
Efficient 𝑘-Clique Count Estimation with Accuracy Guarantee
Lijun Chang

The University of Sydney

Sydney, Australia

Lijun.Chang@sydney.edu.au

Rashmika Gamage

The University of Sydney

Sydney, Australia

rashmika.gamage@sydney.edu.au

Jeffrey Xu Yu

The Chinese University of Hong Kong

Hong Kong, China

yu@se.cuhk.edu.hk

ABSTRACT
Counting and enumerating all occurrences of 𝑘-cliques, i.e., com-

plete subgraphs with 𝑘 vertices, in a large graph𝐺 is a fundamental

problemwith many applications. However, exact solutions are often

infeasible due to the exponential growth in the number of 𝑘-cliques

when 𝑘 increases. Thus, a more practical approach is approximately

counting and uniformly sampling 𝑘-cliques. Turán-Shadow and

DPColorPath are two state-of-the-art algorithms for approximately

counting 𝑘-cliques. The general idea is first constructing a sample

space that is a superset of all 𝑘-cliques in 𝐺 , and then sampling 𝑡

elements uniformly-at-random (u.a.r.) from the sample space for

a pre-determined 𝑡 ; the 𝑘-clique count is estimated as the sample

space size multiplied by the ratio of 𝑘-cliques among the 𝑡 samples.

Although techniques have been proposed in Turán-Shadow for set-

ting 𝑡 to ensure the estimation accuracy, the theoretically chosen 𝑡 is

often too large to be practical. As a result, both of the existing algo-

rithms used a fixed 𝑡 in their implementations and thus do not offer

accuracy guarantee. In this paper, we propose the first randomized

algorithm that achieves the theoretical estimation accuracy and the

practical efficiency at the same time. Different from the existing

algorithms, we pre-determine the number 𝑠 of 𝑘-clique samples that
are required to achieve the estimation accuracy. Consequently, we

can estimate the running time of the sampling stage (i.e., time taken

to sample 𝑠 𝑘-cliques), for a given sample space. Then, we propose

to balance the time of constructing/refining the sample space and

the time of the sampling stage, by stopping the refinement of the

sample space once the elapsed time is comparable to the estimated

time of the sampling stage. Extensive empirical studies on large

real graphs show that our algorithm SR-kCCE provides an accurate

𝑘-clique count estimation and also runs efficiently. As a by-product,

our algorithm can also be used for efficiently sampling a certain

number of 𝑘-cliques u.a.r. from 𝐺 .

PVLDB Reference Format:
Lijun Chang, Rashmika Gamage, and Jeffrey Xu Yu. Efficient 𝑘-Clique

Count Estimation with Accuracy Guarantee. PVLDB, 17(11): 3707 - 3719,

2024.

doi:10.14778/3681954.3682032

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://lijunchang.github.io/kCliqueCountEstimation.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3682032

1 INTRODUCTION
Counting and enumerating all occurrences of a small subgraph

pattern (also known as graphlets or motifs) in a large graph is a

fundamental problem with applications in may domains such as

social network analysis, bioinformatics, cybersecurity and physics

(see [6, 22] and references therein). Among the subgraph patterns, of

particular interest is 𝑘-clique: a complete subgraph with 𝑘 vertices.

Small cliques have been used as building blocks for detecting over-

lapping communities [20], identifying large near-cliques [12, 25, 26],

and uncovering the hierarchical structure of dense subgraphs [23].

As a special case of 𝑘-clique for 𝑘 = 3, the triangle enumeration

problem has been extensively studied [4, 5, 19]. The state-of-the-art

algorithms enumerate all triangles in a graph 𝐺 with 𝑛 vertices

and𝑚 edges in O(𝑚 · 𝛼 (𝐺)) time, where 𝛼 (𝐺) ≤ ⌈
√
2𝑚 + 𝑛⌉ is the

degeneracy of 𝐺 . As 𝛼 (𝐺) usually is small for real graphs [9], all

triangles in a graph can be efficiently enumerated in practice. How-

ever, the success of triangle enumeration has not been translated to

an efficient enumeration of all 𝑘-cliques for a slightly larger 𝑘 , e.g.,

20, due to an exponential growth in the number of 𝑘-cliques. For

example, every 𝑘-vertex-subset of a maximum clique is a 𝑘-clique.

Let𝜔 (𝐺) be the maximum clique size of𝐺 . The number of 𝑘-cliques

in𝐺 is at least

(𝜔 (𝐺)
𝑘

)
which is huge when 𝜔 (𝐺) is large; as shown

in Table 2, 𝜔 (𝐺) could be hundreds or even thousands.

To overcome the overwhelming quantity of 𝑘-cliques, the Pivoter
algorithm [14] counts 𝑘-cliques in a graph without explicitly enu-

merating all of them, by using a combinatorial counting technique

in some parts of the enumeration process. Algorithmically, it is a

simple adaptation of the maximal clique enumeration algorithm

proposed in [9] by ignoring the exclusion set 𝑋 . Nevertheless, a

prominent insight was proved in [14] which shows that all cliques

(of different sizes) are uniquely represented without duplication in

the enumeration tree. As a result, Pivoter is able to simultaneously

count 𝑘-cliques in 𝐺 for all possible 𝑘 values. The main ingredi-

ent that makes Pivoter more efficient than the existing 𝑘-clique

enumerating algorithms (such as [5, 8]) is the pivoting technique

introduced in [3, 9] which can significantly reduce the search space.

However, as pointed out in [15] (with the same first-author as [14]),

Pivoter still takes an extremely long time for some graphs. Also, as

shown in our experiments, Pivoter does not finish within 5 hours

for several of our tested graph instances.

In view of the inefficiency of enumerating all 𝑘-cliques and ex-

actly counting the number of 𝑘-cliques, a more practical approach

would be uniformly sampling 𝑘-cliques and approximately count-
ing 𝑘-cliques. In particular, SCTL∗-Sample [12] samples a set of

10
7 𝑘-cliques for computing the 𝑘-clique densest subgraph. It first

materializes the enumeration tree of Pivoter, referred to as SCT
(for Succinct Clique Tree), and then samples 𝑘-cliques from the

SCT. However, in some cases, it is impossible to materialize the full

SCT; for example, the computation may be too expensive (same as

3707

https://doi.org/10.14778/3681954.3682032
https://lijunchang.github.io/kCliqueCountEstimation
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682032
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Pivoter), or the full SCT may be too large to be stored. For these

cases, SCTL∗-Sample sets a size lower bound 𝑘′ for the cliques that
are kept in SCT, and prunes all branches that only contain cliques

of size smaller than 𝑘′; 𝑘′ is typically set as 𝜔 (𝐺) − 1 in [12]. We

remark that (1) constructing the pruned SCT could still be expen-

sive, (2) sampling 𝑘-cliques from the pruned SCT is not a uniform

sampling when 𝑘′ > 𝑘 , since certain 𝑘-cliques are always excluded,

and (3) for counting 𝑘-cliques, Pivoter implicitly traverses the SCT
in a depth-first manner and thus does not need to explicitly store it.

Let C𝑘 (𝐺) be the set of all 𝑘-cliques in𝐺 and cnt𝑘 (𝐺) = |C𝑘 (𝐺) |
be the number of 𝑘-cliques in 𝐺 ; we refer to a 𝑘-clique simply

by its set of vertices. There are two lines of work for estimat-

ing cnt𝑘 (𝐺): Turán-Shadow [13] andDPColorPath [29]. They both

conduct the computation in two stages: Stage-I constructs a sample

space S𝑘 (𝐺) that is a superset of C𝑘 (𝐺), and Stage-II samples 𝑡 ele-

ments uniformly-at-random (u.a.r.) from S𝑘 (𝐺) where an element

of S𝑘 (𝐺) is a vertex set of cardinality 𝑘 . Let 𝑠 be the number of

𝑘-cliques among the 𝑡 samples. They use 𝜇 = 𝑠
𝑡 as an estimation of

the 𝑘-clique density 𝜇S𝑘 (𝐺) =
cnt𝑘 (𝐺)
|S𝑘 (𝐺) | , and ĉnt𝑘 (𝐺) = |S𝑘 (𝐺) | · 𝑠𝑡

as an estimation of cnt𝑘 (𝐺), the number of 𝑘-cliques in 𝐺 ; note

that, |S𝑘 (𝐺) | is the number of sample elements in S𝑘 (𝐺) and can

be efficiently obtained. Turán-Shadow and DPColorPath differ in:

• How to construct the sample space S𝑘 (𝐺).
• How to set the number 𝑡 of samples.

Following the Chernoff bound [18], if 𝑡 ≥ 3 ln(2/𝛿)
𝜇S𝑘 (𝐺) ·Y

2
for a given

relative error parameter Y ∈ (0, 1) and a failing probability 𝛿 ∈
(0, 1), then the estimation ĉnt𝑘 (𝐺) has the accuracy guarantee

that Pr

(��ĉnt𝑘 (𝐺) − cnt𝑘 (𝐺)�� > Y · cnt𝑘 (𝐺)
)
≤ 𝛿 . However, 𝜇S𝑘 (𝐺)

itself is the quantity that we are estimating. To circumvent this,

Turán-Shadow computes a lower bound 𝜇
lb
of 𝜇S𝑘 (𝐺) and sets 𝑡 as

3 ln(2/𝛿)
𝜇
lb
·Y2 which then guarantees the estimation accuracy. The main

idea of computing 𝜇
lb
is utilizing the Erdös’s theorem [10], a gener-

alization of Turán’s theorem, to obtain a lower bound of the number

of 𝑘-cliques in a subgraph 𝑔 when its edge density is at least 1− 1

𝑘−1 .
Thus, Turán-Shadow iteratively refines S𝑘 (𝐺) — by partitioning a

sample subspace of S𝑘 (𝐺) into multiple subspaces while retaining

all 𝑘-cliques — until Erdös’s theorem can be applied to all subspaces

of S𝑘 (𝐺); here, each sample subspace is a subgraph of𝐺 . However,

𝜇
lb
is a pessimistic lower bound and

3 ln(2/𝛿)
𝜇
lb
·Y2 could be very large.

In view of this, the implemented version of Turán-Shadow in [13]

simply sets 𝑡 as a fixed number (e.g., 5 × 104) and thus loses the

accuracy guarantee. On the other hand, DPColorPath only refines

the initial S𝑘 (𝐺) once and uses a fixed number of samples (e.g.,

𝑡 = 5 × 107) in Stage-II; thus, it also has no accuracy guarantee on

the estimation ĉnt𝑘 (𝐺).
In this paper, we propose the SR-kCCE algorithm to estimate the

number cnt𝑘 (𝐺) of 𝑘-cliques in 𝐺 , which not only guarantees the

estimation accuracy but also runs efficiently in practice. Our algo-

rithm follows the general two-stage framework of Turán-Shadow
and DPColorPath, but differs from them in the following ways.

Firstly, we use a new strategy for determining when to stop the

sampling process of Stage-II. Instead of pre-determining the number

𝑡 of samples, we pre-determine the number 𝑠 of required 𝑘-clique

samples. Following the stopping rule theorem of [7], the estima-

tion accuracy is guaranteed when 𝑠 ≥ 𝛾 = 1 + 4(1+Y) (𝑒−2) ln(2/𝛿)
Y2

where 𝑒 is the Euler’s number. One advantage of our sampling

stopping condition is that the running time of Stage-II can be es-

timated. Consequently, we can balance the running time of the

two stages by stopping the refinement of the sample space S𝑘 (𝐺)
(i.e., Stage-I) once the elapsed time is comparable to the estimated

running time of Stage-II; note that, Stage-II is expected to run faster

if we spend more time on refining S𝑘 (𝐺). Specifically, Stage-II’s
expected running time is

𝛾

𝜇S𝑘 (𝐺) ·𝑇sample

where 𝑇
sample

is the aver-

age time of sampling an element u.a.r. from S𝑘 (𝐺) and verifying

whether the sampled element forms a clique in𝐺 . We propose tech-

niques to compute an estimation𝑇
sample

of𝑇
sample

and an auxiliary

estimation �̃� of 𝜇S𝑘 (𝐺) . Note that, we still use the estimation 𝜇 = 𝑠
𝑡

(rather than �̃�) in the ultimate estimation ĉnt𝑘 (𝐺) of cnt𝑘 (𝐺), and
consequently the accuracy of the estimations 𝑇

sample
and �̃� only

affects the running time of our algorithm but not the accuracy of

the ultimate estimation ĉnt𝑘 (𝐺). We propose strategies to refine

S𝑘 (𝐺) in a way aiming to increase 𝜇S𝑘 (𝐺) such that the overall

running time of our algorithm is reduced. As a by-product, our al-

gorithm can also be used for efficiently sampling a certain number

of 𝑘-cliques u.a.r. from𝐺 , and thus can be incorporated into [12] for

approximate 𝑘-clique densest subgraph computation which, as we

discussed earlier, is computed based on a set of sampled 𝑘-cliques.

Note that, our algorithm actually samples 𝛾 ≈ 1.5 × 107 𝑘-cliques
for estimating cnt𝑘 (𝐺) when Y = 0.001.

Contributions.Our main contributions are summarized as follows.

• We propose the first 𝑘-clique count estimation algorithm

that achieves the theoretical estimation accuracy and the

practical efficiency at the same time.

• We abstract a general framework that captures both the

existing algorithms and our algorithm. We anticipate that

more algorithms could be designed based on the framework.

• We use a new sampling stopping condition to guarantee

the accuracy of the estimation.

• We propose techniques to refine the sample space in a way

aiming to balance the running time of the two stages.

Extensive empirical studies on large real graphs demonstrated the

efficiency and effectiveness of our algorithm SR-kCCE.

Organization. The remainder of the paper is organized as follows.

Preliminaries and the problem statement are given in Section 2. We

abstract a general framework for 𝑘-clique count estimation and

present our new algorithm SR-kCCE in Section 3. Experimental

results are discussed in Section 4, and related works are reviewed

in Section 5. Finally, Section 6 concludes the paper.

2 PRELIMINARIES
In this paper, we focus on a large unweighted and undirected graph

𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of undi-

rected edges. We denote the number of vertices and the number of

edges in 𝐺 by 𝑛 = |𝑉 | and𝑚 = |𝐸 |, respectively. The set of neigh-
bors of a vertex 𝑢 in 𝐺 is 𝑁𝐺 (𝑢) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}, and the

degree of 𝑢 in 𝐺 is 𝑑𝐺 (𝑢) = |𝑁𝐺 (𝑢) |. Given a vertex subset 𝑆 ⊆ 𝑉 ,
we use 𝐸 (𝑆) to denote the subset of 𝐸 whose both end-points are in

𝑆 , i.e., 𝐸 (𝑆) = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆}, and use 𝐺 [𝑆] to denote

3708

the subgraph of 𝐺 induced by 𝑆 , i.e., 𝐺 [𝑆] = (𝑆, 𝐸 (𝑆)). For ease
of presentation, we simply refer to an unweighted and undirected

graph as a graph, omit the subscript𝐺 from the notations when the

context is clear, and abbreviate 𝑁𝐺 [𝑆] (𝑢) as 𝑁𝑆 (𝑢). For an arbitrary

graph 𝑔, we refer to its set of vertices and its set of edges by 𝑉 (𝑔)
and 𝐸 (𝑔), respectively.

Definition 2.1 (Clique). A graph 𝑔 is a clique if it has an edge

between every pair of distinct vertices, or equivalently, 𝑑𝑔 (𝑢) =
|𝑉 (𝑔) | − 1,∀𝑢 ∈ 𝑉 (𝑔).

Apparently, any clique in 𝐺 must be a vertex-induced subgraph

of 𝐺 . Thus, we simply use a vertex set to denote a clique in 𝐺 . A

clique 𝐶 is called a 𝑘-clique if it contains exactly 𝑘 vertices, i.e.,

|𝐶 | = 𝑘 . We use C𝑘 (𝐺) to denote the set of all 𝑘-cliques in 𝐺 , and

cnt𝑘 (𝐺) = |C𝑘 (𝐺) | the number of 𝑘-cliques in 𝐺 .

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5 𝑣6

Figure 1: An example graph

Consider the graph in Figure 1, there are five 3-cliques C3 (𝐺) =
{{𝑣1, 𝑣2, 𝑣3}, {𝑣1, 𝑣2, 𝑣4}, {𝑣1, 𝑣3, 𝑣4}, {𝑣2, 𝑣3, 𝑣4}, {𝑣3, 𝑣4, 𝑣5}} and one
4-clique C4 (𝐺) = {{𝑣1, 𝑣2, 𝑣3, 𝑣4}} with 𝜔 (𝐺) = 4.

Problem Statement. Given a large graph𝐺 , an integer 𝑘 , a relative

error parameter Y ∈ (0, 1) and a failing probability 𝛿 ∈ (0, 1), we in
this paper study the problem of approximately counting the number

of 𝑘-cliques in 𝐺 , i.e., aim to design a randomized algorithm that

returns an estimated value ĉnt𝑘 (𝐺) satisfying

Pr

(��ĉnt𝑘 (𝐺) − cnt𝑘 (𝐺)�� > Y · cnt𝑘 (𝐺)
)
≤ 𝛿

That is, with probability at least 1− 𝛿 , the relative error is at most Y.

Frequently used notations are summarized in Table 1.

Table 1: Frequently used notations

Notation Meaning

C𝑘 (𝐺) the set of all 𝑘-cliques in𝐺

cnt𝑘 (𝐺) the number of 𝑘-cliques in𝐺 , i.e., | C𝑘 (𝐺) |
ĉnt𝑘 (𝐺) an estimation of cnt𝑘 (𝐺)
S𝑘 (𝐺) a sample space of C𝑘 (𝐺) satisfying S𝑘 (𝐺) ⊇ C𝑘 (𝐺)
S𝑘 (𝐺) a shadow that compactly represents S𝑘 (𝐺)
𝜇S𝑘 (𝐺) the 𝑘-clique density of S𝑘 (𝐺) , i.e., cnt𝑘 (𝐺)/|S𝑘 (𝐺) |
𝜇, �̃� estimations of 𝜇S𝑘 (𝐺)
𝜇
lb

a lower bound of 𝜇S𝑘 (𝐺)
(𝑅, 𝑆) a sample subspace of S𝑘 (𝐺)
Pℓ (𝑆) a sample space for the set Cℓ (𝑆) of ℓ-cliques in𝐺 [𝑆]

𝑡 the total number of samples taken from S𝑘 (𝐺)
𝑠 the number of samples that are 𝑘-cliques

𝛾 1 + 4(1+Y) (𝑒−2) ln(2/𝛿)
Y2

2.1 Oriented Graph and Color-Path
Orienting the input undirected graph 𝐺 into a directed acyclic

graph (DAG) is a technique often used in clique-related problems,

which not only removes duplicates but also improves the running

time. Specifically, given a total ordering ≺ of𝑉 , an undirected edge

(𝑢, 𝑣) is transformed into a directed edge ⟨𝑢, 𝑣⟩ if 𝑢 ≺ 𝑣 and into

⟨𝑣,𝑢⟩ otherwise. Denote the oriented graph by ®𝐺 . The set of out-
neighbors of 𝑢 in ®𝐺 is 𝑁 +®𝐺

(𝑢) = {𝑣 ∈ 𝑉 | ⟨𝑢, 𝑣⟩ ∈ 𝐸 (®𝐺)}. For
presentation simplicity, we omit the subscript ®𝐺 when the context

is clear. Note that, every clique in 𝐺 is also a (directed) clique in

®𝐺 , and vice versa. Thus, the number of 𝑘-cliques in 𝐺 is the same

as the number of 𝑘-cliques in ®𝐺 . For example, Figure 2 shows the

oriented version of the graph in Figure 1 according to the total

ordering 𝑣6 ≺ 𝑣5 ≺ 𝑣4 ≺ 𝑣3 ≺ 𝑣2 ≺ 𝑣1. The 4-clique {𝑣1, 𝑣2, 𝑣3, 𝑣4}
of 𝐺 corresponds to the directed 4-clique (𝑣4, 𝑣3, 𝑣2, 𝑣1) in ®𝐺 .

𝑣1𝑣2𝑣4 𝑣3𝑣5𝑣6

Figure 2: The oriented version ®𝐺 of the graph in Figure 1
based on degeneracy ordering 𝑣6 ≺ 𝑣5 ≺ 𝑣4 ≺ 𝑣3 ≺ 𝑣2 ≺ 𝑣1

The most popular ordering ≺ used in the literature is the degen-

eracy ordering. A total ordering 𝑣1 ≺ 𝑣2 ≺ · · · ≺ 𝑣𝑛 is a degeneracy
ordering if for each 1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑖 has the smallest degree in the

subgraph𝐺 [{𝑣𝑖 , . . . , 𝑣𝑛}] [17]. The degeneracy ordering can be com-

puted in O(𝑚) time by iteratively removing the smallest-degree

vertex [17]. A related concept is the degeneracy of𝐺 , denoted 𝛼 (𝐺),
which is the maximum out-degree in the DAG ®𝐺 obtained by ori-

enting𝐺 according to the degeneracy ordering. The total ordering

𝑣6 ≺ 𝑣5 ≺ · · · ≺ 𝑣1 used in the above example is a degeneracy

ordering; for example, 𝑣6 has the smallest degree in the input graph,

and 𝑣5 becomes the smallest-degree vertex after removing 𝑣6. From

Figure 2, we can see that the maximum out-degree is |𝑁 + (𝑣4) | = 3,

and thus the degeneracy is 𝛼 (𝐺) = 3.

𝑣4

4

𝑣3

3

𝑣6

2

𝑣2

2

𝑣5

1

𝑣1

1

Figure 3: The oriented version ®𝐺 of the graph in Figure 1
based on color ordering 𝑣4 ≺ 𝑣3 ≺ 𝑣6 ≺ 𝑣2 ≺ 𝑣5 ≺ 𝑣1

DPColorPath [29] proposed the concept of color-path to sample

𝑘-cliques. The general idea is that given an oriented graph ®𝐺 , every

𝑘-clique in it contains a unique directed path consisting of𝑘 vertices.

For simplicity, we call a directed path consisting of 𝑘 vertices as a

𝑘-path. DPColorPath orients the graph based on a color ordering

of the graph, for defining color-paths. In particular, a color ordering

is obtained by first computing a coloring for the graph (i.e., a color

number for each vertex such that there is no edge between any two

vertices of the same color), and then ordering the vertices in decreas-

ing order regarding their colors. As a result, all vertices in a 𝑘-path

have different colors. For the graph in Figure 1, a coloring of the ver-

tices is shown in Figure 3, and the coloring-based total ordering is

𝑣4 ≺ 𝑣3 ≺ 𝑣6 ≺ 𝑣2 ≺ 𝑣5 ≺ 𝑣1. Consequently, the set of all 3-paths in

®𝐺 is {(𝑣4, 𝑣3, 𝑣2), (𝑣4, 𝑣3, 𝑣1), (𝑣4, 𝑣3, 𝑣5), (𝑣4, 𝑣2, 𝑣1), (𝑣3, 𝑣2, 𝑣1)}; note

3709

that, in this particular example, all 3-paths are 3-cliques in𝐺 , but this

may not always be the case. A dynamic programming is proposed

in [29] to efficiently count the number of 𝑘-paths and uniformly

sample a 𝑘-path. Specifically, given the oriented graph ®𝐺 , it com-

putes 𝐻 (𝑣, 𝑖), the number of 𝑖-paths starting from 𝑣 , for each 𝑣 and

each 1 ≤ 𝑖 ≤ 𝑘 via the following recurrence.

𝐻 (𝑣, 𝑖) =

1 if 𝑖 = 1

0 if 𝑖 > 1 and 𝑁 + (𝑣) = ∅∑
𝑢∈𝑁 + (𝑣) 𝐻 (𝑢, 𝑖 − 1) if 𝑖 > 1 and 𝑁 + (𝑣) ≠ ∅

Filling the dynamic programming table 𝐻 (·, ·) takes O(|𝐸 (𝐺) | · 𝑘)
time. Then, the total number of 𝑘-paths in ®𝐺 is

∑
𝑣∈𝑉 (𝐺) 𝐻 (𝑣, 𝑘). A

random 𝑘-path can be obtained by randomly sampling vertices one-

by-one for the path. For example, to get the first vertex, each vertex

𝑣 ∈ 𝑆 is sampled with probability
𝐻 (𝑣,𝑘)∑

𝑣′ ∈𝑆 𝐻 (𝑣′,𝑘) where 𝑆 = 𝑉 (𝐺).
Let 𝑣1 be the first vertex sampled. Then, to get the second vertex,

we replace 𝑆 with 𝑁 + (𝑣1) and decrease 𝑘 by 1; so on so forth.

3 OUR APPROACH
In this section, we propose a new randomized algorithm SR-kCCE
for efficiently estimating the 𝑘-clique count with accuracy guaran-

tee. Before that, we first abstract a general framework for 𝑘-clique

count estimation in Section 3.1; the main purposes are three-fold.

• The framework enables us to show the similar ideas be-

tween Turán-Shadow [13] and DPColorPath [29], despite

that they are proposed as entirely different algorithms.

• As our algorithm SR-kCCE also follows the framework,

this enables us to concentrate on SR-kCCE’s new ideas in

Sections 3.2–3.4.

• We anticipate that the general framework will facilitate

further development of algorithms for efficient 𝑘-clique

count estimation with accuracy guarantee.

3.1 A General Framework
Our general framework for 𝑘-clique count estimation is shown

in Algorithm 1, which conducts the computation in two stages.

Stage-I (Lines 1–6) constructs a sample space S𝑘 (𝐺) that satisfies
the following three conditions:

• S𝑘 (𝐺) is a superset of C𝑘 (𝐺), i.e., C𝑘 (𝐺) ⊆ S𝑘 (𝐺),
• |S𝑘 (𝐺) |, the number of sample elements in S𝑘 (𝐺), can be

efficiently obtained, and

• Sampling an element uniformly-at-random (u.a.r.) from

S𝑘 (𝐺) can be efficiently conducted.

Essentially, each sample element of S𝑘 (𝐺) is a vertex set of cardi-
nality 𝑘 (which may possibly need to satisfy some other conditions).

Given the constructed sample space S𝑘 (𝐺), Stage-II (Lines 7–13)
draws random samples (i.e., elements) from it and then estimates

cnt𝑘 (𝐺) as |S𝑘 (𝐺) |multiplied by the proportion of samples that are

𝑘-cliques. Specifically, suppose we sample 𝑡 elements from S𝑘 (𝐺),
and let 𝑋𝑖 be 1 if the 𝑖-th sampled element forms a clique in 𝐺 and

𝑋𝑖 = 0 otherwise. Then, cnt𝑘 (𝐺) is estimated as

ĉnt𝑘 (𝐺) = |S𝑘 (𝐺) | ·
1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖 (1)

Algorithm 1: kCliqueCountEstimation(𝐺,𝑘, Y, 𝛿)
Input: A graph𝐺 , an integer 𝑘 , and accuracy parameters Y and 𝛿

Output: An estimation ĉnt𝑘 (𝐺) of cnt𝑘 (𝐺)
/* Stage-I: construct a sample space S𝑘 (𝐺), represented by a

compact structure S */

1 S← {(∅,𝑉) };
2 while the construction stopping condition is not satisfied do
3 Choose a sample subspace (𝑅, 𝑆) and remove it from S;

/* Refine the subspace (𝑅, 𝑆) by partitioning it */

4 for each 𝑣 ∈ 𝑆 do
5 Add (𝑅 ∪ 𝑣, 𝑁𝑆 (𝑣)) to S;
6 𝑆 ← 𝑆 \ 𝑣;

/* Stage-II: sample S𝑘 (𝐺) to estimate cnt𝑘 (𝐺) */

7 |S𝑘 (𝐺) | ←
∑
(𝑅,𝑆) ∈S | P𝑘−|𝑅 | (𝑆) |;

8 𝑠 ← 0; 𝑡 ← 0;

9 while the sampling stopping condition is not satisfied do

10 Sample a subspace (𝑅, 𝑆) from S with probability

|P𝑘−|𝑅 | (𝑆) |
|S𝑘 (𝐺) |

;

11 Sample an element 𝑃 u.a.r. from P𝑘−|𝑅 | (𝑆) ;
12 if 𝑃 forms a clique in𝐺 then 𝑠 ← 𝑠 + 1;
13 𝑡 ← 𝑡 + 1;
14 return ĉnt𝑘 (𝐺) ← |S𝑘 (𝐺) | · 𝑠𝑡 ;

The general idea is defining the 𝑘-clique density of a sample space

S𝑘 (𝐺) as

𝜇S𝑘 (𝐺) =
cnt𝑘 (𝐺)
|S𝑘 (𝐺) |

(2)

which is between 0 and 1. Note that, cnt𝑘 (𝐺) is fixed, and thus

the 𝑘-clique density only depends on S𝑘 (𝐺); that is, different sam-

ple spaces will result in different 𝜇S𝑘 (𝐺) values. Then, cnt𝑘 (𝐺) =
|S𝑘 (𝐺) | ·𝜇S𝑘 (𝐺) , and the problem becomes estimating 𝜇S𝑘 (𝐺) since
we assumed that |S𝑘 (𝐺) | can be efficiently obtained. Algorithm 1

estimates 𝜇S𝑘 (𝐺) by the empirical mean 𝜇 of 𝑡 samples taken based

on 𝜇S𝑘 (𝐺) , i.e.,

𝜇 =
1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖 (3)

and thus ĉnt𝑘 (𝐺) = |S𝑘 (𝐺) | ·𝜇 is an unbiased estimation of cnt𝑘 (𝐺).

3.1.1 Shadow. The most naive sample space S𝑘 (𝐺) could be the

set of all 𝑘-subsets (i.e., subsets of cardinality 𝑘) of 𝑉 . However, the

size of this naive sample space is enormous (i.e.,

(𝑛
𝑘

)
) which would

require a lot of samples to successfully sample a 𝑘-clique from it.

Thus, S𝑘 (𝐺) needs to be shrunk by removing non-cliques from it.

At the same time, we also need a data structure to compactly repre-

sent S𝑘 (𝐺) by noting that explicitly representing every element of

S𝑘 (𝐺) would take at least |C𝑘 (𝐺) | space which could be too large

to be stored. To achieve this, we borrow the term shadow from [13]

to compactly represent S𝑘 (𝐺), and give a precise definition for it.

Definition 3.1 (Shadow). Given a graph 𝐺 and an integer 𝑘 , a

shadow S𝑘 (𝐺) is a set of vertex pairs (𝑅, 𝑆), representing sample

subspaces, such that

• 𝑅 ⊆ 𝑉 and 𝑅 forms a clique in 𝐺 , where 𝑅 could be ∅;
• 𝑆 ⊆ 𝑉 \ 𝑅 and every vertex of 𝑆 is fully adjacent to 𝑅 in 𝐺 ;

• For every𝑘-clique𝐶 in𝐺 , there is a unique subspace (𝑅, 𝑆) ∈
S𝑘 (𝐺) such that 𝑅 ⊆ 𝐶 and 𝐶 \ 𝑅 ⊆ 𝑆 .

3710

We remark that, for estimating cnt𝑘 (𝐺), it is sufficient to store

|𝑅 |, instead of 𝑅, in S𝑘 (𝐺). But if the purpose is to sample and

report 𝑘-cliques from 𝐺 , then it is necessary to explicitly store 𝑅.

Following from the definition of shadow, it holds that

cnt𝑘 (𝐺) =
∑︁

(𝑅,𝑆) ∈S𝑘 (𝐺)
cnt𝑘−|𝑅 | (𝑆) (4)

That is, the 𝑘-cliques of 𝐺 are uniquely distributed into the sub-

spaces (𝑅, 𝑆) ∈ S𝑘 (𝐺). Given a vertex subset 𝑆 ⊆ 𝑉 and an integer ℓ ,

let Pℓ (𝑆) be the elementary sample structure which is a superset

of Cℓ (𝑆), the set of all ℓ-cliques of 𝐺 [𝑆]; for example, Pℓ (𝑆) could
be {𝑃 ⊆ 𝑆 | |𝑃 | = ℓ}. Given a sample subspace (𝑅, 𝑆) ∈ S𝑘 (𝐺), let
S𝑘 (𝑅, 𝑆) be the Cartesian product of {𝑅} and P𝑘−|𝑅 | (𝑆), i.e.,

S𝑘 (𝑅, 𝑆) = {𝑅} × P𝑘−|𝑅 | (𝑆) = {𝑅 ∪ 𝑃 | 𝑃 ∈ P𝑘−|𝑅 | (𝑆)} (5)

Then, the sample subspace (𝑅, 𝑆) together with P𝑘−|𝑅 | (𝑆) form
a compact representation of S𝑘 (𝑅, 𝑆), and a shadow S𝑘 (𝐺) is a
compact representation of the sample space S𝑘 (𝐺) where

S𝑘 (𝐺) =
⋃

(𝑅,𝑆) ∈S𝑘 (𝐺)
S𝑘 (𝑅, 𝑆) =

⋃
(𝑅,𝑆) ∈S𝑘 (𝐺)

{𝑅} × P𝑘−|𝑅 | (𝑆) (6)

and

C𝑘 (𝐺) ⊆ S𝑘 (𝐺) if and only if C𝑘−|𝑅 | (𝑆) ⊆ P𝑘−|𝑅 | (𝑆)
A random element of S𝑘 (𝐺) can be sampled from S𝑘 (𝐺) in two

steps. Firstly, a random subspace (𝑅, 𝑆) is sampled from S𝑘 (𝐺) with
probability proportional to |P𝑘−|𝑅 | (𝑆) | = |S𝑘 (𝑅, 𝑆) | (Line 10). Then,
an element 𝑃 is sampled u.a.r from P𝑘−|𝑅 | (𝑆) (Line 11). That is, the
element sampled for S𝑘 (𝐺) is 𝑅 ∪ 𝑃 .

In Algorithm 1, the shadow S is initialized as {(∅,𝑉)}, and it

is iteratively refined (by Lines 3–6) to shrink the corresponding

sample space S𝑘 (𝐺). For example, Figure 5 illustrates the shadow

refinement process for the graph in Figure 4 and 𝑘 = 4. Each node

in the tree represents a sample subspace (𝑅, 𝑆), where nodes with
|𝑅 | + |𝑆 | < 𝑘 are pruned from the tree. When refining a subspace

(𝑅𝑖 , 𝑆𝑖), it is replaced by all its children in the tree. That is, the

shadow consists of all leaf nodes in the tree. When walking from

the root to a leaf node in the tree, 𝑅 grows while 𝑆 shrinks.

𝑣3 𝑣4 𝑣7 𝑣9

𝑣2 𝑣5 𝑣8 𝑣10

𝑣1

𝑣6

Figure 4: Another example graph

Lemma 3.2. Lines 1–6 of Algorithm 1 correctly construct a valid
shadow according to Definition 3.1.

Proof. We prove the lemma by induction. Firstly, the initial

S0 = {(∅,𝑉)} trivially satisfies all conditions of Definition 3.1. Now,

suppose that S satisfies all conditions of Definition 3.1, and let S′ be
the result of one refinement (i.e., running Lines 3–6 of Algorithm 1

once). We prove that S′ also satisfies all conditions of Definition 3.1.

S = { }

S = { }
R = { }

S = { }
R = { }

S = { }
R = { }

 =

S = { }
R = { }

S = { }
R = { }

S = { }
R = { }

Figure 5: Shadow refinement process for the graph in Figure 4

Let (𝑅, 𝑆) be the sample subspace selected at Line 3 to refine S, and

{(𝑅𝑖 , 𝑆𝑖)}𝑙𝑖=1 be the subspaces added at Line 5. It is easy to see that

(𝑅𝑖 , 𝑆𝑖) satisfies the first two conditions of Definition 3.1 for each

1 ≤ 𝑖 ≤ 𝑙 . To prove the last condition, let’s consider an arbitray

𝑘-clique 𝐶 such that 𝑅 ⊆ 𝐶 ⊆ 𝑅 ∪ 𝑆 , and let 𝑣 𝑗 be the first vertex of

𝑆 ∩𝐶 according to the order they are processed at Line 4. Then, the

subspace (𝑅 𝑗 , 𝑆 𝑗) = (𝑅 ∪ 𝑣 𝑗 , 𝑁𝑆 (𝑣 𝑗)) must satisfy 𝑅 𝑗 ⊆ 𝐶 ⊆ 𝑅 𝑗 ∪𝑆 𝑗 .
Moreover, we can see that for each 𝑖′ < 𝑗 , 𝑅𝑖′ ⊈ 𝐶 according to

the definition of 𝑣 𝑗 , and for each 𝑖′′ > 𝑗 , 𝐶 ⊈ 𝑅𝑖′′ ∪ 𝑆𝑖′′ since

𝑣 𝑗 ∉ 𝑅𝑖′′ ∪ 𝑆𝑖′′ . Hence, the lemma holds. □

We remark from the above proof that Lines 1–6 of Algorithm 1

correctly construct a valid shadow no matter what is the stopping

condition at Line 2 and which subspace (𝑅, 𝑆) is selected at Line 3.

3.1.2 Instantiations of the Framework. Both of the existing algo-

rithms, Turán-Shadow [13] and DPColorPath [29], can be con-

sidered as instantiations of the framework in Algorithm 1. For

Turán-Shadow [13], the elementary sample structure Pℓ (𝑆) (used
in Equation (6)) is defined as Pℓ (𝑆) = {𝑃 ⊆ 𝑆 | |𝑃 | = ℓ}. The con-
struction stopping condition at Line 2 is: ∀(𝑅, 𝑆) ∈ S𝑘 (𝐺), the edge
density of 𝐺 [𝑆] defined as |𝐸 (𝑆) |/

(|𝑆 |
2

)
is higher than 1 − 1

𝑘−|𝑅 |−1 .
If the stopping condition is not satisfied, then a sample subspace

(𝑅, 𝑆) ∈ S with |𝐸 (𝑆) |/
(|𝑆 |
2

)
≤ 1− 1

𝑘−|𝑅 |−1 is chosen at Line 3 to be

refined. The sampling stopping condition at Line 9 is 𝑡 ≥ 3 ln(2/𝛿)
𝜇
lb
·Y2 ,

where 𝜇
lb
is a lower bound of the 𝑘-clique density 𝜇S𝑘 (𝐺) and

𝜇
lb
= min

(𝑅,𝑆) ∈S
(𝑘 − |𝑅 |)!

(𝑘 − |𝑅 | − 1)𝑘−|𝑅 |−2 · |𝑆 |2
(7)

However, the lower bound 𝜇
lb
computed by Equation (7) could be

very small in practice as shown in Figure 9 in our experiments,

and thus an extremely large and impractical number 𝑡 of samples

would be needed to achieve the accuracy guarantee. In view of

this, the implemented version of Turán-Shadow in [13] sets 𝑡 as a

fixed value 5 × 104, and thus loses the accuracy guarantee on the

estimated value ĉnt𝑘 (𝐺).
For DPColorPath [29], the elementary sample structure Pℓ (𝑆)

is defined as the set of ℓ-paths in 𝐺 [𝑆] as introduced in Section 2.1.

The construction stopping condition (Line 2 of Algorithm 1) is that

for every (𝑅, 𝑆) ∈ S𝑘 (𝐺), |𝑅 | ≥ 1. Equivalently, DPColorPath only

refines S (i.e., runs Lines 3–6) once. That is, the shadow constructed

byDPColorPath for the graph in Figure 4 is the top part of Figure 5,

i.e., by removing the node with 𝑅 = {𝑣8, 𝑣5}. The sampling stopping

condition (Line 9) is that the number 𝑡 of samples is above a fixed

threshold (e.g., 5× 107). Consequently, DPColorPath does not have

any accuracy guarantee on the estimated value ĉnt𝑘 (𝐺).

3711

Our new algorithm SR-kCCE is also an instantiation of the frame-

work. SR-kCCE uses the same definition of Pℓ (𝑆) as DPColorPath,
but differs from the existing algorithms in the following aspects.

• We use a new sampling stopping condition to guarantee

the accuracy for the estimated value ĉnt𝑘 (𝐺). (Section 3.2)

• We refine the shadow S in such away to balance the running
time of the two Stages, by proposing a new construction

stopping condition and a new strategy of choosing which

sample subspace (𝑅, 𝑆) in S to refine. (Section 3.3)

• We adopt the alias method to speed up the sampling pro-

cess, and propose techniques to achieve efficiently sampling

without storing all the alias structures. (Section 3.4)

3.2 A New Sampling Stopping Condition
In this subsection, we focus on the accuracy of our estimation,

which is determined by Stage-II of our algorithm.

Given a sample space S𝑘 (𝐺) (in its compact form S𝑘 (𝐺)), the
existing algorithms Turán-Shadow [13] and DPColorPath [29] first

determine the number 𝑡 of samples and then draw 𝑡 samples u.a.r.

from S𝑘 (𝐺). One strategy of ensuring the estimation accuracy,

as proposed in Turán-Shadow, is to compute a lower bound 𝜇
lb

of 𝜇S𝑘 (𝐺) =
cnt𝑘 (𝐺)
|S𝑘 (𝐺) | and then set 𝑡 as

3 ln(2/𝛿)
𝜇
lb
·Y2 . However, the

computed 𝜇
lb
is a pessimistic lower bound, and as a result, the

obtained 𝑡 is often too large to be practically used. Consequently,

Turán-Shadow uses a fixed value (e.g., 5 × 104) for 𝑡 in their imple-

mentation and thus loses the accuracy guarantee.

Algorithm 2: SR-Estimator(S𝑘 (𝐺), 𝑘, Y, 𝛿)
Input: A shadow S𝑘 (𝐺) , an integer 𝑘 , accuracy parameters Y and 𝛿

Output: An estimation ĉnt𝑘 (𝐺) of cnt𝑘 (𝐺)
1 𝑠 ← 0; 𝑡 ← 0;

2 while 𝑠 < 1 + 4(1+Y) (𝑒−2) ln(2/𝛿)
Y2

do
3 Sample an element 𝐴 u.a.r. from S𝑘 (𝐺) ;
4 if 𝐴 forms a clique in𝐺 then 𝑠 ← 𝑠 + 1;
5 𝑡 ← 𝑡 + 1;
6 return ĉnt𝑘 (𝐺) ← |S𝑘 (𝐺) | · 𝑠𝑡 ;

In this paper, we use a different strategy for determining when

to stop the sampling process. Specifically, we first determine the

number 𝑠 of required successful samples (i.e., samples that are

𝑘-cliques), and then keep taking samples from S𝑘 (𝐺) until 𝑠 suc-
cessful samples have been taken. We still use

𝑠
𝑡 to estimate 𝜇S𝑘 (𝐺) .

The pseudocode is shown in Algorithm 2, where the details of how

to efficiently sample an element from S𝑘 (𝐺) at Line 3 will be dis-
cussed in Section 3.4. Based on the stopping rule theorem of [7], the

estimation accuracy is guaranteed when 𝑠 ≥ 1 + 4(1+Y) (𝑒−2) ln(2/𝛿)
Y2

where 𝑒 is the Euler’s number. Thus, we call our estimator as

SR-Estimator where SR stands for stopping rule. We refer to the

quantity 1 + 4(1+Y) (𝑒−2) ln(2/𝛿)
Y2

by 𝛾 in the remainder of the paper.

Theorem 3.3. The ĉnt𝑘 (𝐺) outputted by Algorithm 2 satisfies
Pr

(
|ĉnt𝑘 (𝐺) −cnt𝑘 (𝐺) | > Y ·cnt𝑘 (𝐺)

)
≤ 𝛿 . When Algorithm 2 stops,

the expected value of 𝑡 satisfies 𝛾 · |S𝑘 (𝐺) |
cnt𝑘 (𝐺) | ≤ E[𝑡] < (𝛾+1) · |S𝑘 (𝐺) |cnt𝑘 (𝐺) .

Proof. Note that
𝑠
𝑡 is an estimation of 𝜇S𝑘 (𝐺) =

cnt𝑘 (𝐺)
|S𝑘 (𝐺) | . Thus,

the theorem follows from [7]. □

We remark that (1) the ĉnt𝑘 (𝐺) outputted by Algorithm 2 is

an unbiased estimation of the number cnt𝑘 (𝐺) of 𝑘-cliques in 𝐺 ,

and (2) the accuracy guarantee of Algorithm 2 (i.e., Pr

(
|ĉnt𝑘 (𝐺) −

cnt𝑘 (𝐺) | > Y · cnt𝑘 (𝐺)
)
≤ 𝛿) holds for any shadow S𝑘 (𝐺) that

satisfies Definition 3.1. But different shadows will result in different

running time. We will propose techniques in the next subsection

to construct the shadow in such a way to improve the overall

performance, i.e., the total running time of Stage-I and Stage-II.

3.3 Balance the Running Time of the Two Stages
In this subsection, we focus on the efficiency aspect of our algo-

rithm. Our high-level idea is to balance the running time of the two

stages. Note that, the existing algorithms conduct the two stages

independently, and either stage could take significantly more time

than the other stage; this impedes their overall performance.

Construction Stopping Condition. Following from Theorem 3.3,

the expected number 𝑡 of samples taken when Algorithm 2 termi-

nates is approximately
𝛾

𝜇S𝑘 (𝐺)
where 𝜇S𝑘 (𝐺) =

cnt𝑘 (𝐺)
|S𝑘 (𝐺) | . Let𝑇sample

be the average time of running Lines 3–4 of Algorithm 2, i.e., sam-

pling an element from S𝑘 (𝐺) and verifying whether it forms a

clique in 𝐺 . Then, the running time (note that, not the time com-

plexity) of Algorithm 2 (i.e., Stage-II of SR-kCCE) is

Running time of Algorithm 2 ≈ 𝛾

𝜇S𝑘 (𝐺)
·𝑇

sample
(8)

We prove in the lemma below that after each refinement of (a sample

subspace of) the shadow S𝑘 (𝐺), the corresponding S𝑘 (𝐺) shrinks
and consequently 𝜇S𝑘 (𝐺) increases.

Lemma 3.4. Assume that the same vertex ordering is used in defin-
ing P𝑘−|𝑅 | (𝑆) for different subspaces of S𝑘 (𝐺) and that vertices are
processed (at Line 4 of Algorithm 1) in the same order as in obtain-
ing P𝑘−|𝑅 | (𝑆). Then, each refinement of (a sample subspace of) the
shadow S𝑘 (𝐺) makes the corresponding S𝑘 (𝐺) smaller.

Proof. Suppose (𝑅, 𝑆) ∈ S𝑘 (𝐺) is refined into {(𝑅𝑖 , 𝑆𝑖)}𝑙𝑖=1 by
running Lines 3–6 of Algorithm 1 once. We prove in the following

that

⋃𝑙
𝑖=1 S𝑘 (𝑅𝑖 , 𝑆𝑖) ⊆ S𝑘 (𝑅, 𝑆); see Equation (5) for the defini-

tion of S𝑘 (𝑅, 𝑆). Firstly, by the same argument as in the proof of

Lemma 3.2, we have that S𝑘 (𝑅𝑖′ , 𝑆𝑖′) ∩ S𝑘 (𝑅𝑖′′ , 𝑆𝑖′′) = ∅ for any
1 ≤ 𝑖′ ≠ 𝑖′′ ≤ 𝑙 . Secondly, let ℓ = 𝑘 − |𝑅 | and 𝑣𝑖 = 𝑅𝑖 \ 𝑅, and
let’s consider any (ℓ − 1)-path 𝑃 in the oriented version of 𝐺 [𝑆𝑖].
Then, 𝑣𝑖 ∪𝑃 must be an ℓ-path in the oriented version of𝐺 [𝑆], since
𝑃 ⊆ 𝑆𝑖 = 𝑁 +

𝑆
(𝑣𝑖). Hence, the lemma holds. □

If we stop Stage-I immediately after initializing S𝑘 (𝐺) as {(∅,𝑉)},
then Stage-I will be very efficient since the while loop (Lines 2–6 of

Algorithm 2) is not executed; however, Stage-II (i.e., Algorithm 2)

will take a very long time as the 𝑘-clique density is expected to

be very low due to the large size of P𝑘 (𝑉). When we spend more

time on refining S𝑘 (𝐺), the running time of Stage-I increases, but

the running time of Stage-II (i.e., Equation (8)) will decrease since

𝜇S𝑘 (𝐺) increases as discussed above; Figure 6 illustrates this phe-

nomenon. Thus, intuitively a sweet spot would be that the two stages
take similar running time; it can be shown that the overall time

3712

Stage - I

Stage - II

Running
Time

Refinements

Figure 6: Running time of the two stages w.r.t. the number
of refinement operations

would be at most twice the minimum running time if the optimal

number of refinements is conducted.

When determining whether we should stop Stage-I and go to

Stage-II, it is straightforward to get the elapsed time of Stage-I.

However, it is non-trivial to get a good estimation on the running

time of Stage-II without actually executing it. Considering Equa-

tion (8), 𝛾 is a fixed quantity as Y and 𝛿 are given in the input, and

𝑇
sample

can be easily estimated by taking a few samples from S𝑘 (𝐺)
and measuring the running time. What remains is estimating the

𝑘-clique density 𝜇S𝑘 (𝐺) , which however is the quantity that we are

trying to estimate; that is, we fall into a loop. To resolve this issue,

we propose to compute an auxiliary estimation for 𝜇S𝑘 (𝐺) , and
denote it by �̃�, to distinguish it from our ultimate estimation 𝜇 = 𝑠

𝑡 .

Note that, the estimation �̃� does not need to have any theoretical

accuracy guarantee, and the accuracy of the estimation �̃� only af-

fects the running time of our algorithm but not the accuracy of the

ultimate estimation 𝜇. Thus, our construction stopping condition is

Elapsed time ≥ 𝛾

�̃�
·𝑇

sample

Compute an Auxiliary Estimation �̃�. The estimation �̃� is used

for determining whether we should switch from Stage-I to Stage-

II. That is, we need to continuously compute the estimation �̃� for

𝜇S𝑘 (𝐺) =
cnt𝑘 (𝐺)
|S𝑘 (𝐺) | when S𝑘 (𝐺) is dynamically changing. This is in

contrast to Algorithm 2 where S𝑘 (𝐺) is assumed to be fixed. As

a result, Algorithm 2 as well as the existing algorithms cannot be

used to compute the auxiliary estimation �̃�.

In view of this, we propose a different method to compute the

auxiliary estimation �̃�. As |S𝑘 (𝐺) | can be incrementally obtained

when S𝑘 (𝐺) changes, we only need to estimate cnt𝑘 (𝐺). Recall
that cnt𝑘 (𝐺) =

∑
(𝑅,𝑆) ∈S𝑘 (𝐺) cnt𝑘−|𝑅 | (𝑆). Thus, we propose to

compute an estimation ¥𝜇 of the (𝑘 − |𝑅 |)-clique density of𝐺 [𝑆], i.e.,
cnt𝑘−|𝑅 | (𝑆)
| P𝑘−|𝑅 | (𝑆) | , for every (𝑅, 𝑆) ∈ S, and store ¥𝜇 together with (𝑅, 𝑆).
That is, we revise each sample subspace of S𝑘 (𝐺) to (𝑅, 𝑆, ¥𝜇), where
¥𝜇 is a (rough) estimation of

cnt𝑘−|𝑅 | (𝑆)
| P𝑘−|𝑅 | (𝑆) | . Consequently, we estimate

cnt𝑘−|𝑅 | (𝑆) as |P𝑘−|𝑅 | (𝑆) | · ¥𝜇, and compute an auxiliary estimation

of cnt𝑘 (𝐺) as

c̃nt𝑘 (𝐺) =
∑︁

(𝑅,𝑆, ¥𝜇) ∈S
|P𝑘−|𝑅 | (𝑆) | · ¥𝜇

and an auxiliary estimation of 𝜇S𝑘 (𝐺) as

�̃� =
c̃nt𝑘 (𝐺)∑

(𝑅,𝑆, ¥𝜇) ∈S | P𝑘−|𝑅 | (𝑆) |

We remark that, c̃nt𝑘 (𝐺) is a biased estimation of cnt𝑘 (𝐺) and �̃� is

a biased estimation of 𝜇S𝑘 (𝐺) . Nevertheless, this dose not affect the
accuracy of our final estimation 𝜇 and ĉnt𝑘 (𝐺), as discussed above.

Algorithm 3: ShadowConstruction(𝐺,𝑘, Y, 𝛿)
Input: A graph𝐺 , an integer 𝑘 , and accuracy parameters Y and 𝛿

Output: A shadow S

1 c̃nt𝑘 (𝐺) ← 1; |S𝑘 (𝐺) | ← |P𝑘 (𝑉) |; 𝑇
sample

←∞;
2 S← {(∅,𝑉 , c̃nt𝑘 (𝐺)/|S𝑘 (𝐺) |) };
3 while ElapsedTime() < (1 + 4(1+Y) (𝑒−2) ln(2/𝛿)

Y2
) |S𝑘 (𝐺) |
c̃nt𝑘 (𝐺)

𝑇
sample

do

4 (𝑅, 𝑆, ¥𝜇) ← argmin(𝑅′,𝑆 ′, ¥𝜇′) ∈S ¥𝜇′;
5 Remove (𝑅, 𝑆, ¥𝜇) from S;
6 c̃nt𝑘 (𝐺) ← c̃nt𝑘 (𝐺) − |P𝑘−|𝑅 | (𝑆) | · ¥𝜇;
7 |S𝑘 (𝐺) | ← |S𝑘 (𝐺) | − |P𝑘−|𝑅 | (𝑆) |;
8 if 𝑅 = ∅ then 𝑛

sample
← 0;𝑇

total
← 0;

9 for each 𝑣 ∈ 𝑆 do
10 (𝑅′, 𝑆 ′) ← (𝑅 ∪ 𝑣, 𝑁𝑆 (𝑣)) ;
11 Compute | P𝑘−|𝑅′ | (𝑆 ′) | , and other auxiliary information

that are needed for sampling elements from P𝑘−|𝑅′ | (𝑆 ′) ;
12 ¥𝜇′ ← the proportion of 𝑘-cliques among

|𝑆 ′ |2
𝑘−|𝑅′ | elements

sampled u.a.r. from P𝑘−|𝑅′ | (𝑆 ′) ;
13 Add (𝑅′, 𝑆 ′, ¥𝜇′) to S;
14 c̃nt𝑘 (𝐺) ← c̃nt𝑘 (𝐺) + | P𝑘−|𝑅′ | (𝑆 ′) | · ¥𝜇′;
15 |S𝑘 (𝐺) | ← |S𝑘 (𝐺) | + | P𝑘−|𝑅′ | (𝑆 ′) |;
16 𝑆 ← 𝑆 \ 𝑣;
17 if 𝑅 = ∅ then
18 𝑛

sample
← 𝑛

sample
+ |𝑆 ′ |2

𝑘−|𝑅′ | ;

19 𝑇
total
← 𝑇

total
+ the running time of Line 12;

20 if 𝑅 = ∅ then𝑇
sample

← 𝑇
total

𝑛
sample

;

21 return S;

The Pseudocode of Shadow Construction. Based on the above

discussions, the pseudocode of our shadow construction algorithm

is shown in Algorithm 3. We first initialize c̃nt𝑘 (𝐺) as 1, |S𝑘 (𝐺) | as
|P𝑘 (𝑉) |,𝑇sample

as∞, and S as {(∅,𝑉 , c̃nt𝑘 (𝐺)/|S𝑘 (𝐺) |)} (Lines 1–
2). We estimate the running time of invoking Algorithm 2 with

the shadow S as 𝛾 · |S𝑘 (𝐺) |
c̃nt𝑘 (𝐺)

· 𝑇
sample

(Line 3). As long as the cur-

rent elapsed time is less than the estimated running time of Algo-

rithm 2 with the current S, we choose a subspace from S to refine

(Lines 4–20). Specifically, we choose the subspace (𝑅, 𝑆, ¥𝜇) that has
the smallest ¥𝜇 to refine (Line 4), in the hope of increasing the 𝑘-

clique density 𝜇S𝑘 (𝐺) . To refine (𝑅, 𝑆, ¥𝜇), we first update c̃nt𝑘 (𝐺)
and |S𝑘 (𝐺) | as we are removing (𝑅, 𝑆, ¥𝜇) from S (Lines 5–7), and
then for each 𝑣 ∈ 𝑆 (Line 9), we add (𝑅 ∪ 𝑣, 𝑁𝑆 (𝑣)) into S (Line 13)
and remove 𝑣 from 𝑆 (Line 16). Let (𝑅′, 𝑆′) be (𝑅∪𝑣, 𝑁𝑆 (𝑣)) (Line 10).
We compute |P𝑘−|𝑅′ | (𝑆 ′) | by conducting a dynamic programming

(Line 11) as discussed in Section 2.1. At the same time, we also

compute and store some auxiliary information that will be used

to speedup the sampling process of Line 12; details will be given

in Section 3.4. After that, we sample
|𝑆 ′ |2

𝑘−|𝑅′ | elements u.a.r. from

P𝑘−|𝑅′ | (𝑆 ′), and compute ¥𝜇′ as the proportion of samples that are

cliques in 𝐺 (Line 12). When adding (𝑅′, 𝑆′, ¥𝜇′) to S, we also up-

date c̃nt𝑘 (𝐺) and |S𝑘 (𝐺) | (Lines 14–15). For the first refinement

(i.e., when 𝑅 = ∅), we record the total number 𝑛
sample

of samples

drawn and the total time 𝑇
total

of sampling (Lines 17–19), and then

compute 𝑇
sample

as
𝑇
total

𝑛
sample

(Line 20).

3713

3.4 Efficient Sampling
In this subsection, we discuss how to efficiently sample elements

u.a.r. from S𝑘 (𝐺), which is needed at Line 3 of Algorithm 2 and

Line 12 of Algorithm 3. Abstractly, we need to efficiently sample

values from a discrete probability distribution. For example, given a

sample subspace (𝑅, 𝑆) ∈ S𝑘 (𝐺), as discussed in Section 2.1 the first

vertex of an (𝑘−|𝑅 |)-path in P𝑘−|𝑅 | (𝑆) is sampled from 𝑆 with each

vertex 𝑣 ∈ 𝑆 being sampled with probability
𝐻 (𝑣,𝑘−|𝑅 |)∑

𝑣′ ∈𝑆 𝐻 (𝑣′,𝑘−|𝑅 |) . A
naivemethodwould takeO(|𝑆 |) time to sample a vertex from 𝑆 with

non-equal probability; this is slow. We adopt the alias method [27]

to speed up the sampling operation. Specifically, given a discrete

probability distribution of 𝑟 values, after constructing the alias

structure in O(𝑟) time and space, a random value can be sampled

from it in O(1) time [27].

However, it is non-trivial to incorporate the alias method into our

algorithm. For example, if the alias structures are not pre-computed

and stored, then constructing the alias structures online would

dominate the sampling time and thus the alias method will not be

helpful. On the other hand, if we store the alias structures for all

sample subspaces of S𝑘 (𝐺), it would take an excessive space and

thus is infeasible. Specifically, the total size of the alias structures

for one subspace (𝑅, 𝑆) is |𝑆 |2 · (𝑘 − |𝑅 |), since (1) it has |𝑆 | · (𝑘 − |𝑅 |)
distributions (one for each 𝑣 ∈ 𝑆 and 1 ≤ 𝑖 ≤ 𝑘 − |𝑅 |), and (2) each

distribution is of size |𝑆 |. Consequently, the total alias structure size
for all subspaces of S𝑘 (𝐺) would be

∑
(𝑅,𝑆) ∈S𝑘 (𝐺) |𝑆 |

2 · (𝑘 − |𝑅 |),
which is much larger than the shadow size.

In view of the above issues, we propose to only store the alias

structures in the memory for one subspace at a time. That is, we

group together all tasks that are sampling from the same subspace,

such that we can construct the alias structure online, conduct mul-

tiple samplings using the same alias structure, and then discard

the constructed alias structure. It is easy to see that the sampling

tasks at Line 12 of Algorithm 3 are naturally grouped based on the

sample subspaces. Then, based on the alias structures constructed

at Line 11, sampling
|𝑆 ′ |2

𝑘−|𝑅′ | elements u.a.r. from P𝑘−|𝑅′ | (𝑆 ′) takes
|𝑆 ′ |2

𝑘−|𝑅′ | · (𝑘 − |𝑅
′ |) time in total. Verifying whether they form cliques

in 𝐺 takes
|𝑆 ′ |2

𝑘−|𝑅′ | · (𝑘 − |𝑅
′ |)2 = |𝑆 ′ |2 · (𝑘 − |𝑅′ |) time in total,

the same running time as Line 11; this is how we determined the

number of samples at Line 12. To implement this idea for Line 3

of Algorithm 2, we propose to sample elements from S𝑘 (𝐺) in a

batch manner; the details are shown in Algorithm 4.

Recall from Lines 10–11 of Algorithm 1 that a random element

of S𝑘 (𝐺) is sampled in two steps: firstly, a random subspace (𝑅, 𝑆)
is sampled from S𝑘 (𝐺) with probability

| P𝑘−|𝑅 | (𝑆) |
|S𝑘 (𝐺) | , and then a ran-

dom (𝑘−|𝑅 |)-path is sampled u.a.r. fromP𝑘−|𝑅 | (𝑆). Thus, to sample

𝑡𝑏 elements u.a.r. from S𝑘 (𝐺), we first determine the number of

samples that will be taken from each subspace by sampling the sub-

spaces (Lines 5–8), and then sample the corresponding number of

elements u.a.r. from each subspace (Lines 9–14). Note that, samples

taken in this way are still u.a.r. from S𝑘 (𝐺). As the expected num-

ber of samples required to get 𝛾 𝑘-cliques (to satisfy the stopping

condition at Line 4) is
𝛾

𝜇S𝑘 (𝐺)
, we set the number of samples to be

taken in each batch as 𝑡𝑏 =
𝛾

�̃�
. We observe in our experiments that

Algorithm 4: SR-Estimator2(S𝑘 (𝐺), 𝑘, Y, 𝛿, �̃�)
Input: A shadow S𝑘 (𝐺) , an integer 𝑘 , accuracy parameters Y and

𝛿 , and a rough estimation �̃� of the 𝑘-clique density 𝜇S𝑘 (𝐺)
Output: An estimation ĉnt𝑘 (𝐺) of cnt𝑘 (𝐺)

1 𝑠 ← 0; 𝑡 ← 0;

2 𝛾 ← 1 + 4(1+Y) (𝑒−2) ln(2/𝛿)
Y2

; 𝑡𝑏 ← 𝛾

�̃�
;

3 Construct the alias structure for sample subspaces from S𝑘 (𝐺) ;
4 while 𝑠 < 𝛾 do
5 for each subspace (𝑅, 𝑆) ∈ S𝑘 (𝐺) do Initialize 𝑐𝑅,𝑆 ← 0;

6 for 𝑖 ← 1 to 𝑡𝑏 do

7 Sample a subspace (𝑅, 𝑆) ∈ S𝑘 (𝐺) with prob.

|P𝑘−|𝑅 | (𝑆) |
|S𝑘 (𝐺) |

;

8 𝑐𝑅,𝑆 ← 𝑐𝑅,𝑆 + 1;
9 for each subspace (𝑅, 𝑆) ∈ S𝑘 (𝐺) with 𝑐𝑅,𝑆 > 0 do
10 Construct the alias structure for sampling P𝑘−|𝑅 | (𝑆) ;
11 for each 𝑗 ← 1 to 𝑐𝑅,𝑆 do
12 Sample an element 𝑃 u.a.r. from P𝑘−|𝑅 | (𝑆) ;
13 if 𝑃 forms a clique in𝐺 then 𝑠 ← 𝑠 + 1;
14 𝑡 ← 𝑡 + 1;

/* Discard the constructed alias structure */

15 return ĉnt𝑘 (𝐺) ← |S𝑘 (𝐺) | · 𝑠𝑡 ;

Algorithm 4 typically terminates after one or two iterations of the

while loop at Line 4.

3.5 Implementation Details
In this subsection, we give some implementation details. Firstly,

given a subspace (𝑅, 𝑆) retrieved from S at Line 4 of Algorithm 3,

we compute the exact ℓ-clique count in 𝐺 [𝑆] by invoking Pivoter
if |𝑆 | is sufficiently small compared to ℓ , and refine it according to

Lines 9–16 otherwise. Specifically, we compute the exact ℓ-clique

count in 𝐺 [𝑆] if |𝑆 | ≤ ℓ + 10 and |𝑆 | ≤ 2 · ℓ . The main motivation

is that when |𝑆 | is relatively small compared to ℓ , then Pivoter
can compute the exact ℓ-clique count efficiently. We remark that

DPColorPath [29] uses a similar strategy, but it computes the exact

count when the average degree of𝐺 [𝑆] is at most 𝑘 − 1; recall that,
DPColorPath only refines the sample space S once. Consequently,
the 𝑘-clique count cnt𝑘 (𝐺) is divided into two parts: the partial

𝑘-clique count obtained by Pivoter, denoted pcnt, and the number

of 𝑘-cliques in S𝑘 (𝐺), denoted ecnt. That is, cnt𝑘 (𝐺) = pcnt+ ecnt,
and our task is to compute an estimation êcnt of ecnt. Note that

Pr

(��pcnt + êcnt − cnt𝑘 (𝐺)�� ≥ Y · cnt𝑘 (𝐺)
)

=Pr

(��êcnt − ecnt�� ≥ Y · (pcntecnt · ecnt + ecnt)
)

≤Pr
(��êcnt − ecnt�� ≥ Y · (pcnt

|S𝑘 (𝐺) | + 1) · ecnt
)

Thus, we use Y′ = Y · (pcnt
|S𝑘 (𝐺) | + 1) when sampling from S𝑘 (𝐺)

to estimate ecnt. Moreover, when Y′ ≥ 1 which is equivalent to

pcnt
pcnt+|S𝑘 (𝐺) | ≥ 1 − Y, we directly return pcnt as the estimation of

cnt𝑘 (𝐺) which has a relative error at most Y (i.e., bypass Stage-II).

Secondly, we process vertices at Line 9 of Algorithm 3 according

to the degeneracy ordering in 𝐺 [𝑆]. Consequently, 𝑁𝑆 (𝑣) obtained
at Line 10 is the set of 𝑣 ’s out-neighbors in the graph oriented ac-

cording to the degeneracy ordering, and thus each sample subspace

3714

Table 2: Statistics of the graphs and 𝑘-clique counts (𝛼 (𝐺) is degeneracy; 𝜔 (𝐺) is maximum clique size; * indicates that Pivoter
does not finish within 5 hours and the 𝑘-clique count cnt𝑘 (𝐺) is estimated by SR-kCCE with Y = 0.001 and thus is inexact)

Graph 𝑛 𝑚 𝛼 (𝐺) 𝜔 (𝐺) 𝑘 = 6 𝑘 = 9 𝑘 = 12 𝑘 = 15 𝑘 = 20

gowalla 196591 950327 51 29 28928240 86198580 160683420 201454150 24649947

Stanford 281903 1992636 71 61 4859571082 1.2027E+12 9.6277E+13 2.9464E+15 1.5271E+17

youtube 1134890 2987624 51 17 8443803 3721987 219257 1068 0

as-skitter 1696415 11095298 111 67 9759000981 2.7817E+12 2.6823E+14 1.1122E+16 1.2836E+18

com-lj 3997962 34681189 360 327 1.0991E+13 5.8783E+17* 1.5869E+22* 2.2706E+26* 5.4862E+32*

soc-lj 4846609 42851237 372 321 2.0703E+13 1.1787E+18* 3.4728E+22* 5.2356E+26* 1.3111E+33*

com-orkut 3072441 117185083 253 51 7.5249E+10 7.2481E+12 4.1504E+14 1.0468E+16 3.3041E+17

uk-2002 18459128 261556721 943 944 5.3175E+14 2.5176E+20* 5.8005E+25* 6.7597E+30* 5.5535E+38*

it-2004 41290577 1027474895 3224 3222 4.7890E+18* 4.0417E+26* 1.2625E+34* 1.8311E+41* 4.2466E+52*

friendster 65608366 1806067135 304 129 5.9927E+10 4.0033E+13 5.4619E+16 3.3864E+19 3.5762E+23

(𝑅, 𝑆) ∈ S satisfies |𝑆 | ≤ 𝛼 (𝐺). As a result, the alias structures con-
structed at Line 11 of Algorithm 3 and Line 10 of Algorithm 4 take

O(𝛼 (𝐺)2 ·𝑘) space. Thirdly, to compute |Pℓ (𝑆) | and to sample from

Pℓ (𝑆), we compute a coloring for the vertices of 𝑆 based on the

subgraph𝐺 [𝑆]; note that, DPColorPath only computes the graph

coloring once for the entire graph 𝐺 , and then reuses the coloring

for all subgraphs of 𝐺 .

4 EXPERIMENTS
In this section, we evaluate the estimation accuracy and efficiency

of our proposed algorithm SR-kCCE for 𝑘-clique count estimation,

by comparing it with the following competitors.

• Pivoter: the state-of-the-art exact algorithm proposed in [14]

for counting 𝑘-cliques.

• Turán-Shadow 1
: the existing 𝑘-clique count estimation

algorithm proposed in [13].

• DPColorPath: the most-recent 𝑘-clique count estimation

algorithm proposed in [29].

We implemented our own version of Pivoter, because our algorithm
invokes Pivoter to get the exact 𝑘-clique count for sample subspaces

that are small as discussed in Section 3.5. We also implemented our

own version of DPColorPath, as it is straightforward to implement

based on our code. We compared our results with those in [29],

and found that our implementations are generally faster than the

ones used in [29]. Also note that, we modified DPColorPath and

Turán-Shadow to incorporate our sampling stopping condition dis-

cussed in Section 3.2 to ensure the accuracy guarantee.

All algorithms are implemented in C++ and ran in a single-thread

mode. We conduct the experiments on a machine with an Intel Core

i7-8700 CPU and 64GB main memory and running Ubuntu 18.04.

We set a time limit of 5 hours for each testing.

Datasets. We evaluate the algorithms on 10 large real graphs that

are downloaded from http://networkrepository.com/networks.php.

Statistics as well as 𝑘-clique counts of the graphs are shown in Ta-

ble 2. The number cnt𝑘 (𝐺) of 𝑘-cliques is computed by Pivoter; if
Pivoter does not finish within the time limit, we use the estimation

outputted by our algorithm SR-kCCEwith the relative error param-

eter Y = 0.001 as cnt𝑘 (𝐺). The fourth column shows the degeneracy

𝛼 (𝐺) while the fifth column shows the maximum clique size 𝜔 (𝐺).

1
https://bitbucket.org/sjain12/cliquecounting

Parameters. For the testings, we choose the clique size 𝑘 from

{6, 9, 12, 15, 20} and the relative error parameter Y from {0.001, 0.005,
0.01, 0.05}. We fix the failing probability 𝛿 = 0.01 since it does not

affect the running time much; recall that, the time of the sampling

stage only depends logarithmically on
1

𝛿
.

Metrics. For each testing, we record both the processing time and

the memory usage. The recorded processing time excludes only the

time of loading a graph from disk to memory. The recorded memory

usage is the Maximum Resident Set Size reported by /usr/bin/time.

In addition, we also calculate the actual relative error of an algo-

rithm’s estimation, which is
| ĉnt𝑘 (𝐺)−cnt𝑘 (𝐺) |

cnt𝑘 (𝐺) .

4.1 Actual Accuracy of the Algorithms
In this testing, we first evaluate the practical accuracy of the𝑘-clique

count estimation computed by our algorithm SR-kCCE. Specifically,

we report the relative error
| ĉnt𝑘 (𝐺)−cnt𝑘 (𝐺) |

cnt𝑘 (𝐺) in Figure 7, where

ĉnt𝑘 (𝐺) is the estimation computed by SR-kCCE and cnt𝑘 (𝐺) is
obtained from Table 2. The omitted bars have relative error 0; note

that for some of the cases (e.g., gowalla and youtube) this is because
SR-kCCE computes the exact 𝑘-clique count with pcnt = cnt𝑘 (𝐺)
and S𝑘 (𝐺) = ∅ (see Section 3.5 for details of pcnt), while for other
cases (e.g., com-lj, soc-lj, uk-2002 and it-2004 in Figure 7(a)) this

is because the relative error is computed based on the estimation

of SR-kCCE with Y = 0.001. We can see from Figure 7 that our

algorithm always produces an accurate estimation with the actual

relative error being much lower than the given error parameter Y.

As a result, we can use the estimation ĉnt𝑘 (𝐺) computed by our

algorithm SR-kCCE with Y = 0.001 to replace cnt𝑘 (𝐺) in the cases

that computing the exact cnt𝑘 (𝐺) is time-consuming.

We then compare the practical accuracy of our algorithm SR-kCCE
against the existing algorithms DPColorPath and Turán-Shadow.
In addition, we also implemented a version of DPColorPath that

takes a fixed 5 × 107 number of samples, denoted DPColorPath5e7.
The results for 𝑘 ∈ {6, 12, 20} and Y = 0.001 are shown in Figure 8.

We can see that our algorithm achieves the lowest error in most

of the cases. Recall that, DPColorPath and Turán-Shadow in prin-

ciple should also guarantee the relative error to be at most Y, as

we modified their sampling stopping condition to be the one de-

scribed in Section 3.2. However, Turán-Shadow has a much higher

relative error than Y on uk-2002 for 𝑘 = 6; we suspect that there

is a bug in their implementation of Turán-Shadow. On the other

3715

http://networkrepository.com/networks.php
https://bitbucket.org/sjain12/cliquecounting

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster
10−6

10−5

10−4

10−3

R
e
la

t
iv

e
 E

r
r
o
r

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

k=6

k=9

k=12

k=15

k=20

(a) Y = 0.001

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster

10−6

10−5

10−4

10−3

0.005

R
e
la

t
iv

e
 E

r
r
o
r

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

(b) Y = 0.005

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster
10−7

10−6

10−5

10−4

10−3

10−2

R
e
la

t
iv

e
 E

r
r
o
r

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

(c) Y = 0.01

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster
10−7

10−6

10−5

10−4

10−3

10−2

0.05

R
e
la

t
iv

e
 E

r
r
o
r

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

(d) Y = 0.05

Figure 7: Actual relative error of our algorithm

hand, DPColorPath has relative error > Y on com-orkut and friend-
ster for 𝑘 = 6 because its sampling is not uniform; specifically, to

sample a batch of 𝑡𝑏 elements from S𝑘 (𝐺), DPColorPath sets the

number of elements to be sampled from a subspace (𝑅, 𝑆) ∈ S𝑘 (𝐺)
as ⌊𝑡𝑏 ·

| P𝑘−|𝑅 | (𝑆) |
|S𝑘 (𝐺) | ⌋. DPColorPath5e7 further has relative error > Y

on youtube (for 𝑘 = 12), as-skitter (for 𝑘 = 20), and com-orkut (for
𝑘 ≥ 12); this is because taking a fixed 5× 107 number of samples in

these cases is insufficient to achieve the accuracy guarantee, due to

a low 𝑘-clique density 𝜇S𝑘 (𝐺) .

4.2 𝑘-Clique Density of the Sampling Spaces
In this testing, we first evaluate the 𝑘-clique density lower bound

𝜇
lb
computed by Turán-Shadow as defined in Equation (7). The

results are shown in Figure 9. Note that, (1) for 𝑘 = 20 on youtube,
Turán-Shadow prunes the entire graph as the maximum clique size

is 17, and (2) Turán-Shadow runs out-of-memory for all other cases

where the corresponding bars are missing from Figure 9. We can see

that the lower bound 𝜇
lb
could be very small, e.g., 10

−9
for 𝑘 = 20 on

com-lj and soc-lj. Thus, it is impractical to set the number of samples

in the sampling stage to be 𝑡 =
3 ln(2/𝛿)
𝜇
lb
·Y2 for achieving the accuracy

guarantee, which would mean 𝑡 ≈ 1.5 × 1016 samples for Y = 0.001.

This demonstrates that the theoretical version of Turán-Shadow
that guarantees the estimation accuracy is impractical.

We then evaluate the 𝑘-clique density 𝜇S𝑘 (𝐺) for the sample

spaces that are constructed by DPColorPath, Turán-Shadow, and

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster

10−6

10−5

10−4

10−3

10−2

10−1

100

R
e
la

t
iv

e
 E

r
r
o
r

E
r
ro

r
=

0

o
o
m

o
o
m

SR-kCCE

DPColorPath

DPColorPath5e7

Turan-Shadow

(a) 𝑘 = 6 and Y = 0.001

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster

10−6

10−5

10−4

10−3

R
e
la

t
iv

e
 E

r
r
o
r

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

o
o
m

o
o
m

o
o
m

(b) 𝑘 = 12 and Y = 0.001

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster

10−6

10−5

10−4

10−3

10−2

R
e
la

t
iv

e
 E

r
r
o
r

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

o
o
t

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

o
o
m

o
o
m

o
o
m

(c) 𝑘 = 20 and Y = 0.001

Figure 8: Actual relative error of different algorithms (oom:
out-of-memory, oot: out-of-time)

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster

10−9

10−8

10−7

10−6

10−5

10−4

10−3

μlb

o
o
m

o
o
m

o
o
m

o
o
m

o
o
m

o
o
m

o
o
m

o
o
m

o
o
m

o
o
m

S
k
(G
)
=
∅

o
o
m

o
o
m

o
o
m

k=6

k=9

k=12

k=15

k=20

Figure 9: 𝜇
lb
of Turán-Shadow

our algorithm SR-kCCE for different 𝑘 values. Note that, (1) the

higher the value of 𝜇S𝑘 (𝐺) , the better the performance of Stage-

II, and (2) the partial count pcnt is not considered in S𝑘 (𝐺) (see
Section 3.5). The sample spaces constructed by DPColorPath and

Turán-Shadow are independent of the error parameter Y, but our al-

gorithm SR-kCCE computes different sample spaces for different Y

values. Thus, we report the results of SR-kCCE for Y = 10
−2

and Y =

10
−3

, denoted as SR-kCCE1e-2 and SR-kCCE1e-3, respectively. The
experimental results of the algorithms for 𝑘 = 12 and 20 are illus-

trated in Figure 10. Firstly, we observe that 𝜇S𝑘 (𝐺) of DPColorPath
can be low (i.e., close to 10

−3
) in some cases, e.g., 𝑘 = 12 on youtube,

and 𝑘 = 20 on com-orkut. For these cases, DPColorPath runs

slow when we want to achieve a high accuracy (e.g., Y = 0.001),

see Figure 11 which will be discussed shortly. Secondly, we ob-

serve that 𝜇S𝑘 (𝐺) of our algorithm SR-kCCE with Y = 10
−2

(i.e.,

SR-kCCE1e-2) is generally higher than that of DPColorPath, and
SR-kCCE1e-3 further increases the 𝑘-clique density. This is be-

cause the expected number of samples needed in the sampling

stage is inversely related to Y2 and 𝜇S𝑘 (𝐺) (see Theorem 3.3); when

Y decreases, the number of required samples increases, and thus

SR-kCCE refines the sample space more to increase 𝜇S𝑘 (𝐺) and
counterbalance this effect. We remark that for 𝑘 ∈ {12, 20} on
uk-2002, our algorithm bypasses Stage-II since pcnt is close to

pcnt + |S𝑘 (𝐺) | (see Section 3.5). Lastly, 𝜇S𝑘 (𝐺) of Turán-Shadow

3716

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster

10−3

10−2

10−1

100

μ

B
y
p
a
s
s
 S

ta
g
e
-I

I

B
y
p
a
s
s
 S

ta
g
e
-I

I

o
o
m

o
o
m

o
o
m

SR-kCCE1e-3 SR-kCCE1e-2 DPColorPath Turan-Shadow

(a) 𝑘 = 12

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster
10−4

10−3

10−2

10−1

100

μ

S
k
(G

)
=

∅

S
k
(G

)
=

∅

B
y
p
a
s
s
 S

ta
g
e
-I

I

S
k
(G

)
=

∅

S
k
(G

)
=

∅

B
y
p
a
s
s
 S

ta
g
e
-I

I

S
k
(G

)
=

∅

S
k
(G

)
=

∅

S
k
(G

)
=

∅

o
o
m

o
o
m

o
o
m

(b) 𝑘 = 20

Figure 10: 𝜇S𝑘 (𝐺) of the sample spaces constructed by the
algorithms (SR-kCCE1e-3 and SR-kCCE1e-2 denote SR-kCCE
with Y = 10

−3 and 10
−2, respectively)

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster

100

101

102

103

104

T
im

e
 (

s
e
c
o
n
d
s
)

o
o
m

o
o
m

o
o
m

o
o
t

o
o
t

o
o
t

o
o
t

SR-kCCE DPColorPath Turan-Shadow Pivoter

(a) 𝑘 = 12 and Y = 0.001

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster

10−1

100

101

102

103

104

T
im

e
 (

s
e
c
o
n
d
s
)

o
o
t

o
o
m

o
o
m

o
o
m

o
o
t

o
o
t

o
o
t

o
o
t

(b) 𝑘 = 20 and Y = 0.001

Figure 11: Running time of the algorithms (Y = 0.001)

is generally high, at the expense of a significant time in the sample

space refinement. Note that, as the elementary sample structure

(i.e., Pℓ (𝑆)) used in Turán-Shadow is different from and inferior to

that of DPColorPath (see Section 3.1.2), 𝜇S𝑘 (𝐺) of Turán-Shadow
could be lower than that of DPColorPath in some cases.

4.3 Time and Memory Usage of the Algorithms
The running time of the algorithms for 𝑘 ∈ {12, 20} and Y = 0.001

are shown in Figure 11. Our algorithm SR-kCCE consistently out-

performs Turán-Shadow due to the latter’s significant time in re-

fining the sample space. Our algorithm generally runs faster than

DPColorPath, but they perform similarly on uk-2002 and it-2004.
This is because the 𝑘-clique density 𝜇S𝑘 (𝐺) of DPColorPath on

these two graphs is already extremely high (i.e., > 0.96) as shown in

Figure 10, while our algorithm takes more time in Stage-I. Note that,

although DPColorPath also has a high 𝜇S𝑘 (𝐺) on com-lj and soc-lj,
our algorithm runs faster because of our more efficient sampling

technique as discussed in Section 3.4. Lastly, the exact algorithm

Pivoter performs quite well on some of the graphs, by running com-

parably or even occasionally faster than our algorithm. However,

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster
101

102

103

104

M
e
m

o
ry

 (
M

B
)

o
o
m

o
o
m

o
o
m

o
o
t

o
o
t

o
o
t

o
o
t

SR-kCCE

DPColorPath

Turan-Shadow

Pivoter

(a) 𝑘 = 12 and Y = 0.001

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster
101

102

103

104

M
e
m

o
ry

 (
M

B
)

o
o
t

o
o
m

o
o
m

o
o
m

o
o
t

o
o
t

o
o
t

o
o
t

(b) 𝑘 = 20 and Y = 0.001

Figure 12: Memory usage of the algorithms (Y = 0.001)

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster

100

101

102

103

104

T
im

e
 (

s
e
c
o
n
d
s
)

o
o
t

o
o
t

o
o
t

o
o
t

SR-kCCE1e-3

SR-kCCE5e-3

SR-kCCE1e-2

SR-kCCE5e-2

Pivoter

(a) 𝑘 = 12

gowalla Stanford youtube as-skitter com-lj soc-lj com-orkut uk-2002 it-2004 friendster

10−1

100

101

102

103

104

T
im

e
 (

s
e
c
o
n
d
s
)

o
o
t

o
o
t

o
o
t

o
o
t

(b) 𝑘 = 20

Figure 13: Running time of our algorithm for different Y

Pivoter’s performance is unstable and unpredictable, e.g., it does

not finish within 5 hours on four of the graphs.

The memory usage of the algorithms are shown in Figure 12.

Our algorithm does not consume much more memory than Pivoter
or DPColorPath which are memory efficient. On the other hand,

Turán-Shadow runs out-of-memory on the three largest graphs.

The running time of our algorithm for different Y values are

shown in Figure 13. We can see that our algorithm generally runs

faster when we tolerate a higher relative error Y. But the running

time may remain the same when varying Y on some of the graphs

(e.g., the last three); this is because in these cases, Stage-II’s running

time which strongly depends on Y is negligible while Stage-I’s

running time does not change too much. We can also see that by

setting Y = 0.005, our algorithm could outperform Pivoter in some

of the cases that Pivoter can finish within the time limit.

4.4 Ablation and Scalability Studies
The results of evaluating the performance of our algorithm by man-

ually setting the number of refinements (#refinements) in Stage-I

are illustrated in Figure 14, where #refinements varies from 1 to

10
7
, 𝑘 = 15 and Y = 0.001. Figures 14(a) and 14(b) show the running

time (of Stage-I and Stage-II) on youtube and com-orkut, respec-
tively. We can see that this conforms with our theoretical analysis

in Section 3.3, i.e., when #refinements increases, the running time

3717

100 101 102 103 104 105 106 107

10−4

10−3
10−2
10−1

100
101

102
103
104

T
im

e
 (

s
e
c
o
n
d
s
)

(a) youtube

100 101 102 103 104 105 106 107

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Stage-I

Stage-II

SR-kCCE

(b) com-orkut

100 101
102 103 104 105

106 107

10−4

10−3

R
e
la

t
iv

e
 E

r
r
o
r

o
o
t

o
o
t

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

E
r
ro

r
=

0

(c) youtube

100 101
102 103 104 105

106 107

10−5

10−4

R
e
la

t
iv

e
 E

r
r
o
r

(d) com-orkut

Figure 14: Vary number of refinements (𝑘 = 15 and Y = 0.001)

20% 40% 60% 80% 100%

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

SR-kCCE

DPColorPath

(a) 𝑘 = 12

20% 40% 60% 80% 100%

100

101

102

103

104

T
im

e
 (

s
e
c
o
n
d
s
)

SR-kCCE

DPColorPath

(b) 𝑘 = 15

20% 40% 60% 80% 100%

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

SR-kCCE

DPColorPath

(c) 𝑘 = 20

Figure 15: Scalability testing on subgraphs of com-orkut (vary
percentage of vertices, Y = 0.001)

of Stage-I increases while that of Stage-II decreases. We remark

that on youtube, the algorithm does not finish within 5 hours when

#refinements ≤ 10, and S𝑘 (𝐺) = ∅ when #refinements ≥ 10
3
. We

also observe that the optimal #refinements (i.e., for achieving the

fastest total running time) differ across the graphs. In Figures 14(a)

and 14(b), we further report the total running time of our algorithm

SR-kCCE where #refinements is automatically determined by Al-

gorithm 3. We can see that although the automatically determined

#refinements sometimes is not optimal, it is close to the optimal

number. The relative errors achieved by the algorithm when vary-

ing #refinements are shown in Figures 14(c) and 14(d). We can see

that they are all below the given Y; this is because our Stage-II

algorithm guarantees the accuracy given any sample space S𝑘 (𝐺).
To test the scalability of our algorithm andDPColorPath, we run

them on subgraphs that are randomly extracted from com-orkut.
Specifically, we randomly sample 𝑥% vertices of com-orkut, and
then take the subgraph induced by these vertices; 𝑥 is chosen from

{20, 40, 60, 80, 100}. The results for 𝑘 ∈ {12, 15, 20} are illustrated
in Figure 15, where Y = 0.001. We can see that the running time

of our algorithm SR-kCCE increases smoothly when the number

of vertices increases. However, the performance of DPColorPath
fluctuates a lot; it does not finish within 5 hours for 𝑘 = 12 with

𝑥 = 20, and for 𝑘 = 20 with 𝑥 ∈ {40, 80, 100}. This is because
DPColorPath only refines the sample space once, and has no control

on the 𝑘-clique density 𝜇S𝑘 (𝐺) which affects Stage-II’s running

time; for example, 𝜇S𝑘 (𝐺) ≈ 7 × 10−5 for 𝑘 = 12 and 𝑥 = 20. This

demonstrates that our algorithm scales better than DPColorPath.

5 FURTHER RELATEDWORK
Besides the related works discussed in the Introduction, we briefly

summarize other related works in this section.

𝑘-Clique Enumeration and Counting. Enumerating all 𝑘-cliques

in a graph 𝐺 has also been studied in the literature. The state-of-

the-art algorithms run in O
(
𝑘 · 𝑚 ·

(𝛼 (𝐺)
2

)𝑘−2)
time [5, 8], and

O
(
𝑚 ·𝛼 (𝐺) +𝑘 ·𝑚 ·

(𝜏 (𝐺)
2

)𝑘−2)
time [28], where 𝜏 (𝐺) is a parameter

similar to the degeneracy 𝛼 (𝐺) but is defined based on edges and

is obtained by iteratively removing the edge that participates in
the minimum number of triangles; note that 𝜏 (𝐺) ≤ 𝛼 (𝐺). These
𝑘-clique enumeration algorithms can be used for counting 𝑘-cliques.

However, they are extremely slow due to explicitly enumerating

all 𝑘-cliques. As demonstrated in [14], even the version of [8] that

is optimized for counting 𝑘-cliques performs worse than Pivoter.
Thus, we do not include them in our experiments.

Parallel algorithms and GPU algorithms have also been designed

and implemented for exactly counting 𝑘-cliques [1, 11, 24]. They

are designed based on either the 𝑘-clique enumeration algorithms

of [5, 8] or Pivoter [14]. These parallel and GPU algorithms are

shown to improve efficiency over single-core algorithms, due to

exploiting the parallelism of multiple CPU cores or massive GPU

cores. The state of the art is GPU-Pivoter proposed in [1]. However,

GPU-Pivoter is still inefficient for moderate 𝑘 values, due to the

intrinsic complexity of exactly counting 𝑘-cliques. For example, the

largest 𝑘 tested in [1] is 11, and GPU-Pivoter still does not finish
within 5 hours on com-lj for 𝑘 ≥ 9. In this paper, we focus on

single-core algorithms, while our algorithm can be made faster by

using parallelism which will be investigated in our future study.

Motif/Subgraph Counting. 𝑘-clique counting is a special case of

motif/subgraph counting that counts the number of occurrences

of a given query subgraph in a large graph. Algorithms have been

proposed for exact, approximate and parallel subgraph counting,

see [22] for a recent survey. Although these algorithms can be used

for counting 𝑘-cliques, they will not be efficient since they do not

utilize the special property of clique. Example techniques used in

approximate subgraph counting include enumerate-generalize [21],

path sampling [16], color coding [2] and etc. In particular, path

sampling is similar to Algorithm 1 but without graph coloring,

graph orientation and sample space refinement; this would perform

even worse than DPColorPath that refines the sample space once.

Furthermore, it is shown in [13] that color coding [2] andGraft [21]

are outperformed by Turán-Shadow. Thus, we do not include these
subgraph counting algorithms in our experiments.

6 CONCLUSION
In this paper, we proposed the first algorithm that achieves the

theoretical estimation accuracy and the practical efficiency at the

same time. We abstracted a general framework that captures both

the existing algorithms and our algorithms. We anticipate that more

(and possibly faster) algorithms could be designed based on our

framework. As a by-product, our algorithm is also able to efficiently

sample a certain number of 𝑘-cliques u.a.r. from a graph.

ACKNOWLEDGMENTS
This work was supported by the Australian Research Council Fund-

ings of DP220103731, and the Research Grants Council of Hong

Kong, China under No. 14205520.

3718

REFERENCES
[1] Mohammad Almasri, Izzat El Hajj, Rakesh Nagi, Jinjun Xiong, andWen-Mei Hwu.

2022. Parallel K-clique counting on GPUs. In Proc. of ICS’22. ACM, 21:1–21:14.

[2] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessan-

dro Panconesi. 2018. Motif Counting Beyond Five Nodes. ACM Trans. Knowl.
Discovery Data 12, 4 (April 2018), 1–25.

[3] Coenraad Bron and Joep Kerbosch. 1973. Finding All Cliques of an Undirected

Graph (Algorithm 457). Commun. ACM 16, 9 (1973), 575–576.

[4] Lijun Chang and Lu Qin. 2018. Cohesive Subgraph Computation over Large Sparse
Graphs. Springer Series in the Data Sciences.

[5] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing

Algorithms. SIAM J. Comput. 14, 1 (1985), 210–223.
[6] Seshadhri Comandur and Srikanta Tirthapura. 2019. Scalable Subgraph Counting:

The Methods Behind The Madness. In Proc. of WWW’19 (Tutorial). 1317–1318.
[7] Paul Dagum, Richard Karp, Michael Luby, and Sheldon Ross. 2000. An optimal

algorithm for Monte Carlo estimation. SIAM Journal on computing 29, 5 (2000),

1484–1496.

[8] Maximilien Danisch, Oana Denisa Balalau, and Mauro Sozio. 2018. Listing

k-cliques in Sparse Real-World Graphs. In Proc. of WWW’18. 589–598.
[9] David Eppstein, Maarten Löffler, and Darren Strash. 2013. Listing All Maxi-

mal Cliques in Large Sparse Real-World Graphs. ACM Journal of Experimental
Algorithmics 18 (2013).

[10] Pál Erdös. 1969. On the number of complete subgraphs and circuits contained in

graphs. Časopis pro pěstování matematiky 094, 3 (1969), 290–296.

[11] Irene Finocchi, Marco Finocchi, and Emanuele G. Fusco. 2015. Clique Counting

in MapReduce: Algorithms and Experiments. ACM J. Exp. Algorithmics 20 (Oct.
2015), 1–20. https://doi.org/10.1145/2794080

[12] Yizhang He, KaiWang,Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2023. Scaling

Up k-Clique Densest Subgraph Detection. Proc. ACM Manag. Data 1, 1 (2023),
69:1–69:26.

[13] Shweta Jain and C Seshadhri. 2017. A fast and provable method for estimating

clique counts using turan’s theorem. In Proc. of WWW’17. 441–449.
[14] Shweta Jain and C. Seshadhri. 2020. The Power of Pivoting for Exact Clique

Counting. In Proc. WSDM’20. ACM, 268–276.

[15] Shweta Jain and Hanghang Tong. 2022. YACC: A Framework Generalizing

TuránShadow for Counting Large Cliques. In Proc. of SDM’22. 684–692.

[16] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path Sampling: A Fast and

Provable Method for Estimating 4-Vertex Subgraph Counts. In Proc. of WWW’15.
495–505.

[17] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and clustering

and Graph Coloring Algorithms. J. ACM 30, 3 (1983), 417–427.

[18] Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press.

[19] Mark Ortmann and Ulrik Brandes. 2014. Triangle Listing Algorithms: Back from

the Diversion. In Proc. of ALENEX’14. 1–8.
[20] Gergely Palla, Imre Derenyi, Illes Farkas, and Tamas Vicsek. 2005. Uncovering

the overlapping community structure of complex networks in nature and society.

Nature 435, 7043 (June 2005), 814–818.
[21] Mahmudur Rahman, Mansurul Alam Bhuiyan, and Mohammad Al Hasan. 2014.

Graft: An Efficient Graphlet Counting Method for Large Graph Analysis. IEEE
Trans. Knowl. Data Eng. 26, 10 (Jan. 2014), 2466–2478.

[22] Pedro Ribeiro, Pedro Paredes, Miguel E. P. Silva, David Aparício, and Fernando

M. A. Silva. 2022. A Survey on Subgraph Counting: Concepts, Algorithms, and

Applications to Network Motifs and Graphlets. ACM Comput. Surv. 54, 2 (2022),
28:1–28:36.

[23] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2015.

Finding the Hierarchy of Dense Subgraphs using Nucleus Decompositions. In

Proc. of WWW’15. 927–937.
[24] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2021. Parallel Clique Counting

and Peeling Algorithms. In Proc. of ACDA’21. 135–146.
[25] Bintao Sun, Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2020.

KClist++: A Simple Algorithm for Finding k-Clique Densest Subgraphs in Large

Graphs. Proc. VLDB Endow. 13, 10 (2020), 1628–1640.
[26] Charalampos E. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In

Proc. of WWW’15. 1122–1132.
[27] M.D. Vose. 1991. A linear algorithm for generating random numbers with a given

distribution. IEEE Transactions on Software Engineering 17, 9 (1991), 972–975.

[28] Kaixin Wang, Kaiqiang Yu, and Cheng Long. 2023. Efficient k-Clique Listing: An

Edge-Oriented Branching Strategy. CoRR (2023).

[29] Xiaowei Ye, Rong-Hua Li, Qiangqiang Dai, Hongzhi Chen, and Guoren Wang.

2022. Lightning Fast and Space Efficient k-clique Counting. In Proc. of WWW’22.
1191–1202.

3719

https://doi.org/10.1145/2794080

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Oriented Graph and Color-Path

	3 Our Approach
	3.1 A General Framework
	3.2 A New Sampling Stopping Condition
	3.3 Balance the Running Time of the Two Stages
	3.4 Efficient Sampling
	3.5 Implementation Details

	4 Experiments
	4.1 Actual Accuracy of the Algorithms
	4.2 k-Clique Density of the Sampling Spaces
	4.3 Time and Memory Usage of the Algorithms
	4.4 Ablation and Scalability Studies

	5 Further Related Work
	6 Conclusion
	Acknowledgments
	References

