Outlier Path

A. Proof of Theorem 3

Although f7; is a feasible solution, it is not a local optimum
for 6 € [0, 1) and s < 0 because

@ <CO for ielInO,
a; > C for ieONnI,

(12a)
(12b)

violate the KKT conditions (7) for £. These feasibility and
sub-optimality indicates that

Jp(f3:0) < Jp(fp3 6), (13)

we arrive at (9). Q.E.D.

B. Proof of Theorem 4

Sufficiency: If (10e) is true, i.e., if there are NO instances
with y;f7(x;) = s, then any convex problems defined by
different partitions ? # P do not have feasible solutions in
the neighborhood of f;. This means that if f; is a condi-
tionally optimal solution, then it is locally optimal. (10a)-
(10d) are sufficient for f7 to be conditionally optimal for
the given partition #. Thus, (10) is sufficient for f; to be
locally optimal.

Necessity: From Theorem 3, if there exists an instance
such that y;f;(x;) = s, then f7 is a feasible but not lo-
cally optimal. Then (10e) is necessary for f; to be locally
optimal. In addition, (10a)-(10d) are also necessary for lo-
cal optimality, because of every local optimal solutions are
conditionally optimal for the given partition . Thus, (10)
is necessary for f to be locally optimal.

Q.E.D.

C. Implementation of D-step

In D-step, we work with the following convex problem

f;; := argmin Jz(f;6). (14)
fepol(P;s)

where, P is updated from P as (8).

Let us define a partition IT := {R, &, L, j’,(j’,(j”} of N,
such that

ieR = yif(x)>1, (15a)
ie& = yif(x)=1, (15b)
iel = s<yf(x)<l, (15¢)
iel’” = yf(x)=sandiel, (15d)
ied = vyf(x)=sandiecO, (15¢)
ie0’ = yf(x)<s. (15f)

If we write the conditionally optimal solution as

f) =" aly K@), (16)

JEN,

{aj.} jen, must satisfy the following KKT conditions

yifp(x) > 1 = a; =0 (17a)
yify(x)=1 = a; €]0,C], (17b)
s<yifp(x) <1 = a; =C (17¢)
yifx)=siel’ = aj >C, (17d)
yifj(x) =si€0 = aj <Co, (17¢)
Vifj(x) < s,i€ 0" = a = Cb. (17f)

At the beginning of the D-step, f;,(:ci) violates the KKT
conditions by

(bef)
« -1Co
Afi = yi[ Kinr o King.: ][ aA({)gf()) -1Cc }
Aor

where " is the corresponding « at the beginning of the
D-step, while Ay_,p and Ap_,; denote the difference in P
and P defined as

Arso :={i€ I |yifp(x) = s},
Aosr:={i € Olyifp(x) = s}.

Then, we consider the following another parametrized
problem with a parameter u € [0, 1]:

Jp(xis ) = fa(x) + pAfi Vi e N,.

In order to always satisfy the KKT conditions for fz(x;; 1),
we solve the following linear system
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where A := {&,1’,0'}). This linear system can also be
solved by using the piecewise-linear parametric program-
ming while the scalar parameter y is continuously moved
from 1 to 0.

In this parametric problem, we can show that f;(w,-; n =
Jp@) if g = 1 and fi’;(mi;,u) = fgi;(a:,-) if u = 0 for all
ieN,.

Since the number of elements in Ay_,p and Ap_, s are typ-
ically small, the D-step can be efficiently implemented
by a technique used in the context of incremental learn-
ing (Cauwenberghs & Poggio, 2001).



