversary may increase their load arbitrarily at angtgaf time with no restrictions.

The last cas® captures SybilLimit's behavior (pessimistically). Thesfithree cases are not “implementable”, but they serve
as stepping stones in our proofs and arguments.
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A.4.1 ProofsforA, B,andC

Lemma 10 Suppose = o(n/logn). In A, consider any given set éfhonest non-escaping suspects and any given directed
edge in the honest region of the social network. Zetenote the number of intersections that edge has with allitfi@rm

tail sets of thek suspects. Then with probability of at ledst 2-7/2, Z is lower bounded by some binomial distribution with
mean ofrk/(16m) and upper bounded by some other binomial distribution wigamofrk /(2m).

Proof: Consider theth s-instance and let random varialleto be the number of uniform tails that thesuspects have in that
s-instance. Each of the§g tails is a uniformly random edge, but they are potentiallgrelated. Despite such correlation,
let X; (for 1 < j < T;) be indicator random variable denoting th event that(tki¢)th tail intersect with the given directed
edge. Further defin& to be the event that some tail from tHg tails intersect with the given directed edge. Because of
the backtracability of the random routes within any givanstance, at most one of all the&g’s can be 1. Thus we have
X = X1 4+ X3 + ...X71,. From linearity of expectation, we know th&B{X] = E[X1] + E[X5] + ... + E[X7,] = £-. On

the other hand, becausgis an indicator random variabl®r[X] = E[X] = Lo

Next we would like to study the distribution @f. Define indicator randomg\%riab}@ to denote the event that the tail from
the jth suspect in the given s-instance is a uniform tail,Ifat j < k. Obviously, we havg; = 2?:1 Y =Fk— Zle Y;.
Since all thek suspects are non-escaping, we know from Lemma 5 #hdY;] = o(1) < 8—1e wheng = o(n/logn).
ThusE[Zle Y;] < 8—’“6 Invoking a Markov inequality and we ha\léfr[zl’;:1 Y; > %] < L. This in turn means that
PriT; < 5] < 4.

We obviously have) < T; < k for 1 < i < r. Define indicator random variabl; to denote the event that < &

2

for 1 < i < r. Obviously, we havePr[W;] < L for anyi. DefineWw = " | W;, whereE[W] < L. Because alt

s-instances are independent, we can invoke a strong Cli&oafd onl, which will show thatPr[W > £] = Pr[W >
(2e) - E[W]] < 277/2. This means that with probability of at ledst- 2-"/2, there will be at leasts — 1) s-instances with
T; > %. Thus the binomial distribution with mean ¢§ — 1) - ’;—fj > rk/(16m) (whenn, and thusn andr, sufficiently
large) is a lower bound o4.

To upper boundZ, notice that we have s-instances and thd} < k for 1 < ¢ < r. Thus the binomial distribution with
mean ofr - £ = rk/(2m) upper bounds/. O

2m

Comment. In the proofs below, we will invoke Chernoff bounds on thedrmal distributions to bound the tail distribution
of Z. This is why we only care about the means of the binomialidistions.

Lemma 11 In B, assumey = o(n/logn). For any given constant > 0, we can find a universal constan{ such that
letr = ro - v/m will give us the following property. If we pick an arbitrarpn-escaping verifiel” and an arbitrary non-
escaping susped, construct a uniformly random permutation of all suspettslgding honest and sybil suspects), and let
V verify the sequence one by one, then the probability atceptings is at leastl — 0.

Proof: In 3, only non-escaping honest suspects may affect the loddotails. Thus to simplify discussion in the following,
we delete all other nodes from the sequence. Based on Lemwa @n pick appropriate, such that forl” and any non-
escaping suspedt, U(V) andi/(S’) intersect with probability of at leagt— 62 /64. We will prove that such, will satisfy
the requirement of the lemma.

Consider the self of all non-escaping suspects. L¥tbe the number of suspects ih whose uniform tail set does not
intersect withl”’s uniform tail set:

Y = |{S ]S e Handl(S) does notintersect with (V') }|

Obviously we haveZ[Y] < 62|H|/64. Invoke a Markov inequality and we haver[Y > §|H|/8] < §/8. This means that
probability at least — §/8, the total number of non-escaping suspects with their amifiil sets intersecting with/ (V') is
atleast(1 — §/8)|H|. Consider a uniformly random permutation of tlf&| suspects. Let thé&h suspect in the sequence be
S; for 1 < ¢ < |H|. Suppose tha$ is thekth suspect in the sequence, wheéret k < |H|. Obviously, with probability
1—-6/4,k < (1—=46/4)|H)|.

For1 < i < k, define indicator random variable; to be the event that the combined load imposed by theifagspects
in the sequence satisfies the balance condition. Obviokslyneans that the load imposed by the first suspect satisfies the
balance condition. If the first suspect also satisfy thergstetion condition, it will be accepted. On the other hanmuges
the verifier verifies the suspects sequentially, by itself does not necessarily mean that the load imposetdpécond
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suspect (after the first suspect) will satisfy the balancalitmon, since the first suspect could have been reject&d i not
true. ThusX, only means that the combined load of the first and the secapkstisatisfies the balance condition. However,
X1 X5...X}, do indeed imply that alk suspects, when verified sequentially, satisfy the balaonditon.

Considered upoy” < ¢|H|/8 andk < (1 — §/4)|H|, Lemma 12 below will prove thaPr[X; X5..X;] > 1 — §/2.
Notice that/(V') andi/(S) intersects with probability of at least— §2/64. A union bound then shows th&tis accepted
with probability at least — §. O

Lemma 12 In B, assumgy = o(n/logn). Letd, ro, H, S; (for1 < i < |H|), S, k, Y, andX; (for 1 < i < k) be the same
as in the proof of Lemma 11. ¥ < §|H|/8 andk < (1 — 6/4)|H|, then using any constant > max(24,4.8r3) in the
balance condition is sufficient to ensufe [ X; Xo... X > 1 —§/2.

Proof: For1 < i < k, we will prove thatPr[X;] > 1 —¢/(2n). Letu = ri/(2m):

e 11 < 10logr: Notice that the load of a tail it8 will never be larger than id. SinceX; is about the combined load
imposed by the first suspects that are non-escaping, we can invoke Lemma 10gorr@dout the distribution for the
load. Notice that we are not yet discussing whether indaiduspect will be accepted. Lemma 10 shows that,ithe
load of a tail in{/ (V') is upper bounded by a binomial distribution with mean:ofA Chernoff bound on the binomial
distribution will show that the probability of the load bgitarger thar24 log  is at moste=(19-61°87)/4 < 1 /r4, The
load on different tails are correlated. But a union boundstédinshow that the probability that all tails # (1) have a
load smaller tha@4 logris atleasti —r-1/r* > 1—-1/r3 =1-1/(r3m'?) > 1—1/n'% = 1—o0(1/n). On the other
hand, the bar is at leastlog » > 24 log r which means that the balance condition must be satisfiedprithability of
atleastl —o(1/n) >1—4/(2n).

e 1 > 10logr: Again the load of a tail i3 will never be larger than itd. Lemma 10 shows that i, the load of a tail
in (V') is upper bounded by a binomial distribution with mean.ofA Chernoff bound will show that the probability
of the load being larger thah4y is at moste~(1:961)/4 < ¢=(19-6logm)/4 1 /4 A same union bound as before will
then show that the probability that all tailsZif{V') have a load smaller thah4 . is at leastl — o(1/n).

On the other hand, define random variaBléo denote the number of non-escaping suspects béfondose uniform
tail sets intersect withy’s uniform tail set:

Z = |{S;]1 <j <iandi(S;) intersect with/(V')}|

Conditioned uport” < ¢|H|/8 andl < j < < k < §|H|/4, Lemma 13 will prove:

7 7
> > 1—erp(——
PriZ > 4] > 1 —exp( 16)
From the conditiong > 10logr andu = %, we have > 20708r — QOvmlorgO(T“ V) 201870 \/n. Therefore:
1 1 20logro 1
> > 11— . - - —1—o(=
Pr(Z > 4] > 1 e:vp( 16) > 1 exp( Tore \/ﬁ) 1 O(n)

Thus with at least — o(1/n) probability, the total load across all tails is at leag&t, and the bar is at least:

s
hoa>A48r2. 4i = 48" =24y
T m

A union bound then showBr[X;] > 1 — §/(2n).

Finally, ¥ < n and a simple union bound across &l!'s finishes the proof

Lemma 13 In B, assumegy = o(n/logn). Letd, ro, H, S; (for1 < i < |H|), S, k, Y, X; (for1 < i < k), andZ be the
same as in the proof of Lemma 12. Conditioned upos 6| H|/8 and1 < ¢ < k < 6| H|/4, we have:

> 1 - exp(——2)

Pr(Z >
16

YRS
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Proof: Assume that all routing table contents are already knowmd@ioned uporl” < §|H|/8, define indicator random
variableZ; to denote the event tha4(S;) intersects withi/(V'), for 1 < j < ¢. Notice thatZ; is define over the domain
of all possible permutations (of the non-escaping suspetttead of over the domain of all possible routing tableteots.
Obviously, we havel = Z; + Z5 + ... + Z;. In the remainder of the proof for this lemma, when we say aacis'intersect”
with the verifier, we mean the suspect'’s uniform tail setrisgets with the verifier's uniform tail set.

We already know that out of the7| non-escaping suspects, only4 fraction of them do not intersect with the verifier.
A random permutation of thgf/| suspects can be constructed in the following way: We firdt gi¢uniformly) random
suspect out off (without replacement) a§;. Next we pick a (uniformly) random suspect out of the remainnodes
(without replacement) aS,, and so on. Lefi; be the set of remaining suspects immediately before we gjck-or any
1 <j<i<k<J§|H|/4, the fraction of suspects iH; that intersect with the verifier is at least:

(=8/®)H-G-1) _ | o=/ S/ LI

— _ — =1——F——>05
|H| = (j—1) |H|—j+1 " [H-(1-4/4)[H|+1 S|H|/A+1

This means that the eve#t; occurs with probability at least 0.5, regardless of whedventsZ,, Z,, .... Z;_ occur or not.
Define random variablg’ as the sum ofindependent Bernoulli trials where each Bernoulli triadeeeds with probability
of 0.5. A Chernoff bound of’ tells us that

Pr(Z' <i/4] = Pr(Z' <(1-05)E[Z']] <exp(—E[Z']/8) = exp(—i/16)

Finally, it is obvious thatPr[Z > i/4] > Pr(Z' > i/4] > 1 — Pr[Z’ <i/4] > 1 — exp(—i/16). O
Comment. C is actually a special case 8f thus Lemma 11, 12 and 13 frdirectly carry over tc.

A.4.2 Proofs forD

D has two differences fror@. First, in D, every accepted non-escaping honest suspect picks thiédadsd tail out of all
intersecting tails (instead of out of those intersectinig ia 2/(1")). We defines(1) to denote all ofi’’s tails not inZ/ (V).
Namely, these ar&’s non-uniform tails and escaping tails. Second, the adwvgnsiay now interfere to cause honest nodes
to be rejected, by intentionally cause load imbalance.

We need to precisely model such interference from the adwerso do so, we start from a sequengess... of non-
escaping honest suspects that were all accepted dnifée consider this sequence of honest suspects as a seqievnto
balls, each of which goes into some bin (tailjiiV’) in C. In D, the adversary may interfere in the following two ways, with
the goal of causing some of suspects previously acceptesl tow rejected:

1. The adversary may introduce sybil nodes with tails iretiag withV’s tails. If these sybil nodes are accepted, then

the load ofi/’s tails will increase, potentially causing some previgustcepted non-escaping honest suspects to be now

rejected. As a concrete example, imagine that previoust ifl; only had a single intersection with all &f's tails
and the intersection is ovi’s uniform tail #12. SoSs conceptually placed a ball into bir2. Now in D, beforeSs is
verified, the adversary introduces a sybil node with taitersecting with taill2. Further assume that after the sybil
node is accepted, tail’s load happens to reach the bar. Next witgns verified inD, S5 will no longer satisfy the
balance condition and thus be rejected.

We model this kind of interference from the adversary bywailthg the adversary i to insertred balls at any place in
the sequence of white balls. Each red ball corresponds te@pted sybil node, and will increment the load of some
tail of V’s.

Our later proof will prove that the “damage” caused by eachoal is limited, leveraging the following key observation
in the above example: Afte$s is rejected, the load on tail 12 go back to “normal”. More psely, the sybil node
caused tail 12 to have one extra load than before. How&yeshould have incremented the load of tail 12. Now that
Ss Is rejected, the load of tail 12 becomes the same as befereds inC). In other words, aftesSs is rejected, the
influence of the adversary “disappears”. To cause the iejeof another honest suspect, the adversary has to inteoduc
another red ball. The scenario can get more complex. Neslegs, our proof later is based on a generalization of the
above intuition.

2. The adversary may register with somelg$ tails the public key of some honest suspect previouslgpisd unde€.
This kind of interference is quite subtle and perhaps catintaitive. As a concrete example, imagine that previgusl|
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in C, S5 only had a single intersection with all &f's tails and the intersection is dfi's uniform tail #12. Now inD, the
adversary intentionally registers the public keySgfwith one of the tainted tails that intersect witfis tail #14. The
adversary can further fodl; into believing that the tail is indeed one §f’s tail, as long asS; has at least one escaping
tail. After all such manipulation from the adversasy,’s tails now have two intersections with's tails. Assume that
when S5 is verified, tail 14 has a lower load than tail 12. As a ressiitwill increment the load of tail 14 instead of

tail 12. It may seem at this point that the adversary almagtgukus to achieve better balancing. However, imagine that
later tail 14 gets overloaded, and because the adversasgd4ail 14 to have one extra load, some honest suspect (e.g.,
S16) may be rejected.

We model this second kind of interference from the adverbgrgllowing the adversary if® to replace some white
balls in the sequence witlireenballs. A green ball (ifD) will go into a different bin from the bin that the replaced
white ball went into inC. In our example above, the green ball (correspondings)ogoes into bin 14 irD, while the
corresponding white ball went into bin 12 ¢h

Later we intend to prove that the “damage” caused by eachdyakis limited. The intuition here is trickier than the
earlier intuition for red balls. Namely, here even aftgg is rejected, the load of the tails do not go back to “normal”.
For example, tail 12 still has one less load than before. Beeaur bar is floating with the average (and thus total load),
this may cause the bar to be too low. The key insight here tsttheause the total load to drop by one, at least one
honest suspect is acceptesi (n the example). Thus the total loadincan never drop below half of the total loaddn
This in turn means that doubling the constantsed inC is sufficient to prevent the bar from dropping and offset such
disruptive effect.

Finally, if some white balls in the sequence are now rejetted (e.g., due to interference from the adversary), we say that
they are novblack By definition, it is impossible for a ball to be simultanelyuslack and green.

The total number of red balls and green balls that the admersan use in bins (tails) ia (V') is potentially unlimited.
But for bins (tails) int/(V'), Section 6.2 explained that the total number of red ballsgaadn balls the adversary can use is
within ¢”n for some smalt”.

Lemma 14 Consider a sequence of honest non-escaping honest susipetcigere all accepted undét (i.e., a sequence
of white balls). InD, we double the constantin the balance condition frord. Suppose that i® by inserting red balls
and replacing some white balls with green balls, the advgrazanages to prevert of those suspects from being accepted
underD. Then the total number of red and green balls used in bidé(i) is at leastk .

Proof: To avoid notation confusion, we let the bardrbeb = h - max(log r, a) and the bar irD beb’ = b’ - maz(logr, a’),
wherel/ = 2h. Let the K non-escaping honest suspected rejectelt ime S;, Ss, ..., Sk. We use induction to prove the
following two claims forl < k < K:

Claim 1 When verifyingSy, b’ > b.
Claim 2 In D, beforeS}, is verified, the total number of red balls and green balls uséihs inZ/ (V) is at least.

Induction base. For & = 1, notice that when verifying, the total load of all the tails i must be no smaller than i
This is because all white balls befofg in the sequence are still acceptedin(sinceS; is the very first black ball), and
thus contribute to the total load. The total loadlrcan be larger because the adversary may insert additiahbbiks. As a
result, we have’ > a and thu®’ = ' - max(logr,a’) > h - max(logr,a) = b.

Next we proveClaim 2 by showing that when verifyings, if the total number of red and green balls in bing4(l") is O,
thenS; must be accepted. Let the number of white balls befgrin C be z. We will prove via an induction on that when
verifying S, for any tail ini/(V), its load inD is no larger than i€. If this is indeed correct, then together with the fact that
b > b, we know thatS; must be accepted iP.

The case for = 0 is trivial. Now assume that the previous argument holds:fand we considet + 1. Let R be the
(z + 1)th white ball inC. Suppose thak goes into bin (taily in C and bin (tail)j in D. By definition ofC, bin i must be in
U (V). Obviously, we only need to consider the case whietej and where biry is in/(V') as well. We first consider the
case ofi < j. Immediately beforeR is accepted, let the load of birbex andz’ in C andD, respectively. Similarly let the
load of binj bey andy’. Because there are no green balls indamd binj, it means that both bihand binj are intersecting
tails in bothC andD. Because? chooses bir (over binj) in C and binj (over bini) in D, we know thatr < y anda’ > y'.
Induction hypothesis tells us that < x andy’ < y. If ¢ < y, then the claim still holds afteR goes into binj in D. If
y' =y, we must have’ >y’ =y > 2 > 2/, which is impossible. Finally, the case for- j is similar.
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Inductive step. Assume now that the previous two claims hold ugtdNamely,
1. Foranyl < i < k, when verifyingS;, b’ > b.
2. InD, beforesSy, is verified, the total number of red balls and green balls urs¢ails inZ/(V) is at least:.

To proveClaim 1 for k + 1, we compare the total loddad in C immediately aftelS, is accepted and the total lo&ehd’
in D immediately afterSy, is rejected. Assume that the adversary has usedl balls and, green balls in tails id/(V'). We
know that:

e = + y > k: From induction hypothesis.

e y < load — k: Since each green ball corresponds to some distinct whiténb@ and there are at mostad — k white
balls so far.

e load = load + x — k: Each red ball increments the total load.

Given these relationships, Lemma 15 proves thatl’ /load > 0.5. Now notice that by definition, all white balls between
Sk, and Sk are all accepted in botfi andD. This means that when verifying. 1, we still haveload’ /load > 0.5 and
thusa’ > a/2. Thisin turn means thdt = 1’ - max(logr, a’) > 2h - max(logr,a/2) > h - max(logr,a) = b.

To proveClaim 2 for k + 1, it suffices to show that if the adversary only uge®d and green balls in bins i(V), it is
impossible forSy11 to be rejected. We define:

extra = Z max (0, bin¢'s load inD— bin i's load inC)
biniisini(V)

Obviously, ifextra = 0 immediately before verifying. 1, then together witth’ > b, we immediately know tha$ 1 will
be accepted. To prove:tra = 0, we will show that:

extra < number of red balls and green ballsnumber of black balls )

If the above inequality holds, then using orilyed and green balls will leave us witlttra < 0, andSy41 will be accepted.
This will then complete the proof for the inductive step €&@aim 2.

Consider the sequence of ballsZinup to but not includings1. We prove Inequality 1 via an induction on the length
z of the sequence. The induction basefct 0 is trivial, since both sides of the inequality is 0. Now assuiime inequality
holds forz and we will prove that it holds fot 4+ 1. We consider the color of the last ball in the sequence:

Black This means that the ball iS;. Suppose the ball goes to birn C and increments the load of birfrom z to = + 1.
From Claim 1,0’ > b. Thus if Sy, is rejected inD, it must be because that birhas a load of at least + 1 before
verifying Sy in D. SincesS, is accepted i€ and is rejected irD, it must decreasextra by 1. Thus Inequality 1 still
holds.

Red Obvious becausertra can increase by at most 1 while the right-hand side of Inéiyulls guaranteed to increase by
1.

Green Obvious becausertra can increase by at most 1 while the right-hand side of Inéiyublis guaranteed to increase
by 1.

White Suppose the white ball goes into lim C and binj in D. By definition ofC, bin i must be iri/(1"). Obviously, we
only need to consider the caseicf j. If bin j is in o(V), then this white ball will either decremeantitra or leave it
unchanged. Thus Inequality 1 will continue to hold.

Next we consider the case where hiis inZ{ (V') and where < j. Immediately before the white ball is accepted, let the
load of bini bex andz’ in C andD, respectively. Similarly let the load of bihbey andy’. Because the ball is already
know to be white (instead of green), it means that both laind binj are intersecting tails in bothandD. Because the
white ball chooses bin(over binj) in C and binj (over biné) in D, we know thatr < y andz’ > ¢/. If ¥/ < y, then
extra can never increase because of the white ball. On the othel; Hajd > y, we must have’ > ¢ > y > x. Thus
the white ball will decrementxtra on the behalf of bin and incrementxtra on the behalf of binj, again leaving
extra unchanged. Finally, the case where biis in/ (V') and where > j is similar.
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This finishes the proof for Inequality 1, which in turn, coregls the inductive step f@laim 2. O

Lemma 15 Consider arbitrary integeré > 1, x > 0,y > 0, load > 0, andload > 0, wherex +y > k, y < load — k,
andload’ = load + x — k. Thenload' /load > 0.5.

Proof:
load' /load > 0.5
& load > 2k — 2z
<= y+k>2k—-2x
& y+2x >k
<= y+ax>k
O

A.5. Proof for the main SybilLimit theorem—Theorem 3

Proof for Theorem 3:. To avoid notation collision, we will prove that “for any gineonstant’ > 0 andd’ > 0, we can
always find a set ofl — ¢ )n honest verifiers and universal constangsandry, such that usingy = wg log n andr = ro/m
in SybilLimit will guarantee that for any given verifiér in the set, with probability of at leadt— ¢’, V' accepts at most
O(glogn) sybil nodes and at leaét — €¢')n honest nodes”.

Lemma 5 tells us that there exist at leést— €)n non-escaping verifiers. We lety to be thew, as determined in
Lemma 5 and to be thery as determined in Lemma 11. For number of sybil nodes accgpéedma 7 and 8 tells us that
a non-escaping verifidr will accept at mosO(log n) sybil nodes with probability of at least— 34.

Next consider the numbep of honest nodes accepted. There are at moestscaping honest suspects. Consider any
non-escaping honest suspestand non-escaping verifiéf. In C for anye > 0, we know from Lemma 11 that will accept
S with probability of at least — e. Let X be the number of non-escaping honest suspects rejectéd oyt of then honest
suspects). We havg[X] < en. Invoke a Markov inequality and we have-[X > $n] <.

Next we consider the interference from the adversary ondlanloe condition. As from Section 6.2, the load on a uniform
tail of I’'s may increase when it intersects with:

1. Uniform tails of non-escaping honest suspects.

2. Non-uniform tails of non-escaping honest suspectn each s-instance, Lemma 5 tells us that there are on exjpecta
o(n) < en such tails.

3. Uniform or non-uniform tails of escaping honest suspectsThere are at most: such tails in each s-instance.
4. Tainted Talls. There are)(glogn) = o(n) < en such tails in each s-instance.

In each s-instance, the expected number of tails in theHasé ttases is thus at m@st:. We would like to prove in the next

that the number of intersection¥’) betweert/ (1) and these tails, in all s-instances, satisfiegy” > %"Sin] < 6. The
proof is somewhat similar to the proof of Lemma 7. In a givénstance, let random variabledenote the number of tails in
the last three cases. Lgt= Pr[Z = i|. We obviously havé_ p; -i = E[Z] < 3en. Consider any tail id/(V'), and because
the tail is a uniform tail, we know that the expected numbentdrsections it has with those tails in the given s-instaisc

Sp o < 20
bi 2m — 2m

With total r s-instances, the expected number of intersections wilt beoat2<. Finally, we trivially haveft/(V)| < r and
thus E[Y] < I3 — 1 5r2en. Invoke a Markov inequality of” and we havePr[y > 1576y < 5,
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Now from Lemma 14, we know that i, Y is the maximum number of honest suspects that can be rejdotdo
adversary’s interference. Thus with probability of at telas 26, we have:

n—@Q < en(escaping suspects) % -n (non-escaping suspects rejected ur@er

1.5r3¢
)

1.572

= (e—i—%-i— 506)-71

To finish the proof, we only need to find constants 0 andé > 0 satisfying:

+

n (additional non-escaping suspected rejected when goimgdrto D)

5/
/
€

56
€

" € n 1.5rd¢
€+ —
0 0

One can easily verify the following constanando will satisfy the above inequalities:
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!’
€
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/

=)

d = min(1
mln(,5

This then completes our prodil
A.6. Proof for the Q(g) Lower Bound

Theorem 16 Consider any constant> 0 and anyg € [1, n]. For any graphG with n nodes and)(log n) mixing time, we
can always find another grapfi’ withn’ = (n+ ¢- g) nodes where iJ¥ is a subgraph o€+, ii) the number of edges between
nodes inG and nodes ir¢’ \ G is g, and iii) G’ hasO(log n’) mixing time.

Proof: To prepare for the proof, we need to introduce the notiocasfductanceConsider any given graph with vertex set
of V. ForanyS C V, we defineS = V' \ S. ForanyX C V andY C V, define functiore(X,Y) = |{(z,y) |  —
y is a directed edge of graghandx € X andy € Y'}|. The conductance is defined as:

o min ) e(S,S’)
~ ScVande(S,S) +e(S,5) <|E| \e(S,9) +e(S,5)

min 1
S CVande(S,5)+e(S,5) < I|E| eés.g; 1
e(S,S

Classic theory [16] on graph mixing time tells us tdabeing lower bounded by a positive constant is a both sufficead
necessary condition fap(log n + %) mixing time undeA = %

We obtainG” in the following way. We first pick an arbitrary connectedgnd’ with ¢ sybil nodes. Obviously, there are
many suchf”’s. Next we pick arbitrary; nodes from. For each node picked, we attaEhto that node using a single edge.
We called that node as thetroducerof all the nodes irF'. It does not matter which node ifi that edge is connected to.

Obviously,G’ has(n + ¢ - g) nodes and- is a subgraph of’. Also, the number of edges between node&'iand nodes
in G’ \ G is exactlyg. We only need to prove th&t’ hasO(log n) mixing time as well. LetE be G’s undirected edge set.
Similarly defineV’ andE’ for G'. Let® and®’ be the conductance 6f andG’, respectively. We will prove thak’ is lower
bounded by a constant where

o — min B 1 2
T S cVande(S,8) +e(9,9) < |E] | «8L8)
e(s,8") +
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Figure 13. Definition of sets in G’ in the proof for Theorem 16.

Consider anyS’ C V' (see Figure 13), from the definition of conductance, we hagecondition thak (S’, S’) +
(8,8 < |E| = L(e(8,8)+e(5,58)+e(S,5")+e(5,5)), and sincee (57,5") = e(9',5'), we get
(8',8") < e(5,5). If we want to prove tha®’ is lower bounded by a positive constant, we only need to atigaie
e(S',S’) . .

55 is upper bounded by a positive constant.

In S, define the selS] = {z |z € S"andx ¢ V andz’s introduceris notins’}, S, = S’ \ Si. Define the set
St = {z|xr € Shandz ¢ V}, Sy = S5\ S5 andSy = V'\ Ss. Similar to the definition ob}, S, S5 andSs in S’, define sets
Y{, Yy, Y{ andY> respectively inS’. DefineY! = {z | z € S’ andz ¢ V anda’s introduceris notinS’}, Yy = S’ \ Y,
Yy ={x | v € YJandz ¢ V}, andY, = Y; \ YJ. Itis apparent thaYs is the same set &. Figure 13 shows the definition
of all these sets.

In order to prove thag% is upper bounded by a positive constant, we can first conlidesimple case that.S’, ") +
e(57,8") < k(e(Y{,Y{) +e(Y{,S")), k is some positive constant which is larger than one. Lemmaak7phoved that in
this casezgg,—’g/; is upper bounded by a positive constant. Without loosingegaity, we set: to be2 and we also have that
% is upper bounded byc? + 1 which is a positive constant.

Next, consider the case thetS’, S) + e(S’,S") > 2(e(Y{,Y]) + e(Y{,S’)). Lemma 19 can prove that in this case,

Zggg is also upper bounded by a positive constant.

Finally, we have thaﬁ% is upper bounded by a positive constant in either casebaigllower bounded by a positive
constantd ’

e
e

Lemma 17 LetG, G, ®,®',V, 5", 9, ¢, Y/,e(X,Y)andF be the same as in the proof of Theorem 16. Conditioned upon

thate(S’, 5") +e(S, ) < k(e(Y{,Y{!) +e(Y{,S")), k is a positive constant which is larger than one, we have g.%(g—;
is upper bounded by a positive constant.

Proof: Sincee(S’, ") +e(5',5") < k(e(Y{,Y{) + e(Y{,S")), and itis shown in the proof of Theorem 16 th&s’, S’) <
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e(S',5"), we have:

e(S/’S/) < e(glv‘gl) < ]g(e(Yl’7Y1’)+e(Y1”S’))

_ - - -1
e(5',5) ~ e(5,5) e(s",5")

From the definition ot} we haveY; C S’. Thereforee(Y7, S’) < e(S’,S") and we can get:

(5,57 kle(Y{,Y{) +e(Y1,5")

_ ( 1
e(8,8") e(S’,5")
o k(e Yi) +6(Y1’7S’)) _q
B (Ylvsl)
eV, YY)
= e TR

Lemma 18 has proved thé\gl,i?,) < c2. Finally, we haveg,—g,; < ke?+k—1. Sincek > 1, itis obvious thakc? + k — 1
is a positive constantd
vy .Y!)

2
oy S ¢

Lemma 18 LetG, G', S', S, ¢, Y/, e(X,Y) and F be the same as in the proof of Theorem 16. Then we i

Proof: Consider thaty can be partitioned intb groupsws, wa, ws,..., w;, and all nodes in each group are in the same
connected graph'. Obviously, there is no edge between any two groups Bald= |w1| + |w2| + |ws| + ... + |w;|. For any
1<i<l,|wi <e.

c(O,Y]) < fonl + fonl? + s + - fenl?
¢+ (jor] + lwa| + fos] + . + ]
= |

IN

Because for each group Y, there is an edge connecting it to its nodes’ introduce¥’inr there are edges connecting
nodes in this group to those nodes not in this group but indheed” as this group, the number of edges betw&émand S’
is at least the number of grouphso we have (Y{, S’) > [, and since each group contains at mosbdes, it is obvious that

1> ‘Lc” Then we have :

ULV _ el eV,
c(YLS) = 1 S

c

a

Lemmal19 LetG, G, ®, &', V, S, S, ¢, S}, S5, S5, S2, Y, Yy, Y4, Ya, e (X,Y) and F be the same as in the proof of
Theorem 16. Conditioned upon thatS’, S7) + (S, S") > 2(e(Y{,Y{) + e(Y{, ")), we haveW is upper bounded by
a positive constant.

Proof: From the definition of5{ and.S}, we can easily get the following equation:

e(5,5) e (81,51) + e (53,5) + e (51, 53) + e (53, 51)
e(S’,S’) e(Si,S_’)—l—e(Sé,S_’)

Since nodes irb] are not inV" and their introducers are not 7, there will be no edge it5” connecting them té” or to
other nodes not iV but whose introducers are Y, thus there is no edge betwedh andS;. So we have: (S5, 57) =
e (S7,55) = 0. Then, the equation becomes:

e(s',8")  _ e(S1,81) +e(5,5)
e(S’,S_’) N e(S{,S_’)—l—e(Sé,S_’)

(3)
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In order to prove thate(sl—’s,) is upper bounded by a positive constant, we only need to atgnebothe(si—"si) and

e(5,5) o(S.5)
Zg??g are upper bounded by some positive constant. Lemma 20 hmqlrhntzg??; is upper bounded by?. Consider
e(52:53) ' Erom the definition oB4, Sy, S4 we get:

e(Séig’)
e (53, 93) = e (83, 53) + € (Sa, S2) + € (S2,53) + € (S5, S2)

Using the similar argument in the proof of Lemma 20, we cansi®er thatS; can be partitioned inte groupswi, wa,
ws,...,w, and we have: (S5, .55) < c-|S%|. Since each group i§% connects to some distinct node$a and each group
contains at most nodes, we havéSs| < ¢ - |S;|. Because the edges betwegnand S, are those connecting a group in
S% and a corresponding node, the introducer of all the noddsangroup, inS,, we gete (S3, 5%) = e (5%,.52) < |S2].
SinceS; is a subset of, we havee (S2,5") < e (S5,5’). And from the definition ofS,, it is obvious thatS, C 57, thus

e (92,52) < e(S2,5'). Now we have:

C(55.5)) _ e(ShSy) _ c(Sh.Sh)
e(Sé,S’) - e(SQ,S’) - 6(52,5’2)
e (S%,55) + e (S2,52) + e (S2,5%) + e (S%,52)
e (52, 52)
c2|Ss| + € (Sa,S2) + |Sa| + [S2]
e (Sg,gg)
(*+2)[S2]  e(Sa,52)
e (52,5_2) e (SQ,S_’Q)

IN

Lemma 21 can prové% is upper bounded by some positive constant,ayThen, we have’% < a;. Since
el 52,92 €\ 02,02

G is a connected graph art} C V, we havee (52, 52) + € (52, S2) > |S2|. Therefore, we can get:

e(85.8) _ (+2)[%[ e[S 5)
e (Sé, S_’) - e (SQ, S_g) e (SQ, gg)
) ’
- (c +2)(1+a1)e(SQ,S2) .
€ (SQaSQ)

= (+2)Q+a)+a

Until now, we have thafM < 2 ande(sz"sz) < (¢ +2) (14 a1) + a1. Then, we have:

e(S{,g’) e(Sé,g’)
e(S’,S_’) B e(S1,51) +e(S5,5%)
e(s,8) e (S1,5") +e(95,9)
! li ! li
< max{e(slasl) 6(52a52)}

e (S1,5) e (55, 9)
= (+2)Q+a)+a

Finally, we have tha®’ is lower bounded b)(m, which is a positive constant]

s S{) S 02

Lemma 20 LetG, G', S, S, ¢, S;, e(X,Y) and F be the same as in the proof of Theorem 16. Then we F ’g,)

Proof: Using the similar argument in the proof of Lemma 18, we catilyegst the conclusion thai% <O
eSSy,
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Lemma 2l LetG, G', ®, @', V, 5", S, ¢, Si, Sb, S%, Sa, Y/, Y4, Y4, Ya, e(X,Y) and F be the same as in the proof of
Theorem 16. Conditioned upon thdtS’, S’) +e(S’, S") > 2(e(Y{, Y{) +e(Y{,5)), we havejé?—’?’% is upper bounded by
some positive constant.

Proof: For convenience, we define the number of nodesSsirto be 3 and definer; = e (S92, 5) + e (S2,52), 22 =
€(S2,52) + e (52, 92), 2f =e(5,58) +e(S,5), zh =e(5,5) +e (5,5, anday = e (Y/,Y{) +e(Y{,S'). As
shown in the proof of Theorem 16, we haues’, S”) < e(S’,S’). Then we can get; > 4. And from the condition that
e(S,S") +e(S,S") > 2(e(Y{,Y{) + e(Y{,5")), we haver < iz). From the definition ofr{ and all sets we have the
following equation:

xll = e(}/{,Yl/) +8(Y1/7S/) +e(}/3/v}/3/) —|—€(}/3/,S/) +8(}/2,}/2) +8(}/2,S/)
e (Y1, Ys) +e (V3 Y1) +e (Y1, Ya) +e (Y2, Y1) + e (V5, Y2) + e (Y2, Y5)

Using the similar argument in the proof of Lemma 19 fjrand S}, we can get that there is no edge betw&grandYs.
Then we have: (Y{,Yy) = e(V4,Y]) = e(Y{,Y2) = e(Y2,Y{) = 0. Itis easy to get that (Y2,5") = e (5%2,5') =

e (S2,52) + e (52, 51). And the number of edges betwesgn and 5] should be less than the number of nodes'inthus

e (S2,51) < B. Using the similar reason mentioned above $4rin the proof of Lemma 19 again, considgf can be
partitioned intgp groups. It is obvious thatis less tharg. For each group iy, there exists only one kind of edges between
this group andS’. They are the edges that connect a node in the group and amttesame- as this group but belongs

to S’. Therefore, the sum of the number of the edges between thigppgandS’ and the number of edges in each group
is less than the number of edges in each correspondingnd since there is no edge between any two groups, we have:
e(Y4,Y{) +e(Y4,S") < p-c® < B-c* The number of edges betwe&ij andY> is also at most the number of nodes
contained inYs, so we have (Y3, Y3) = e (Ya, YY) < 3. Combined with all conditions above, we get:

‘Tll = e(YB/,Y},')—i-e(Y},’,S/)—i-e(YQ,Yg)—|—e(Yg,S')—|—e(Y2,Y3/)+e(Y3',Y2)+:E§

e (Y5,Y5) +e(Yy,8) + (52, 5) + ¢ (92,5) +e(92,81) +e(Ya, Y5) +e (Y5, Y2) +f
e(V5,Yy)+e (Y], S+ a1+ B+e(Ya,Ys)+e(Vs,Y2) + a4

(®+3) B+ 21 + 4

(+3) B+ + 2 /2

[VANRVAN VAN

From the definition ofx/, and x5, we havexs, < zf,. Since G is a connected graph, we ha¥ve< z;. Therefore,
xy < ah <af <2(c?+3) B+ 2m1 < (267 +8) 7.

Here, we need to use the condition that gréphas aO(log n) mixing time. Consider two different cases. In the first
casery < x1, which means that (Ss,52) + ¢ (SQ, 5’2) < |E|. Since the conductance being lower bounded by a positive

constant is a both sufficient and necessary conditio®fdog n) mixing time and grapld has aO(log n) mixing time, we

can get that% is upper bounded by some positive constant directly. In ¢oesd casey; < x5 < (2c2 + 8) x1. In
e 2,02

this case we have (53, 52) + € (52, S2) < |E|. Using the same reason mentioned in the first case, we 52’223 is

e 2,02

€(S2,52)+6(52,§2)

upper bounded by some positive constant,ayrhenzy /z, = (50.52) (50,50

< 2¢? + 8, and we get:

(2¢2 +7) + (2¢* + 8) 72 Egz ;3

(202 + 7) + (202 + 8) 1

€ (823 S_Q)
€ (Sg, Sg)

IN

IN

Finally, we have tha% is upper bounded by a positive constant in the second Case.
€ 2,02
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