
Proceedings of Machine Learning Research 157, 2021 ACML 2021

Multi-factor Memory Attentive Model for Knowledge
Tracing

Congjie Liu japhery@qq.com

Xiaoguang Li xgli@lnu.edu.cn

School of Information, Liaoning University, 110036, China

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

The traditional knowledge tracing with neural network usually embeds the required in-
formation and predicates the knowledge proficiency by embedded information. Only few
information, however, is considered in traditional methods, such as the information of exer-
cises in terms of concept. In this paper, we propose a multi-factor memory attentive model
for knowledge tracing (MMAKT). In terms of Neural Cognitive Diagnosis (NeuralCD)
framework, MMAKT introduces the factors of the knowledge concept relevancy, the dif-
ficulty of each concept, the discrimination among exercises and the student’s proficiency
to construct interaction vectors. Moreover, in order to achieve more accurate prediction
precision, MMAKT introduces attention mechanism to enhance the expression of histor-
ical relationship between interactions. With the experiments on the real-world datasets,
MMAKT shows better performance of knowledge tracing and prediction in comparision
with the state-of-the-art approaches.

Keywords: intelligent education, knowledge tracing, deep neural network, cognitive diag-
nosis

1. Introduction

Intelligent tutoring systems provide personalized learning activity recommendations by ana-
lyzing data from learners’ learning history. Item Response Theory(IRT)(Rasch (1993)) and
Cognitive Diagnosis are main methods of the systems. Especially in the era of big data, the
machine-learning based cognitive diagnosis has been pushed to the forefront. The dynamic
cognitive diagnosis is also known as knowledge tracing (KT). Bayesian knowledge tracing
(BKT) (Corbett and Anderson (1994)) and its variant (Baker and Yacef (2009); Yudelson
et al. (2013)) became the primary methods accompanied by the proposition of KT. Later,
RNN based knowledge tracing methods such as deep knowledge tracing (DKT) (Piech et al.
(2015)) and dynamic key-value memory networks (DKVMN) (Zhang et al. (2017)) emerged
with the rise of deep learning. These deep learning-based models aim to capture the long-
term dependence of student-question interactions, and attempt to represent students’ la-
tent knowledge states with high-dimension matrices. SAKT (Pandey and Karypis (2019)),
a recently proposed self-attentive model for knowledge tracing, utilized the self-attention
mechanism to predict the student’s response. Despite these deep learning-based models
have proved excellent performance in realistic experiments, their interaction vectors are not

© 2021 C. Liu & X. Li.

Liu Li

as reasonable as static cognitive diagnosis model’s. Specifically, the interaction vectors of
these KT models only require knowledge concepts of exercises, while static cognitive diag-
nosis methods usually need the student’s proficiency, the knowledge concept relevancy, the
exercise discrimination etc. besides the knowledge concept difficulty (Wang et al. (2020)).
Moreover, these KT methods cannot present the historical relationship between exercises
and interactions directly. For instance, RNN based KT methods relay on latent states
to transfer information along the input sequence. No explicit historical relationship can
be presented with the mess-up information in latent states. And SAKT only focuses on
the weights between the target exercise and interactions using a single self-attention layer
ignoring the historical relationship between exercises/interactions and themselves.

In this paper, we address these issues in a way of proposing a multi-factor memory
attentive model for knowledge tracing (MMAKT). Specifically, MMAKT uses multi-factor
such as knowledge concept relevancy, concept difficulty, exercise discrimination to construct
exercise vectors, and dynamically traces the student’s knowledge proficiency with DKVMN.
Then the student-exercise interaction vectors are constructed with the factors above in terms
of Neural Cognitive Diagnosis (Neural CD) framework making the interaction vectors more
reasonable and containing abundant information. In order to express the historical relation-
ship of exercises and interactions, the attention mechanism is implemented. The attention
mechanism obtains historical interaction vectors and historical exercise vectors by multi-
head attention networks. Our experiments show that MMAKT outperforms other baseline
methods on four datasets, and MMAKT can trace the student’s knowledge proficiency
better.

Our main contributions are summarized as follows:
1. We propose a multi-factor Neural CD-based DKVMN method to trace the student’s

knowledge proficiency and to construct exercise vectors and interaction vectors, making
them as reasonable as cognitive diagnosis.

2. We explicitly enhance the representation of historical information by taking a stu-
dent’s practice history into account using the attention mechanism.

3. Experiments on four real-world online datasets prove that MMAKT outperforms
other baseline methods.

2. Related Works

Existing works about student cognitive diagnosis mainly came from educational psychology
area. Most of those methods are based on linear handcrafted interaction function such as
logistic function or inner production. Wang et al. (2020) proposed Neural Cognitive Diagno-
sis (Neural CD) framework by incorporating neural networks to model complex non-linear
interactions in cognitive diagnosis. In Contrast to traditional models which designed man-
ually with non-neural functions making it hard for them to leverage exercise text content,
Neural CD explored the rich information contained in exercise text content for cognitive
diagnosis with neural network. The framework of Neural CD is shown in Figure 1.

Dynamic Cognitive Diagnosis is known as knowledge tracing which can dynamically
update the student’s knowledge proficiency. Deep knowledge tracking (DKT) (Piech et al.
(2015)), based on recurrent neural networks (RNN), exploits the utility of latent states
in LSTM (Hochreiter and Schmidhuber (1997)) to learn a student’s knowledge proficiency.

MMAKT

Figure 1: Neural cognitive diagnosis model.Student and exercise vectors are embedded to
different factors with neural networks to formulate the interaction function.

Zhang et al. (2017) proposed dynamic key-value memory networks (DKVMN) to trace a stu-
dent’s proficiency of concepts by introducing memory-augmented neural networks (MANN)
(Santoro et al. (2016)). Abdelrahman and Wang (2019) used attention mechanism, Sun et al.
(2019) added behavior features of students and Ai et al. (2019) considered the containment
relationship among concepts, they all improved DKVMN from different sides. Although
these DKVMN-based methods simulate the process by which students get proficiency of
concepts with elegant methods, their interaction vectors still only require knowledge con-
cepts, and cannot show the relationship between them directly either.

Recently, Pandey and Karypis (2019) proposed the model of Self-Attentive Knowledge
Tracing (SAKT). Attention mechanism is more flexible than recurrent neural networks
which has been demonstrated in natural language processing tasks (Devlin et al. (2018)).
In many sequence-to-sequence predictions tasks, it also has outstanding and effective per-
formance (Kang and McAuley (2018); Zhang et al. (2019)). Similar with the previous
methods, SAKT still requires the concepts of exercise to embed vectors, and cannot show a
student’s proficiency without latent states in RNN. In the aspect of interactions’ relation-
ship, SAKT has better performance than the previous methods because it utilizes a single
layer of attention mechanism to calculate the weights of the target exercise on historical
interactions.

As illustrated above, few deep learning-based KT models have high reasonable interac-
tion function with clear historical relationship. Towards this end, in this paper, we propose
a multi-factor memory attentive model which borrows concepts from neural cognitive di-
agnosis and attention mechanism from transformer (Vaswani et al. (2017)), and combines
them with DKVMN. MMAKT could achieve a reasonable interaction form with the assis-
tance of neural CD, and reflects the historical relationship with attention mechanism as
well.

Liu Li

3. Model

3.1. Model Overview

The MMAKT method is constructed with two components: Multi-factor based DKVMN
layer and Historical Attention layer. Each learner’s study record consists of exercises’ ques-
tions, knowledge concepts and responses at each timestamp.One student’s record at times-
tamp t is defined as (qt, pt, rt) , where qt ∈ N+ is concept index, pt ∈ N+ is question index
in concept set C and question set P . rt ∈ {0, 1} is the student’s response. Students are
independent of each other. The aim of MMAKT is to make the prediction for the student’s
response to exercise (qt, pt), based on the record S.

Figure 2: Overview of MMAKT methods.

The MMAKT’s structure is shown in Figure 2. The record S is firstly put into the Multi-
factor DKVMN layer, where the interaction tuples are embedded into exercise vectors with
multi-factor. Then the layer traces the student’s proficiency using DKVMN and outputs
the interaction vectors in terms of Neural CD in order to make them more reasonable.
After that, exercise vectors and interaction vectors are delivered to historical attention
layer respectively in order to enhance the representation of historical relationship. Finally,
the Prediction layer outputs the predicted response of the target exercise.

3.2. Muiti-factor DKVMN Layer

For a knowledge tracing model, the key is to grasp the student’s proficiency. In this paper,
MMAKT address the issue by using DKVMN with multi-factors, which is shown in Figure
3. Given a student’s interaction tuple (qi, pi, ri) at any timestamp i ∈ (1, t), MMAKT
constructs multi-factors such as concept difficulty bi ∈ Rd, knowledge relevancy ci ∈ Rd,
exercise discrimination disi ∈ R by embedding qi and pi with correlated matrices. Then
MMAKT embeds response ri and gets the response vector gi ∈ Rd. Different from tradi-
tional methods’ exercise vector Q and interaction vector QA which is gotten from (qi, ri)
directly (Piech et al. (2015); Zhang et al. (2017); Pandey and Karypis (2019)), MMAKT,
inspired by Neural CD, constructs the exercise vector xi ∈ Rd referring to the factors
mentioned above.

xi = ci ◦ bi × disi (1)

where ◦ is element-wise product. With exercise vector xi, MMAKT traces the student’s
proficiency using DKVMN by reading and writing key-value memory networks.

MMAKT

Figure 3: The architecture for Multi-factor DKVMN. The model is drawn at the timestamp
i.

3.2.1. Correlation Weights and Reading Process.

To trace the student’s knowledge proficiency mi at timestamp i, MMAKT constructs two
memory matrices, Mk and Mv to store key information of concept and value information
of the student’s mastery. Given an exercise xi, we firstly calculate the correlation weight
on the knowledge concept key matrix Mk by taking the softmax activation of the inner
product between xi and each key slot Mk

j .

wi,j = Softmax(xi
TMk

j) (2)

where Mk
j ∈ Rd is the jth slot of the knowledge concept key matrix Mk ∈ R|C|×d, and wi,j

is the jth value of wi ∈ R|C| representing the correlation weight between the exercise and
each latent concept.

Then MMAKT gets the student’s knowledge proficiency mi ∈ Rd from the value matrix
Mv

i−1 with respect to wi.

mi =

|C|∑
j=1

wi,jM
v
i−1,j (3)

where Mv
i−1,j ∈ Rd is the jth slot in the knowledge concept value matrix Mv

i−1 ∈ R|C|×d.

The interaction vector yi ∈ Rd is then constructed with mi and the other factors
mentioned above in terms of the reasonable method Neural CD.

yi = ci ◦ (mi − bi)× disi (4)

Liu Li

In the vanilla DKVMN, the student’s proficiency vector mi is directly used to make response
prediction,ignoring many factors in the realistic learning process. Therefore, MMAKT refers
to cognitive diagnosis for simulating the situation of a student’s solving a exercise problem.

3.2.2. Writing Porcess

In order to make the next computation at timestamp i + 1, Mv
i−1 needs to be updated

to Mv
i . Unlike the knowledge growth vector in vanilla DKVMN, MMAKT constructs

the update vector with the element-wise product between the exercise vector xi and the
response vector gi in order to match with xi. The following update process is the same as
that of DKVMN, including erase subprocess and add subprocess.The eraser vector ei ∈ Rd

and the add vector ai ∈ Rd are calculated as follows:

ei = Sigmoid(We(xi ◦ gi) + be) (5)

where We ∈ Rd×d, be ∈ Rd are parameter vectors.

ai = Tanh(Wa(xi ◦ gi) + ba) (6)

where Wa ∈ Rd×d, ba ∈ Rd are parameter vectors. Then, Mv
i−1 is updated to Mv

i with ei
and ai:

Mv
i,j = Mv

i−1,j(1− wi,jei + wi,jai) (7)

where 1 is d dimension one vector.

3.3. Historical Attention Layer

The predicted probability is usually made by a fully connected layer after the RNN module
in DKT and DKVMN, ignoring the historical relationship between exercises or interactions
and themselves. To deal with that, MMAKT uses two multi-head attention networks to
represent their historical relationship, and makes prediction with another one. We provide
the explanation of the multi-head attention networks in the next subsection.

3.3.1. Multi-head Attention Networks

As illustrated in Transformer(Vaswani et al. (2017)), the multi-head attention network gets
the relevance of the value Vin to the corresponding query Qin by the dot-product between the
query Qin and the key Kin in several parallel single self-attention layers which are projected
with different matrices. In order to avoid the influence from the future information, the
network utilizes a masking mechanism which replaces upper triangular part of the product
matrix with −∞ in order to zero out the attention weights of the subsequent positions.As
shown in Figure 4, the single self-attention head is,

headi = Softmax(Mask(
QinW

Q
i (KinW

K
i)T

√
d

))VinW
V
i (8)

where WQ
i , WK

i , W V
i are projection matrices.

MMAKT

The final output of the multi-head attention networks is the concatenated tensor of
heads attention heads multiplied by WO.

MultiHead(Qin,Kin, Vin) = Concat(head1, ..., headheads)W
O (9)

Due to the linear transformation, the self-attention layer applies position-wise feed-forward
networks to increase the non-linearty of the model.

FFN(MH) = ReLU(MHW FF
1 + bFF

1)W FF
2 + bFF

2 (10)

where MH = Multihead(Qin,Kin, Vin) and W FF
1 ,W FF

2 , bFF
1 and bFF

2 are weight matrices
and bias vectors.

Figure 4: (a) Network of a masked dot-product attention. (b) Network of a multi-head
attention. Each multi-head attention consists of several attention layers running
in parallel.

3.3.2. Historical Attention Layer

MMAKT utilizes two masked muti-head attention networks mentioned above to calculate
the historical vectors of the exercise vector sequence x1:t−1 and the interaction vector
sequence y1:t−1 for improving the expression of the historical relationship in MMAKT.
For the interaction vector sequence y1:t−1, since a student’s knowledge proficiency evolves
gradually and steadily with time, the knowledge proficiency at a particular time instance
should not show wavy transitions(Yeung and Yeung (2018)). yi needs to be position-
encoded as follows:

ŷi = yi + MP
i (11)

where MP
i ∈ Rd represents the position information in interaction record sequence, and ŷi

is the position-encoded interaction vector. The model inputs ŷ1:t−1 as queries, keys and
values, and finally gets the historical interaction vector sequence h1:t−1:

ĥ1:t−1 = MultiHead(Qin = ŷ1:t−1,Kin = ŷ1:t−1, Vin = ŷ1:t−1) (12)

h1:t−1 = FFN(ĥ1:t−1) (13)

Liu Li

For the exercise vector sequence x1:t−1, the model inputs x1:t−1 as queries, keys and values,
and gets the historical exercise vector sequence l1:t−1.

l̂1:t−1 = MultiHead(Qin = x1:t−1,Kin = x1:t−1, Vin = x1:t−1) (14)

l1:t−1 = FFN(l̂1:t−1) (15)

3.3.3. Prediction Layer

After the historical attention layer, MMAKT utilizes the historical sequences of exercises
and interactions to calculate the prediction vector ft in prediction layer. The prediction
layer inputs the target exercise xt as query, the historical exercise sequence l1:t−1 as keys,
the historical interaction sequence h1:t−1 as values, and outputs the prediction vector ft:

f̂t = MultiHead(Qin = xt,Kin = l1:t−1, Vin = h1:t−1) (16)

ft = FFN(f̂t) (17)

It is noteworthy that we must not use the response at timestamp t to predict the response
of xt. So, we can only use h1:t−1 and l1:t−1 sequence before timestamp i − 1. Compared
with the multi-head attention layers in the historical attention layer, the predication layer’s
Qin, Kin, Vin are totally different because MMAKT must trace the attention between the
target exercise and the historical exercises in order to get the student’s historical proficiency
from the historical interaction sequence.

Then, MMATK converts ft to the response ot via a sigmoid activated fully connected
layer.

ot = sigmoid(ftWp + bp) (18)

where Wp ∈ Rd , bp ∈ R are parameters in FC layer.
Finally, all the trainable parameters in MMAKT can be learned by minimizing the

cross-entropy loss between ot and rt.

L = −
∑
i∈|S|

(rt log(ot) + (1− rt) log(1− ot)) (19)

4. Experiments

4.1. Datasets and Evaluation Metric

MMAKT is evaluated on four real-world datasets. ASSIST2009 and ASSIST2017 contain
exercises’ problem information, and the others not. The ASSISTments datasets were col-
lected from an online tutoring platform. The Statics2011 dataset was collected from a
college-level engineering course on statics.

ASSISTments2009: Dataset contains 4151 students, 110 concepts, 16891 problems and
325637 interactions.

ASSISTments2015: Dataset contains 19840 students, 100 concepts, 942816 interactions.
ASSISTments2017: Dataset contains 1709 students, 102 concepts, 3162 problems and

942816 interactions.
Statics2011: Dataset contains 333 students, 1223 concepts, 189297 interactions.

MMAKT

The Area Under Curve (AUC) and the Accuracy (ACC) are used for evaluation metrics.
AUC is defined as the area under the receiver operating characteristics curve, representing
the predictive performance of the model. Higher AUC and ACC values indicate better
performance of the model.

4.2. Baseline Methods and Approach

We compare MMAKT against the baseline methods, DKT, DKVMN and SAKT. The pa-
rameters are set as follows:

DKT: Hyperparameters are set following Piech et al. (2015). The embedding dimension
is 50, and the hidden dimension is 200 in RNN. The learning rate is 0.001 with Adam
optimizer.

DKVMN: Hyperparameters are set following Zhang et al. (2017). The memory size is
50, and memory dimension is 200. The learning rate is 0.001 with Adam optimizer.

SAKT: Hyperparameters are set following Pandey and Karypis (2019). The embedding
dimension is 50. The learning rate is 0.001 with Adam optimizer.

MMAKT: For different four datasets, the memory sizes of Mk and Mv are set according
to the number of concepts in each dataset. The batch size is 30, and the learning rate is
0.01 with Adam optimizer. Hyperparameter d is determined by comparing AUC values.
The results of testing are shown in Table 1. We can find in the table that the AUC values
are higher than the others when d = 24. It can be seen that when d is set too low, the
performance of the model decreases; when d is set too high, there are too many parameters
in the model, which easily lead to overfitting. So, d should be chosen according to the result
of experiments.

Table 1: AUC results with different d

ASSIST2009 ASSIST2015 ASSIST2017 STATICS2011

d AUC d AUC d AUC d AUC

16 0.750 1 16 0.708 6 16 0.716 7 16 0.817 1

24 0.764 4 24 0.723 1 24 0.724 8 24 0.818 6

32 0.751 9 32 0.704 2 32 0.720 4 32 0.817 9

4.3. Results and Discussion

In this paper, for each dataset, 20% learners are used as the test set, 60% are used as the
training set and 20% are used as the validation set to adjust hyperparameters and early
stop.

Table 2 shows the results of AUCs and ACCs of MMAKT and the other 3 baselines
on 4 datasets. The results show that MMAKT generally outperforms the other 3 models.
SAKT performs the worst among models because it embeds exercises and interactions only
in terms of knowledge concepts, and neglects the student’s knowledge proficiency and the
historical relationship of exercises and interactions. DKT uses latent states to simulate the
student’s proficiency, which cannot model each concept directly, making lower performance

Liu Li

than DKVMN. Both DKT and DKVMN have the weakness on the expression of histor-
ical relationship, which leads their inferior to MMAKT. MMAKT not only restructures
the vectors of exercises and interactions with neural CD and DKVMN, but also consid-
ers the historical relationship of exercises and interactions to enrich the information of the
prediction vector, making better performance than the other models.

Table 2: Prediction results of models

Model
ASSIST2009 ASSIST2015 ASSIST2017 STATICS2011

AUC ACC AUC ACC AUC ACC AUC ACC

DKT 0.736 4 0.736 0 0.700 7 0.744 3 0.710 4 0.688 3 0.786 8 0.780 9
DKVMN 0.745 9 0.726 8 0.717 4 0.747 4 0.679 8 0.670 6 0.785 7 0.803 8

SAKT 0.723 7 0.705 9 0.668 1 0.750 1 0.652 3 0.659 7 0.793 1 0.796 7
MMAKT 0.764 4 0.722 0 0.724 8 0.696 6

MMAKT-N 0.750 0 0.718 7 0.723 1 0.754 1 0.681 4 0.669 9 0.818 6 0.809 1

In addition, we also conduct experiments without problem information with MMAKT-
N. The results show the performance of MMAKT-N is slightly lower than MMAKT, but
still higher than the other three models.

Figure 5 shows the AUC plots of MMAKT and the other 3 methods on the ASSIST2009’s
training set and validation set in 50 epochs. The results show that SAKT and DKT have
obviously overfitting problem. DKVMN performs well in preventing overfitting, but its
AUC performance is inferior to that of MMAKT because it only makes predictions based
on the student’s knowledge states without taking into account the historical relationship.
MMAKT not only has excellent performance on the validation set, but also remains stable
with training, and does not appear the same situation as DKT and SAKT, where AUC
decreases due to overfitting. All above indicate the effectiveness of MMAKT.

0 10 20 30 40 50

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

AU
C

Epoch

 MMAKT_Valid
 DKT_Valid
 DKVMN_Valid
 SAKT_Valid
 MMAKT_Train
 DKT_Train
 DKVMN_Train
 SAKT_Train

Figure 5: Performance on ASSIST2009 training set and validation set.

MMAKT

4.4. Visualizing Parameters

We choose a student in ASSIST2009 randomly, and visualize learning records over a pe-
riod time. In Figure 6, the x-axis represents the student’s interaction records, where qt
is exercise’s concept, and rt is student’s response in (qt, rt). The y-axis represents four
concepts which these records contain. From the data we can see that after the student’s
correct answer about concept 31 at timestamp 4, the student’s knowledge proficiency im-
proved correspondingly, and at timestamp 11, the student’s knowledge proficiency declined
after the incorrect answer. This indicates that MMAKT can dynamically update students’
knowledge proficiency according to students’ answers.

Figure 6: Knowledge proficiency output result of MMAKT.

Then we choose records about the concepts 2 at timestamp 1,5,7 and 11. And the
problem information pt is added to form tuple (qt, pt, rt). The plots of exercise vectors x,
interaction vectors y in Multi-factor DKVMN layer are shown in Figure 7. We can see the
comparison of exercise vectors and interaction vectors between MMAKT and DKT. The
x-axis represents the hyperparameter d, and the y-axis represents interaction’ records. In
plot X, though all the records are about concept 2, vectors are totally different since their
problem information is different. On the contrary, DKT’s exercise vectors Q which are
embedded from qt are all the same with each other. In plot Y, we can see the interaction
vectors yt which are calculated by equation 4 not only contain the information of xt, but
also that of mt, yet the interaction vectors QA in DKT are still unchangeable.

Figure 7: Comparison between embedding vectors in MMAKT and DKT.

There are 3 multi-head attention networks in the historical attention layers and the
prediction layer. We take the attention weights of the first 10 exercises to make illustration.
In Figure 8, the x-axis represents the past exercises, and the y-axis represents the target
exercises. In the historical layer, target exercises are same as past exercises, but in prediction

Liu Li

layer, target exercises surpass past exercises one timestamp because we cannot use exercises’
their own answers to predict responses of themselves.

In Figure 8, though two historical attention layers correspond to the same exercises, their
attention weights are different. Take the exercise 7 as example, in the exercise historical
attention layer, the weights between the exercise 1 and 6 are significantly higher than
others. Nevertheless, in the interaction historical attention layer, the exercise 7 pays more
attention on exercise 3 and 5. The reason is yt contains the student’s knowledge proficiency
besides xt. For the prediction layer, attention weights are between xt and lt−1 to make
prediction based on the historical vectors. Compared with the method in SAKT, whose
weights are between knowledge concept qt and interaction (qt, at), MMAKT is more realistic
for students’ learning, and the experiments show that MMAKT performs better.

Figure 8: Attention weights in Historical Attention Layer and Prediction Layer.

5. Conclusions and Future Works

In this paper, we propose MMAKT which refers Neural CD to construct exercise vec-
tors and interaction vectors, and traces the student’s proficiency with DKVMN. Besides,
MMAKT uses attention mechanisms to enhance the representation of historical information
and predicts the student’s future response as well. The experiments show that our model
outperforms DKT, DKVMN and SAKT.

In the future research, we will explore the following aspects:
1. For the embedding, we will consider adding other realistic factors, such as the priori,

posteriori relation of concepts and students’ effectiveness of learning.
2. For the attention mechanism, we will consider adding more factors, such as time

interval, etc.

Acknowledgments

Foundation item: National Natural Science Foundation of China (U1811261)

MMAKT

References

Ghodai Abdelrahman and Qing Wang. Knowledge tracing with sequential key-value memory
networks. In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 175–184, 2019.

Fangzhe Ai, Yishuai Chen, Yuchun Guo, Yongxiang Zhao, Zhenzhu Wang, Guowei Fu, and
Guangyan Wang. Concept-aware deep knowledge tracing and exercise recommendation
in an online learning system. International Educational Data Mining Society, 2019.

Ryan SJD Baker and Kalina Yacef. The state of educational data mining in 2009: A review
and future visions. JEDM— Journal of Educational Data Mining, 1(1):3–17, 2009.

Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the acquisition of
procedural knowledge. User modeling and user-adapted interaction, 4(4):253–278, 1994.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018
IEEE International Conference on Data Mining (ICDM), pages 197–206. IEEE, 2018.

Shalini Pandey and George Karypis. A self-attentive model for knowledge tracing. arXiv
preprint arXiv:1907.06837, 2019.

Chris Piech, Jonathan Spencer, Jonathan Huang, Surya Ganguli, Mehran Sahami,
Leonidas Guibas, and Jascha Sohl-Dickstein. Deep knowledge tracing. arXiv preprint
arXiv:1506.05908, 2015.

Georg Rasch. Probabilistic models for some intelligence and attainment tests. ERIC, 1993.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lilli-
crap. Meta-learning with memory-augmented neural networks. In International confer-
ence on machine learning, pages 1842–1850. PMLR, 2016.

Xia Sun, Xu Zhao, Yuan Ma, Xinrui Yuan, Feijuan He, and Jun Feng. Muti-behavior
features based knowledge tracking using decision tree improved dkvmn. In Proceedings
of the ACM Turing Celebration Conference-China, pages 1–6, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yuying Chen, Yu Yin, Zai Huang, and
Shijin Wang. Neural cognitive diagnosis for intelligent education systems. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 6153–6161, 2020.

Liu Li

Chun-Kit Yeung and Dit-Yan Yeung. Addressing two problems in deep knowledge trac-
ing via prediction-consistent regularization. In Proceedings of the Fifth Annual ACM
Conference on Learning at Scale, pages 1–10, 2018.

Michael V Yudelson, Kenneth R Koedinger, and Geoffrey J Gordon. Individualized bayesian
knowledge tracing models. In International conference on artificial intelligence in educa-
tion, pages 171–180. Springer, 2013.

Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. Dynamic key-value memory
networks for knowledge tracing. In Proceedings of the 26th international conference on
World Wide Web, pages 765–774, 2017.

Shuai Zhang, Yi Tay, Lina Yao, Aixin Sun, and Jake An. Next item recommendation with
self-attentive metric learning. In Thirty-Third AAAI Conference on Artificial Intelligence,
volume 9, 2019.

	Introduction
	Related Works
	Model
	Model Overview
	Muiti-factor DKVMN Layer
	Correlation Weights and Reading Process.
	Writing Porcess

	Historical Attention Layer
	Multi-head Attention Networks
	Historical Attention Layer
	Prediction Layer

	Experiments
	Datasets and Evaluation Metric
	Baseline Methods and Approach
	Results and Discussion
	Visualizing Parameters

	Conclusions and Future Works

