Jump to content

JULES: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Add: date. | Use this bot. Report bugs. | Suggested by Spinixster | Category:Atmospheric science stubs | #UCB_Category 192/448
Citation bot (talk | contribs)
Add: doi-access. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox2 | #UCB_webform_linked 351/724
Line 1: Line 1:
'''JULES''' (Joint UK Land Environment Simulator) is a [[land-surface parameterisation model scheme]] describing soil-vegetation-atmosphere interactions.<ref>{{Cite web|title=Joint UK Land Environment Simulator (JULES)|url=https://jules.jchmr.org/|access-date=2020-08-19|website=Joint UK Land Environment Simulator (JULES)|language=en}}</ref> JULES is a community lead{{Citation needed|date=August 2020}} project which evolved from MOSES, the [[Met Office|United Kingdom Meteorological Office]] (Met Office) Surface Exchange Scheme.<ref name=":0">{{Cite web|title=Joint UK Land Environment Simulator (JULES)|url=https://www.metoffice.gov.uk/research/approach/collaboration/jwcrp/jules|access-date=2020-08-19|website=[[Met Office]]}}</ref> It can be used as a stand-alone model or as the land surface part of the Met Office Unified Model.<ref name=":0" /> JULES has been used to help decide what tactics would be effective to help meet the goals of the [[Paris Agreement]].<ref>{{Cite web|last=Phelan|first=Matthew|title=Meeting Paris Agreement Global Warming Goals May Require Lots More Forests|url=https://www.inverse.com/article/47846-beccs-v-forests-a-computer-simulation-like-that-one-rocky-movie|access-date=2020-08-15|website=Inverse|date=7 August 2018 |language=en}}</ref> As well as use by the Met Office [[climate modelling]] group<ref>{{Cite web|title=Climate impacts|url=https://www.metoffice.gov.uk/research/climate/earth-system-science/climate-impacts|access-date=2020-08-19|website=Met Office|language=en}}</ref> a number of studies have cited JULES and used it as a tool to assess the [[effects of climate change]], and to simulate environmental factors from [[groundwater]] to [[Carbon dioxide in Earth's atmosphere|carbon in the atmosphere]].<ref>{{Cite journal|last1=Osborne|first1=T.|last2=Gornall|first2=J.|last3=Hooker|first3=J.|last4=Williams|first4=K.|last5=Wiltshire|first5=A.|last6=Betts|first6=R.|last7=Wheeler|first7=T.|date=October 2014|title=JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator|journal=Geoscientific Model Development Discussions|volume=7|issue=5|pages=6773–6809|doi=10.5194/gmdd-7-6773-2014|bibcode=2014GMDD....7.6773O|url=http://centaur.reading.ac.uk/39973/1/gmd-8-1139-2015.pdf|doi-access=free}}</ref><ref>{{Cite journal|last1=Best|first1=M. J.|last2=Pryor|first2=M.|last3=Clark|first3=D. B.|last4=Rooney|first4=G. G.|last5=Essery|first5=R. L. H.|last6=Ménard|first6=C. B.|last7=Edwards|first7=J. M.|last8=Hendry|first8=M. A.|last9=Porson|first9=A.|last10=Gedney|first10=N.|last11=Mercado|first11=L. M.|date=2011|title=The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes|url=http://centaur.reading.ac.uk/34587/|journal=Geoscientific Model Development|language=en|volume=4|issue=3|pages=677–699|doi=10.5194/gmd-4-677-2011|bibcode=2011GMD.....4..677B|issn=1991-9603|doi-access=free}}</ref><ref>{{Cite journal|last1=Yuan|first1=Wenping|last2=Zheng|first2=Yi|last3=Piao|first3=Shilong|last4=Ciais|first4=Philippe|last5=Lombardozzi|first5=Danica|last6=Wang|first6=Yingping|last7=Ryu|first7=Youngryel|last8=Chen|first8=Guixing|last9=Dong|first9=Wenjie|last10=Hu|first10=Zhongming|last11=Jain|first11=Atul K.|date=2019-08-01|title=Increased atmospheric vapor pressure deficit reduces global vegetation growth|journal=Science Advances|language=en|volume=5|issue=8|pages=eaax1396|doi=10.1126/sciadv.aax1396|pmid=31453338|pmc=6693914|bibcode=2019SciA....5.1396Y|issn=2375-2548}}</ref><ref>{{Cite journal|last1=Yin|first1=Yuanyuan|last2=Tang|first2=Qiuhong|last3=Wang|first3=Lixin|last4=Liu|first4=Xingcai|date=2016-02-12|title=Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China|journal=Scientific Reports|language=en|volume=6|issue=1|page=20905|doi=10.1038/srep20905|pmid=26867481|pmc=4751438|bibcode=2016NatSR...620905Y|issn=2045-2322}}</ref><ref>{{Cite journal|last1=Batelis|first1=Stamatis-Christos|last2=Rahman|first2=Mostaquimur|last3=Kollet|first3=Stefan|last4=Woods|first4=Ross|last5=Rosolem|first5=Rafael|date=2020|title=Towards the representation of groundwater in the Joint UK Land Environment Simulator|journal=Hydrological Processes|language=en|volume=34|issue=13|pages=2843–2863|doi=10.1002/hyp.13767|bibcode=2020HyPr...34.2843B|issn=1099-1085|doi-access=free}}</ref>
'''JULES''' (Joint UK Land Environment Simulator) is a [[land-surface parameterisation model scheme]] describing soil-vegetation-atmosphere interactions.<ref>{{Cite web|title=Joint UK Land Environment Simulator (JULES)|url=https://jules.jchmr.org/|access-date=2020-08-19|website=Joint UK Land Environment Simulator (JULES)|language=en}}</ref> JULES is a community lead{{Citation needed|date=August 2020}} project which evolved from MOSES, the [[Met Office|United Kingdom Meteorological Office]] (Met Office) Surface Exchange Scheme.<ref name=":0">{{Cite web|title=Joint UK Land Environment Simulator (JULES)|url=https://www.metoffice.gov.uk/research/approach/collaboration/jwcrp/jules|access-date=2020-08-19|website=[[Met Office]]}}</ref> It can be used as a stand-alone model or as the land surface part of the Met Office Unified Model.<ref name=":0" /> JULES has been used to help decide what tactics would be effective to help meet the goals of the [[Paris Agreement]].<ref>{{Cite web|last=Phelan|first=Matthew|title=Meeting Paris Agreement Global Warming Goals May Require Lots More Forests|url=https://www.inverse.com/article/47846-beccs-v-forests-a-computer-simulation-like-that-one-rocky-movie|access-date=2020-08-15|website=Inverse|date=7 August 2018 |language=en}}</ref> As well as use by the Met Office [[climate modelling]] group<ref>{{Cite web|title=Climate impacts|url=https://www.metoffice.gov.uk/research/climate/earth-system-science/climate-impacts|access-date=2020-08-19|website=Met Office|language=en}}</ref> a number of studies have cited JULES and used it as a tool to assess the [[effects of climate change]], and to simulate environmental factors from [[groundwater]] to [[Carbon dioxide in Earth's atmosphere|carbon in the atmosphere]].<ref>{{Cite journal|last1=Osborne|first1=T.|last2=Gornall|first2=J.|last3=Hooker|first3=J.|last4=Williams|first4=K.|last5=Wiltshire|first5=A.|last6=Betts|first6=R.|last7=Wheeler|first7=T.|date=October 2014|title=JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator|journal=Geoscientific Model Development Discussions|volume=7|issue=5|pages=6773–6809|doi=10.5194/gmdd-7-6773-2014|bibcode=2014GMDD....7.6773O|url=http://centaur.reading.ac.uk/39973/1/gmd-8-1139-2015.pdf|doi-access=free}}</ref><ref>{{Cite journal|last1=Best|first1=M. J.|last2=Pryor|first2=M.|last3=Clark|first3=D. B.|last4=Rooney|first4=G. G.|last5=Essery|first5=R. L. H.|last6=Ménard|first6=C. B.|last7=Edwards|first7=J. M.|last8=Hendry|first8=M. A.|last9=Porson|first9=A.|last10=Gedney|first10=N.|last11=Mercado|first11=L. M.|date=2011|title=The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes|url=http://centaur.reading.ac.uk/34587/|journal=Geoscientific Model Development|language=en|volume=4|issue=3|pages=677–699|doi=10.5194/gmd-4-677-2011|bibcode=2011GMD.....4..677B|issn=1991-9603|doi-access=free}}</ref><ref>{{Cite journal|last1=Yuan|first1=Wenping|last2=Zheng|first2=Yi|last3=Piao|first3=Shilong|last4=Ciais|first4=Philippe|last5=Lombardozzi|first5=Danica|last6=Wang|first6=Yingping|last7=Ryu|first7=Youngryel|last8=Chen|first8=Guixing|last9=Dong|first9=Wenjie|last10=Hu|first10=Zhongming|last11=Jain|first11=Atul K.|date=2019-08-01|title=Increased atmospheric vapor pressure deficit reduces global vegetation growth|journal=Science Advances|language=en|volume=5|issue=8|pages=eaax1396|doi=10.1126/sciadv.aax1396|pmid=31453338|pmc=6693914|bibcode=2019SciA....5.1396Y|issn=2375-2548}}</ref><ref>{{Cite journal|last1=Yin|first1=Yuanyuan|last2=Tang|first2=Qiuhong|last3=Wang|first3=Lixin|last4=Liu|first4=Xingcai|date=2016-02-12|title=Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China|journal=Scientific Reports|language=en|volume=6|issue=1|page=20905|doi=10.1038/srep20905|pmid=26867481|pmc=4751438|bibcode=2016NatSR...620905Y|issn=2045-2322}}</ref><ref>{{Cite journal|last1=Batelis|first1=Stamatis-Christos|last2=Rahman|first2=Mostaquimur|last3=Kollet|first3=Stefan|last4=Woods|first4=Ross|last5=Rosolem|first5=Rafael|date=2020|title=Towards the representation of groundwater in the Joint UK Land Environment Simulator|journal=Hydrological Processes|language=en|volume=34|issue=13|pages=2843–2863|doi=10.1002/hyp.13767|bibcode=2020HyPr...34.2843B|issn=1099-1085|doi-access=free}}</ref>


JULES has been described as the most accurate [[global carbon budget]] model of net [[ecosystem]] productivity, because it has more years of data than other models.<ref>{{Cite journal|title=Nitrogen Cycling in CMIP6 Land Surface Models: Progress and Limitations|url=https://bg.copernicus.org/preprints/bg-2019-513/bg-2019-513-RC2-supplement.pdf|journal=Biogeosciences (Preprint)|bibcode=2020BGeo...17.5129D |last1=Davies-Barnard |first1=Taraka |last2=Meyerholt |first2=Johannes |last3=Zaehle |first3=Sönke |last4=Friedlingstein |first4=Pierre |last5=Brovkin |first5=Victor |last6=Fan |first6=Yuanchao |last7=Fisher |first7=Rosie A. |last8=Jones |first8=Chris D. |last9=Lee |first9=Hanna |last10=Peano |first10=Daniele |last11=Smith |first11=Benjamin |last12=Wårlind |first12=David |last13=Wiltshire |first13=Andy J. |year=2020 |volume=17 |issue=20 |page=5129 |doi=10.5194/bg-17-5129-2020 }}</ref>
JULES has been described as the most accurate [[global carbon budget]] model of net [[ecosystem]] productivity, because it has more years of data than other models.<ref>{{Cite journal|title=Nitrogen Cycling in CMIP6 Land Surface Models: Progress and Limitations|url=https://bg.copernicus.org/preprints/bg-2019-513/bg-2019-513-RC2-supplement.pdf|journal=Biogeosciences (Preprint)|bibcode=2020BGeo...17.5129D |last1=Davies-Barnard |first1=Taraka |last2=Meyerholt |first2=Johannes |last3=Zaehle |first3=Sönke |last4=Friedlingstein |first4=Pierre |last5=Brovkin |first5=Victor |last6=Fan |first6=Yuanchao |last7=Fisher |first7=Rosie A. |last8=Jones |first8=Chris D. |last9=Lee |first9=Hanna |last10=Peano |first10=Daniele |last11=Smith |first11=Benjamin |last12=Wårlind |first12=David |last13=Wiltshire |first13=Andy J. |year=2020 |volume=17 |issue=20 |page=5129 |doi=10.5194/bg-17-5129-2020 |doi-access=free }}</ref>


==References==
==References==

Revision as of 13:55, 14 August 2023

JULES (Joint UK Land Environment Simulator) is a land-surface parameterisation model scheme describing soil-vegetation-atmosphere interactions.[1] JULES is a community lead[citation needed] project which evolved from MOSES, the United Kingdom Meteorological Office (Met Office) Surface Exchange Scheme.[2] It can be used as a stand-alone model or as the land surface part of the Met Office Unified Model.[2] JULES has been used to help decide what tactics would be effective to help meet the goals of the Paris Agreement.[3] As well as use by the Met Office climate modelling group[4] a number of studies have cited JULES and used it as a tool to assess the effects of climate change, and to simulate environmental factors from groundwater to carbon in the atmosphere.[5][6][7][8][9]

JULES has been described as the most accurate global carbon budget model of net ecosystem productivity, because it has more years of data than other models.[10]

References

  1. ^ "Joint UK Land Environment Simulator (JULES)". Joint UK Land Environment Simulator (JULES). Retrieved 2020-08-19.
  2. ^ a b "Joint UK Land Environment Simulator (JULES)". Met Office. Retrieved 2020-08-19.
  3. ^ Phelan, Matthew (7 August 2018). "Meeting Paris Agreement Global Warming Goals May Require Lots More Forests". Inverse. Retrieved 2020-08-15.
  4. ^ "Climate impacts". Met Office. Retrieved 2020-08-19.
  5. ^ Osborne, T.; Gornall, J.; Hooker, J.; Williams, K.; Wiltshire, A.; Betts, R.; Wheeler, T. (October 2014). "JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator" (PDF). Geoscientific Model Development Discussions. 7 (5): 6773–6809. Bibcode:2014GMDD....7.6773O. doi:10.5194/gmdd-7-6773-2014.
  6. ^ Best, M. J.; Pryor, M.; Clark, D. B.; Rooney, G. G.; Essery, R. L. H.; Ménard, C. B.; Edwards, J. M.; Hendry, M. A.; Porson, A.; Gedney, N.; Mercado, L. M. (2011). "The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes". Geoscientific Model Development. 4 (3): 677–699. Bibcode:2011GMD.....4..677B. doi:10.5194/gmd-4-677-2011. ISSN 1991-9603.
  7. ^ Yuan, Wenping; Zheng, Yi; Piao, Shilong; Ciais, Philippe; Lombardozzi, Danica; Wang, Yingping; Ryu, Youngryel; Chen, Guixing; Dong, Wenjie; Hu, Zhongming; Jain, Atul K. (2019-08-01). "Increased atmospheric vapor pressure deficit reduces global vegetation growth". Science Advances. 5 (8): eaax1396. Bibcode:2019SciA....5.1396Y. doi:10.1126/sciadv.aax1396. ISSN 2375-2548. PMC 6693914. PMID 31453338.
  8. ^ Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai (2016-02-12). "Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China". Scientific Reports. 6 (1): 20905. Bibcode:2016NatSR...620905Y. doi:10.1038/srep20905. ISSN 2045-2322. PMC 4751438. PMID 26867481.
  9. ^ Batelis, Stamatis-Christos; Rahman, Mostaquimur; Kollet, Stefan; Woods, Ross; Rosolem, Rafael (2020). "Towards the representation of groundwater in the Joint UK Land Environment Simulator". Hydrological Processes. 34 (13): 2843–2863. Bibcode:2020HyPr...34.2843B. doi:10.1002/hyp.13767. ISSN 1099-1085.
  10. ^ Davies-Barnard, Taraka; Meyerholt, Johannes; Zaehle, Sönke; Friedlingstein, Pierre; Brovkin, Victor; Fan, Yuanchao; Fisher, Rosie A.; Jones, Chris D.; Lee, Hanna; Peano, Daniele; Smith, Benjamin; Wårlind, David; Wiltshire, Andy J. (2020). "Nitrogen Cycling in CMIP6 Land Surface Models: Progress and Limitations" (PDF). Biogeosciences (Preprint). 17 (20): 5129. Bibcode:2020BGeo...17.5129D. doi:10.5194/bg-17-5129-2020.