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One of the best known and widely used is the connectivity index, χ  introduced in 1975 by 
Milan Randić. In this paper we compute Randić, Zagreb, GA and ABC indices of some 
nanostructures. 
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1. Introduction 
 
All of the graphs in this paper are simple. A molecular graph is a simple graph such that its 

vertices correspond to the atoms and the edges to the bonds. Note that hydrogen atoms are often 
omitted [1]. 

Let ∑ be the class of finite graphs. A topological index is a function Top from ∑ into real 
numbers with this property that Top(G) = Top(H), if G and H are isomorphic. Obviously, the 
number of vertices and the number of edges are topological index. The Wiener [7] index is the first 
reported distance based topological index and is defined as half sum of the distances between all 
the pairs of vertices in a molecular graph. If , ( )x y V G∈  then the distance between x 
and y is defined as the length of any shortest path in G connecting x and y. 

( , )Gd x y

The Zagreb indices have been introduced more than thirty years ago by Gutman and 
Trinajstić [2]. They are defined as: 

 
                                         and 2

1
( )

( ) (d )v
v V G

M G
∈

= ∑ 2
( )

( ) d du v
uv E G

M G
∈

= ∑ ,                             (1) 

 
where du and dv are the degrees of u and v.  

The connectivity index introduced in 1975 by Milan Randić [3, 4, 5, 8], who has shown 
this index to reflect molecular branching. Randić index (Randić molecular connectivity index) was 
defined as follows: 
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Another topological index namely, geometric – arithmetic index (GA) defined by 

Vukicević and Furtula [6] as follows: 
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Recently Furtula et al. [1] introduced atom-bond connectivity (ABC) index, which it has 
been applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. 
This index is defined as follows: 
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In this paper we compute these topological indices for two infinite classes of graphs, e. g. 

Triangular Benzenoid and k-polyomino system. Throughout this paper our notations are standard 
and mainly taken from [5]. Many papers, including those of our group of research have been 
dedicated to the topological indices [8-34]. 

 
 
2. Polyomino Chains of k – Cycles 
 
A k-polyomino system is a finite 2-connected plane graph such that each interior face (also 

called cell) is surrounded by a regular 4k-cycle of length one. In other words, it is an edge-
connected union of cells, see Klarner [3]. In Fig. 1, one can see the polyomino chains of 8 – 
cycles.  
 

 
 

Fig. 1 The zig-zag chain of 8-cycles. 
 

This graph has n2+ 4n + 1 vertices and 
23( 3 )
2

n n+
 edges.  

e1

e2

e3  
 

Fig. 2 The zig-zag chain of 8-cycles, n = 1. 
 

For n = 1 (Fig. 2) there exist 3 type of edges, namely e1 = uv, e2 = xy and e3 = ab. On the other 
hand du = dv = 3, da = db = 2 and dx = 2, dy = 3. This implies M1(G) = 134, M2(G) = 157, ABC(G) = 
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212 2 5
3

+ , GA(G) = 
621 16
5

+  and ( ) (29 4 6) / 3Gχ = + . In generally, this graph has 24n 

+ 12 vertices, 28n + 1 edges and the edge set of graph can be dividing to three partitions, e. g. [e1], 
[e2] and [e3]. For every e = uv belong to [e1], du = dv =2. Similarly, for every e = uv belong to [e2], 
du = dv =3. Finally, if e = uv be an edge of [e3], then du = 2 and dv = 3. On the other hand, there are 
8n - 3, 12n + 4 and 8n edges of type e1, e2 and e3, respectively. Thus, we proved the following 
Theorem: 
 
Theorem 1. Consider the graph G of zig-zag chain of 8-cycles. Then  
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3. Triangular Benzenoid 
 

In this section we compute four topological indices of triangular benzenoid graph depicted in Fig. 

3. This graph has n2+ 4n + 1 vertices and 
23( 3 )
2

n n+
 edges.  
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Fig. 3 Graph of triangular benzenoid G[n]. 
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For n = 1 all of vertices are of degree 2. This implies M1(G) = M2(G) = 24, ABC(G) = 3 2 , 
GA(G) = 6 and . For n = 2, there are three type of edges, e. g. edges with endpoints 2 
(e1), edges with endpoints 3 (e2) and edges with endpoints 2, 3 (e3). By enumerating these edges 
there are 6, 3 and 6 edges of types 1, 2 and 3, respectively. In other words, M1(G) = 72, M2(G) = 

87, ABC(G) = 6

( ) 3Gχ =

2 + 2, GA(G) = 
12 6 9

5
+  and ( ) 4 6Gχ = + . By continuing this method and 

using Fig. 4, the edge set of graph can be dividing to three partitions, e. g. [e1], [e2] and [e3].  
The degree of end points of e1 is 3, the degree of end points of e2 is 3 and the degrees of end points 
of e3 are 2, 3. On the other hand |[e1]| = 3n(n-1)/2, |[e2]| = 6 and |[e3]| = 6(n-1). Hence we have: 

e1

e2

e3

 
Fig. 4 Partition of edges of graph G[n], n = 3. 

 
Theorem 2. Consider the triangular benzenoid graph G[n]. Then  
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