Jump to content

Intersecting chords theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by SamanthaNguyen (talk | contribs) at 17:40, 20 June 2022 (+ Template:Infobox mathematical statement). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Intersecting chords theorem
TypeTheorem
FieldEuclidean geometry
StatementThe product of the lengths of the line segments on each chord are equal.
Symbolic statement

The intersecting chords theorem or just the chord theorem is a statement in elementary geometry that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

More precisely, for two chords AC and BD intersecting in a point S the following equation holds:

The converse is true as well, that is if for two line segments AC and BD intersecting in S the equation above holds true, then their four endpoints A, B, C and D lie on a common circle. Or in other words if the diagonals of a quadrilateral ABCD intersect in S and fulfill the equation above then it is a cyclic quadrilateral.

The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S, more precisely it can be stated that:

where r is the radius of the circle, and d is the distance between the center of the circle and the intersection point S. This property follows directly from applying the chord theorem to a third chord going through S and the circle's center M (see drawing).

The theorem can be proven using similar triangles (via the inscribed-angle theorem). Consider the angles of the triangles ASD and BSC:

This means the triangles ASD and BSC are similar and therefore

Next to the tangent-secant theorem and the intersecting secants theorem the intersecting chord theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.

References

  • Paul Glaister: Intersecting Chords Theorem: 30 Years on. Mathematics in School, Vol. 36, No. 1 (Jan., 2007), p. 22 (JSTOR)
  • Bruce Shawyer: Explorations in Geometry. World scientific, 2010, ISBN 9789813100947, p. 14
  • Hans Schupp: Elementargeometrie. Schöningh, Paderborn 1977, ISBN 3-506-99189-2, p. 149 (German).
  • Schülerduden - Mathematik I. Bibliographisches Institut & F.A. Brockhaus, 8. Auflage, Mannheim 2008, ISBN 978-3-411-04208-1, pp. 415-417 (German)