
Efficient Betweenness Centrality Computation over Large
Heterogeneous Information Networks

Xinrui Wang Yiran Wang Xuemin Lin Jeffrey Xu Yu

ShanDong University ShanDong University Shanghai Jiaotong University The Chinese University of Hong Kong

xrwang@sdu.edu.cn yr_wang@mail.sdu.edu.cn xuemin.lin@gmail.com yu@se.cuhk.edu.hk

Hong Gao Xiuzhen Cheng Dongxiao Yu
B

Zhejiang Normal University ShanDong University ShanDong Universityy

honggao@zjnu.edu.cn xzcheng@sdu.edu.cn dxyu@sdu.edu.cn

ABSTRACT
Betweenness centrality (BC), a classic measure which quantifies the

importance of a vertex to act as a communication “bridge" between

other vertices in the network, is widely used in many practical

applications. With the advent of large heterogeneous information

networks (HINs) which contain multiple types of vertices and edges

like movie or bibliographic networks, it is essential to study BC

computation on HINs. However, existing works about BC mainly

focus on homogeneous networks. In this paper, we are the first

to study a specific type of vertices’ BC on HINs, e.g., find which

vertices with type 𝐴 are important bridges to the communication

between other vertices also with type 𝐴? We advocate a meta path-

based BC framework on HINs and formalize both coarse-grained

and fine-grained BC (cBC and fBC) measures under the framework.

We propose a generalized basic algorithm which can apply to com-

puting not only cBC and fBC but also their variants in more complex

cases.We develop several optimization strategies to speed up cBC or

fBC computation by network compression and breadth-first search

directed acyclic graph (BFS DAG) sharing. Experiments on several

real-world HINs show the significance of cBC and fBC, and the

effectiveness of our proposed optimization strategies.

PVLDB Reference Format:
Xinrui Wang, Yiran Wang, Xuemin Lin, Jeffrey Xu Yu, Hong Gao,

Xiuzhen Cheng, and Dongxiao Yu. Efficient Betweenness Centrality

Computation over Large Heterogeneous Information Networks. PVLDB,

17(11): 3360 - 3372, 2024.

doi:10.14778/3681954.3682006

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/1ran/BccH.

1 INTRODUCTION
Betweenness centrality (BC), a fundamental metric in network

analytics, measures the importance of each vertex to act as a com-

munication “bridge" between other vertices in the network. Specif-

ically, in a conventional homogeneous network which contains

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3682006

Figure 1: Example of a Movie HIN.

only one type of vertices and one type of edges, the BC of a vertex

𝑣 is defined as the fraction of the shortest paths between all pairs
of vertices that pass through 𝑣 [21]. That is, a vertex with high BC

would pass though more shortest paths. In reality, each shortest

path represents one communication way between a pair of vertices.

Thus, vertices’ BC reflect their abilities to control the communica-

tion between other vertices in the network[21, 35]. Vertices with

high BC can facilitate, impede or bias the transmission of mes-

sages in the network[21], which are greatly meaningful in practice

[17, 24, 28, 31, 33]. For example, in social networks, users with

high BC can promote communication between other unfamiliar

users[31]. In power transmission networks, the failures of power

grid components with high BC would lead to widespread power

outage incidents[26]. Furthermore, vertices’ BC has widely been

used for improving the quality of other graph analysis tasks, such

as link prediction[25] and graph visualisation[54].

In reality, many information networks are inherently heteroge-

neous, containing multiple types of vertices and multiple types of

edges which represent different semantic relations. Typical hetero-
geneous information network (HIN) examples are bibliographic

networks (e.g., DBLP), movie networks (e.g., IMDb), and biomolecu-

lar reaction networks (e.g., KEGG). Fig. 1(a) shows an example of a

movie HIN which describes the relationships among different types

of vertices, i.e, actors (A), movies (M), directors (D) and writers (W).

E.g., actors 𝑎1 and 𝑎2 acted in a movie𝑚1 directed by a director 𝑑1.

Due to the prevalence of HINs[34, 55, 61, 62] and the practical-

ity of vertices’ BC[16, 30, 36, 39, 42, 57, 60], in this paper, we are

interested in computing a specific type of vertices’ BC on HINs,

e.g., find which vertices with type 𝐴 are important bridges to the

communication between other vertices also with type 𝐴. A simple

idea to formulate the BC of a vertex 𝑎𝑣 with type 𝐴 on an HIN

3360

https://doi.org/10.14778/3681954.3682006
https://github.com/1ran/BccH
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682006
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(called coarse-grained BC, cBC for short) is to extend the original

BC definition on conventional homogeneous networks to HINs, i.e.,

the cBC of 𝑎𝑣 is the fraction of the shortest paths between all pairs of
vertices with type 𝐴 that pass through 𝑎𝑣 .

The key of BC computation is counting shortest paths. However,

unlike conventional homogeneous networks, two vertices with the

same type in an HIN are usually not directly linked, but can be

indirectly connected through different paths where each path is a

sequence of other types of vertices and edges, and carries a unique

communication semantics. To distinguish the communication se-

mantics of those paths, a well-known concept of themeta path has

been introduced [45], which is a sequence of vertex types and edge

types. For example, in a movie network, a meta path (𝐴𝑀𝐷𝑀𝐴)
represents that two actors acted in movies which were directed by

the same director, while a meta path (𝐴𝑀𝑊𝑀𝐴) represents that
two actors acted in movies which were written by the same writer.

Vertices communicated under different semantics form com-

pletely different communication network topologies. E.g., Fig. 1(c)

and Fig. 1(d) show different topologies undermeta paths (𝐴𝑀𝐷𝑀𝐴)
and (𝐴𝑀𝑊𝑀𝐴) respectively, which leads to completely different

BC results (verified by our experiments in Subsection 6.1). In this

paper, while finding important communication bridges between

vertices, we focus on one specific communication semantics be-

hind a given meta path P. That is, we only count concrete shortest

paths based on P (called shortest P-paths) to compute cBC. P
can be chosen by users’ needs or machine learning. Such a meta

path framework has been widely used in HIN mining tasks like ver-

tices’ similarity measure[45], community search[20, 53], PageRank

computation[32], and clustering[46].

To show how to count shortest P-paths and compute cBC, we

use an example in Fig. 1 where there exist no directed links be-

tween any two vertices both with type 𝐴. Given P = (𝐴𝑀𝐷𝑀𝐴)
in Fig. 1(c), two vertices both with type 𝐴 (e.g., 𝑎1 and 𝑎2) form

a P-pair if they are connected by a path instance of P (e.g.,

(𝑎1𝑚1𝑑1𝑚1𝑎2)). A path connecting 𝑎𝑠 and 𝑎𝑡 (both with type 𝐴),

which is formed by a series of sequentially concatenated path in-

stances of P, is called as a P-path from 𝑎𝑠 to 𝑎𝑡 (e.g., two path

instances (𝑎1𝑚1𝑑1𝑚1𝑎2) and (𝑎2𝑚5𝑑4𝑚8𝑎5) are concatenated as a

P-path (𝑎1𝑚1𝑑1𝑚1𝑎2𝑚5𝑑4𝑚8𝑎5) from 𝑎1 to 𝑎5). A shortest P-path
from 𝑎𝑠 to 𝑎𝑡 is a P-path which contains the smallest number of

vertices. From 𝑎1 to 𝑎5, there are 7 shortest P-paths, of which three

pass through 𝑎2 (𝑎3 resp.), and one passes through 𝑎4. Thus, the cBC

of 𝑎2 (𝑎3 resp.) is 3/7 + 3/7 = 6/7, and that of 𝑎4 is 1/7 + 1/7 = 2/7
(considering shortest P-paths from 𝑎1 to 𝑎5 and from 𝑎5 to 𝑎1).

Comparing the cBC of 𝑎2 and 𝑎3, the conclusion is: for the com-

munication between 𝑎1 and 𝑎5, the “bridge" importance of 𝑎2 and 𝑎3
is equal. However, this would be challenged if we consider shortest

P-paths from amore fine-grained perspective: capture the influence

of other types of vertices to the communication between vertices

with type 𝐴 in the HIN. Specifically, on a shortest P-path, there
exists not a direct link but a path instance of P between each P-pair.
After that, among the P-pairs of several shortest P-paths, the path
instances often pass through the same vertex whose type is not 𝐴

so that they interfere with one another. For example, in Fig. 1(c), all

path instances between the P-pair (𝑎3, 𝑎5) pass through the same

vertex 𝑑7. As a result, once 𝑑7 is removed, those path instances

would all be broken, then 𝑎3 would fail to communicate with 𝑎5. In

contrast, each of the path instances between (𝑎2, 𝑎5) respectively
passes through 𝑑4, 𝑑5 or 𝑑6. Once one of 𝑑4, 𝑑5 or 𝑑6 is removed,

only one of those path instances would be broken, and 𝑎2 could

still communicate with 𝑎5. It indicates that the communication be-

tween (𝑎2, 𝑎5) is more robust than that between (𝑎3, 𝑎5), because
the path instances between (𝑎2, 𝑎5) are more independent from one

another and not easy to be broken by some vertex with type 𝐷 .

Similarly, the communication between 𝑎1 and 𝑎5 along the shortest

P-paths which contain (𝑎2, 𝑎5) is also more robust than that along

the shortest P-paths which contain (𝑎3, 𝑎5). In other words, as

for the communication between 𝑎1 and 𝑎5, the shortest P-paths
which contain (𝑎2, 𝑎5) are more important than the shortest P-
paths which contain (𝑎3, 𝑎5). Thus, the “bridge" importance of 𝑎2
to the communication between 𝑎1 and 𝑎5 is greater than that of 𝑎3,

since 𝑎2 lies on more important shortest P-paths.
To fill the gap of cBC which ignores that shortest P-paths would

have different importance to the communication between a pair of

vertices due to the influence of other types of vertices on HINs, we

propose a novel definition of the fine-grained BC (fBC for short).

The main idea of formulating fBC is: firstly, give each shortest P-
path a weight so that a shortest P-path from 𝑎𝑠 to 𝑎𝑡 would have

a larger weight if along this shortest P-path, the communication

from 𝑎𝑠 to 𝑎𝑡 is more robust; secondly, the fBC of 𝑎𝑣 with type 𝐴

is the fraction of the sum of weights of the shortest P-paths between
all pairs of vertices with type 𝐴 that pass through 𝑎𝑣 . That is, a

vertex with higher fBC would pass through more shortest P-paths
with larger weights. Actually, cBC is a special case of fBC which

considers that the weight of each shortest P-path is 1.

Applications. The cBC and fBC on HINs can be widely used in

many applications. Here are two typical examples. (1) In a movie
network, by the meta path (𝐴𝑀𝐷𝑀𝐴), the vertices with type 𝐴

that have high cBC or fBC are famous actors who play important

“bridge" roles in promoting cooperation between other unfamiliar

actors with the help of directors. Moreover, if the fBC ranking of an

important “bridge" actor (e.g., 𝑎𝑥) is significantly higher than the

cBC ranking, more different directors would involve in promoting

other actors’ cooperation, i.e., there contain more different direc-

tors in the cooperation network between actors which 𝑎𝑥 promotes.

From our experimental results, the actors with higher fBC rank-

ings are more likely to appear in numerous films spanning various

genres which are directed by many different directors. (2) In a
biomolecular reaction network of Glycolysis/ Gluconeogenesis,

by a meta path (𝐶𝐺𝐶) representing that two compounds (C) react

under the catalysis of a gene product (G), the vertices with type

𝐶 that have high cBC or fBC (e.g., Phosphoenolpyruvate) are key

intermediate compounds involved in many metabolic pathways

of Glycolysis/Gluconeogenesis. Moreover, if a compound 𝑐𝑦 has

higher fBC ranking than cBC ranking, on the metabolic pathways

which 𝑐𝑦 participates, each gene product often catalyzes only one

reaction between two compounds rather than catalyze multiple

reactions between several compounds. The advantage is that if a

gene product occurred abnormal changes by gene mutations, most

of metabolic pathways which 𝑐𝑦 participates would not be affected.

Challenges and Contributions. As far as we known, we are the
first to focus on a specific type of vertices’ BC on HINs. Considering

both coarse-grained and fine-grained perspectives, we propose a

3361

meta path-based BC framework on HINs. To compute BC on HINs,

it needs three steps: (1) find all shortest P-paths; (2) weight each
shortest P-path; (3) find each 𝑎𝑣 lying on which shortest P-paths
to compute its BC.

Firstly, while finding all shortest P-paths, each path instance

would be visited many times. To reduce the time of visiting each

path instance, we project the HIN G to a P-multigraph 𝐺P so that

each path instance between a P-pair (𝑎𝑣, 𝑎𝑢) on G corresponds to

an edge between those two vertices on𝐺P . Furthermore, computing

BC for all vertices with type 𝐴 on G is equivalent to computing BC

for all vertices on 𝐺P .
Secondly, we give two elegant properties for the weight of the

shortest P-path. After that, we formulate cBC and fBC measures

under our meta path-based BC framework respectively from coarse-

grained and fine-grained perspectives.

Thirdly, we propose a generalized basic algorithm which can

compute not only cBC and fBC but also their variants in more

complex cases (discussed in Section 5). Let 𝑛P be the number of

vertices on𝐺P , and𝑚P be the number of vertex pairs which have at

least one edge between them on𝐺P . The basic algorithm integrates

the three steps into performing BFS and reverse BFS on totally 𝑛P
breadth-first search directed acyclic graphs (BFS DAGs, e.g.,
Fig. 3) on𝐺P . There are two main parameters which affect the total

time of the basic algorithm: firstly, 𝑛P ; secondly, the worst time

cost of performing BFS and reverse BFS on a BFS DAG, i.e.,𝑂 (𝑚P).
Thus, to further speed up BC computation but not cause loss to BC

results, we develop the network compression strategy to reduce 𝑛P
and𝑚P , and the BFS DAG sharing strategy to further reduce 𝑛P .

Extensive experiments have been conducted on several real-

worldHINs to verify the great significance of cBC and fBC, and show

the great effectiveness of our proposed optimization strategies.

Related Work. BC is first proposed by Anthonisse and Freeman[7,

21]. Brandes[12] gives the best known BC computation algorithm

with 𝑂 (|𝑉 | |𝐸 |) (𝑂 (|𝑉 | |𝐸 | + |𝑉 |2𝑙𝑜𝑔|𝑉 |) resp.) time for unweighted

(weighted resp.) graphs. Besides, lots of efforts have been made to

further accelerate BC computation[43, 47]. Moreover, as computing

exact BC values is time consuming, many researchers have focused

on estimating approximate BC values [16, 18, 56]. In addition, BC

on different types of graphs like hypergraphs [44], bipartite graphs

[19], valued graph[13], and dynamic graphs [22, 29, 31] has been

extensively studied. Some researchers have also given BC variants

like edge BC, distance-scaled BC, and group BC[8, 13]. Whereas,

none of the above works focus on a specific type of vertices’ BC on

HINs. The key of BC computation is counting shortest paths. The

problem of counting shortest paths between 𝑠 and 𝑡 is #𝑃-complete

[52]. Many studies have reduced the time of counting shortest

paths on simple graphs [37, 38, 59], dynamic graph[50], probabilis-

tic graphs[40], planar graphs[10] and labeled graphs[9, 11, 41, 58].

However, they don’t consider how to reduce the time of finding

each vertex lying on which shortest paths (an essential but pretty

costly step in BC computation). Thus, the existing work for count-

ing shortest paths can’t apply to speed up cBC or fBC computation.

Various metrics have been proposed to rank vertices based on their

importance in a network. Different metrics have their own unique

meaningness and cannot be replaced by each other. For example,

PageRank[14] focuses on importance vertices that are linked by

many other important vertices, influence maximization[27] finds

a seed set of vertices to maximize the spread of influence in a net-

work, structural diversity[51] measures the number of connected

components (each represents a distinct social context) in vertices’

neighbourhood, while cBC and fBC cares about the importance

of vertices to act as bridges along shortest paths between other

vertices. Our experiments compare the top ranked vertices as for

PathRank[32] (extended PageRank on HINs), influence spread[15],

structural diversity[23], cBC and fBC, the results verify that those

metrics are quite different, and cBC and fBC are indispensable.

2 PROBLEM DESCRIPTION
AnHIN[45], denoted asG = (𝑉 , 𝐸,A,R, 𝜙𝑉 , 𝜙𝐸) (|A| > 1 or |R | >
1), is an undirected graph with a vertex type mapping function 𝜙𝑉 :

𝑉 → A and an edge type mapping function 𝜙𝐸 : 𝐸 → R, where
each vertex 𝑣 ∈ 𝑉 belongs to one particular vertex type 𝜙𝑉 (𝑣) ∈ A,

and each edge 𝑒 ∈ 𝐸 belongs to one particular edge type 𝜙𝐸 (𝑒) ∈ R.
The schema[45] of an HIN G is an undirected graph 𝑇G = (A,R)
defined over the vertex typesA and edge types R ofG. The schema

shows all allowable edge types between vertex types on G. If there
is an edge type 𝑅 from a vertex type 𝐴 to a vertex type 𝐵, denoted

as 𝐴𝑅𝐵, then the inverse edge type 𝑅−1 naturally exists from 𝐵

to 𝐴, denoted as 𝐵𝑅−1𝐴. Ameta path[45] P is a path defined on

𝑇G = (A,R), and is denoted as𝐴1

𝑅1−→ 𝐴2

𝑅2−→ . . .
𝑅𝑙−→ 𝐴𝑙+1, where

𝑙 = |P | is the length of P, 𝐴𝑖 ∈ A (1 ≤ 𝑖 ≤ 𝑙 + 1), and 𝑅 𝑗 ∈ R
(1 ≤ 𝑗 ≤ 𝑙). Given P = 𝐴1

𝑅1−→ 𝐴2

𝑅2−→ . . .
𝑅𝑙−→ 𝐴𝑙+1, we call a

path 𝑝𝑖𝑛𝑠 = (𝑣1, 𝑣2, . . . , 𝑣𝑙+1) as a path instance of P, if ∀𝑖 , vertex
𝑣𝑖 and edge 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) satisfy 𝜙𝑉 (𝑣𝑖) = 𝐴𝑖 and 𝜙𝐸 (𝑒𝑖) = 𝑅𝑖 . If

two vertices 𝑎𝑢 and 𝑎𝑣 can be connected by a path instance of P,
we call (𝑎𝑢 , 𝑎𝑣) as a P-pair (or 𝑎𝑢 and 𝑎𝑣 are P-neighbors). For
simplicity, we also use vertex type names to denote a meta path (i.e.,

P = (𝐴1𝐴2 . . . 𝐴(𝑙+1)/2 . . . 𝐴𝑙𝐴𝑙+1)), if there exist no multiple edge

types between the same pair of vertex types. IfP is symmetric about

𝐴(𝑙+1)/2, we say P is symmetric and 𝐴(𝑙+1)/2 is the symmetry
point type. In this paper, we aim to find important bridges to

the communication between the vertices which all have the same

target type (supposing 𝐴). To connect two vertices both with type

𝐴, both the starting and ending vertex types of P should be 𝐴, i.e.,

𝐴1 = 𝐴𝑙+1 = 𝐴. Thus, in the rest of this paper, the mentioned meta

paths all satisfy the form P = (𝐴, . . . , 𝐴). For ease of presentation,
we firstly adopt symmetric meta paths in ourmodels and algorithms,

then show how to expand to unsymmetric meta paths in Section 5.

Meta Path-based BC Framework on HINs. Two path instances
of P, 𝑝𝑖𝑛𝑠1 = (𝑣1, 𝑣2, . . . , 𝑣𝑙+1) and 𝑝𝑖𝑛𝑠1 = (𝑣 ′

1
, 𝑣 ′

2
, . . . , 𝑣 ′

𝑙+1), are
concatenable iff 𝑣𝑙+1 = 𝑣 ′

1
. The concatenated path of 𝑝𝑖𝑛𝑠1 and

𝑝𝑖𝑛𝑠2 is written as 𝑝 = (𝑝𝑖𝑛𝑠1 ◦ 𝑝𝑖𝑛𝑠2). For two vertices 𝑎𝑠 and 𝑎𝑡
both with type𝐴 on an HING, if a series of path instances of P (i.e.,

𝑝𝑖𝑛𝑠1 = (𝑎𝑠 = 𝑎𝑥1 , . . . , 𝑎𝑥2), 𝑝𝑖𝑛𝑠2 = (𝑎𝑥2 , . . . , 𝑎𝑥3), . . . , 𝑝𝑖𝑛𝑠𝑛−1 =

(𝑎𝑥𝑛−1 , . . . , 𝑎𝑥𝑛 = 𝑎𝑡)) can be sequentially concatenated as a path

𝑝 = (𝑝𝑖𝑛𝑠1◦𝑝𝑖𝑛𝑠2◦· · ·◦𝑝𝑖𝑛𝑠𝑛−1), we call 𝑝 as aP-path from𝑎𝑠 to𝑎𝑡 .

For any 𝑖 ∈ [1, 𝑛−1], (𝑎𝑥𝑖 , 𝑎𝑥𝑖+1) forms aP-pair. A shortestP-path
from 𝑎𝑠 to 𝑎𝑡 is a P-path from 𝑎𝑠 to 𝑎𝑡 which contains the smallest

number of vertices. In Fig. 1(c),𝑝1 = (𝑎1,𝑚1, 𝑑1,𝑚1, 𝑎2,𝑚5, 𝑑4,𝑚8, 𝑎5)
is a shortest P-path from 𝑎1 to 𝑎5.

Definition 1. (Weight of Shortest P-Path) Given a shortest P-
path 𝑝𝑖 from 𝑎𝑠 to 𝑎𝑡 , the weight of 𝑝𝑖 denoted by 𝛽𝑎𝑠𝑎𝑡 [𝑝𝑖], measures
that along 𝑝𝑖 , how robust the communication from 𝑎𝑠 to 𝑎𝑡 is.

3362

Table 1: Frequently Used Notions.
Notion Meaning

𝐶P
𝐵
(𝑎𝑣) meta path-based BC of 𝑎𝑣 on an HIN G

𝛽P𝑎𝑠𝑎𝑡 (or 𝛽
P
𝑎𝑠𝑎𝑡 (𝑎𝑣)) sum of weights of all shortest P-paths from 𝑎𝑠 to 𝑎𝑡 (which 𝑎𝑣 lies on)

𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] the weight of a P-pair (𝑎𝑥 , 𝑎𝑥+1)
Γ𝑎𝑥 ,𝑎𝑥+1 the set of path instances between a P-pair (𝑎𝑥 , 𝑎𝑥+1)
|𝐼𝑑𝑎𝑠 (𝑝𝑖𝑛𝑠) | number of path instances that interfere 𝑝𝑖𝑛𝑠 while 𝑎𝑠 communicating to other vertices

|𝐷P𝑎𝑥 ,𝑎𝑥+1 | number of all vertices with type 𝐷 which the path instances in Γ𝑎𝑥 ,𝑎𝑥+1 pass through
𝐺P = (𝑉P , 𝐸P) the P-multigraph built from an HIN G based on a meta path P

𝐹P [𝑖, 𝑗] (= 𝑀P [𝑖, 𝑗]) number of path instances of P between (𝑎𝑖 , 𝑎 𝑗) on G (edges between (𝑎𝑖 , 𝑎 𝑗) on 𝐺P)
𝛿𝑎𝑠• (𝑎𝑣) the source dependency of 𝑎𝑠 on 𝐺P

𝑃𝑟𝑒𝑑𝑎𝑠 (𝑎𝑣) all predecessors of a vertex 𝑎𝑣 on the BFS DAG of 𝑎𝑠 on 𝐺P
𝐸𝐼 (𝑎𝑢 , 𝑎𝑣) packaged information of a P-pair (𝑎𝑢 , 𝑎𝑣) for computing 𝛽

𝐺P
𝑎𝑠𝑎𝑣 [𝑎𝑢 , 𝑎𝑣]

𝑙 (P) = (𝐴1𝐴2 . . . 𝐴(𝑙+1)/2) the left half meta path of P = (𝐴1𝐴2 . . . 𝐴(𝑙+1)/2 . . . 𝐴𝑙𝐴𝑙+1)

Let Ψ𝑎𝑠𝑎𝑡 be the set of all shortest P-paths from 𝑎𝑠 to 𝑎𝑡 , 𝛽
P
𝑎𝑠𝑎𝑡 be

the sum of weights of all shortest P-paths in Ψ𝑎𝑠𝑎𝑡 which measures

along those shortest P-paths, how robust the communication from

𝑎𝑠 to 𝑎𝑡 is. Let 𝛽
P
𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] be the weight of a P-pair (𝑎𝑥 , 𝑎𝑥+1)

which measures along all path instances between (𝑎𝑥 , 𝑎𝑥+1), how
robust the communication from 𝑎𝑠 to 𝑎𝑡 is.

Assuming there is at least one shortest P-path from 𝑎𝑠 to 𝑎𝑡 .

If 𝑎𝑠 and 𝑎𝑡 form a P-pair, 𝛽P𝑎𝑠𝑎𝑡 = 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑠 , 𝑎𝑡]. Otherwise (i.e.,
connecting 𝑎𝑠 and 𝑎𝑡 needs at least two sequentially concatenated

path instances of P), the weight of the shortest P-path has the

following two elegant properties.

Properties 1. (Additivity) If all shortest P-paths in Ψ𝑎𝑠𝑎𝑡 can be

divided into 𝑟 groups (𝑟 ≥ 1) so that each shortest P-path is only

in a unique group 𝑝𝑔 𝑗 , let 𝛽𝑎𝑠𝑎𝑡 [𝑝𝑔 𝑗] be the sum of weights of the

group of shortest P-paths in 𝑝𝑔 𝑗 which measures along this group

of shortest P-paths, how robust the communication from 𝑎𝑠 to 𝑎𝑡

is. We have 𝛽P𝑎𝑠𝑎𝑡 =
∑︁
𝑝𝑖 ∈Ψ𝑎𝑠𝑎𝑡 𝛽𝑎𝑠𝑎𝑡 [𝑝

𝑖] = ∑︁𝑟
𝑗=1 𝛽𝑎𝑠𝑎𝑡 [𝑝𝑔 𝑗].

Properties 2. (Multiplicativity)Given a group of shortestP-paths
𝑝𝑔 𝑗 from 𝑎𝑠 to 𝑎𝑡 , if all P-pairs on each shortest P-path in 𝑝𝑔 𝑗 are

identical (assuming they are (𝑎𝑠 = 𝑎1, 𝑎2), (𝑎2, 𝑎3), . . . , (𝑎𝑘 𝑗
, 𝑎𝑘 𝑗+1

= 𝑎𝑡) sequentially), we say 𝑝𝑔 𝑗 contains 𝑘 𝑗 P-pairs where each

P-pair is (𝑎𝑥 , 𝑎𝑥+1) (1 ≤ 𝑥 ≤ 𝑘 𝑗). Since each P-pair in 𝑝𝑔 𝑗 inde-

pendently affects the communication robustness from 𝑎𝑠 to 𝑎𝑡 , we

have 𝛽𝑎𝑠𝑎𝑡 [𝑝𝑔 𝑗] =
∏︁𝑘 𝑗

𝑥=1
𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1].

We observe that all shortest P-paths from 𝑎𝑠 to 𝑎𝑡 always can be

divided into 𝑟 groups (𝑟 ≥ 1) so that (1) each shortest P-path is only
in a unique group; (2) in any a group, all P-pairs on each shortest

P-path are identical. For example, in Fig. 1(c), there are three groups

of shortest P-paths from 𝑎1 to 𝑎5: 𝑝𝑔
1

𝑎1𝑎5
= (𝑎1, 𝑎2, 𝑎5) (including

three shortest P-paths), 𝑝𝑔2𝑎1𝑎5 = (𝑎1, 𝑎3, 𝑎5) (including three short-
est P-paths), 𝑝𝑔3𝑎1𝑎5 = (𝑎1, 𝑎4, 𝑎5) (including one shortest P-path),
where each 𝑝𝑔

𝑗
𝑎𝑠𝑎𝑡 is represented by the sequence of all its vertices

with type 𝐴 from 𝑎𝑠 to 𝑎𝑡 . Then 𝛽P𝑎1𝑎5 =
∑︁
3

𝑗=1 𝛽𝑎1𝑎5 [𝑝𝑔
𝑗]. And

𝑝𝑔1𝑎1𝑎5 contains twoP-pairs (𝑎1, 𝑎2) and (𝑎2, 𝑎5), then 𝛽𝑎1𝑎5 [𝑝𝑔
1] =

𝛽P𝑎1𝑎5 [𝑎1, 𝑎2] × 𝛽
P
𝑎1𝑎5 [𝑎2, 𝑎5].

For ease of calculation, to compute 𝛽P𝑎𝑠𝑎𝑡 (except that 𝑎𝑠 and 𝑎𝑡
form a P-pair), instead of computing the weight of each shortest

P-path in Ψ𝑎𝑠𝑎𝑡 and then summing all the weights, we firstly divide

Ψ𝑎𝑠𝑎𝑡 into groups based on the above observation, and then by the

above two properties, we have 𝛽P𝑎𝑠𝑎𝑡 =
∑︁𝑟

𝑗=1 (
∏︁𝑙 𝑗

𝑥=1
𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1]).

Based on the above, the base of computing 𝛽P𝑎𝑠𝑎𝑡 is the formal

definition of 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1]. Next, we firstly give a meta path-

based BC framework on HINs. Then we will respectively pro-

pose the coarse-grained and fine-grained formal definitions of

Figure 2: Example of Computing Fine-grained 𝛽P𝑎𝑠 ,𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1].

𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] so as to introduce the coarse-grained BC (cBC
for short) and the fine-grained BC (fBC for short) on HINs.

Definition 2. (Meta Path-based BC Framework on HINs)
Given an HIN G = (𝑉 , 𝐸,A,R, 𝜙𝑉 , 𝜙𝐸) and a meta path P (where
𝐴1 = 𝐴𝑙+1 = 𝐴), the meta path-based BC framework of a vertex 𝑎𝑣
with type 𝐴 (i.e., 𝜙𝑉 (𝑎𝑣) = 𝐴) is defined as follows:

𝐶P
𝐵
(𝑎𝑣) =

∑︂
𝑎𝑠≠𝑎𝑣≠𝑎𝑡 ∈𝑉 ,𝜙𝑉 (𝑎𝑠)=𝜙𝑉 (𝑎𝑣)=𝜙𝑉 (𝑎𝑡)=𝐴

𝛽P𝑎𝑠𝑎𝑡 (𝑎𝑣)
𝛽P𝑎𝑠𝑎𝑡

(1)

where 𝛽P𝑎𝑠𝑎𝑡 is the sum of weights of the shortest P-paths from 𝑎𝑠 to
𝑎𝑡 , 𝛽P𝑎𝑠𝑎𝑡 (𝑎𝑣) is the sum of weights of the shortest P-paths from 𝑎𝑠

to 𝑎𝑡 which 𝑎𝑣 lies on. By convention, 𝛽P𝑎𝑠𝑎𝑠 = 1.
Coarse-grained vs Fine-grained BC on HINs. Let Γ𝑎𝑥 ,𝑎𝑥+1 be

the set of path instances between a P-pair (𝑎𝑥 , 𝑎𝑥+1). Recall that
𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1]measures along all path instances between (𝑎𝑥 , 𝑎𝑥+1),
how robust the communication from 𝑎𝑠 to 𝑎𝑡 .

From a coarse-grained perspective, the influence of the ver-
tices whose type are not𝐴 to the communication from 𝑎𝑠 to 𝑎𝑡 is ig-

nored. If there are more path instances between a P-pair (𝑎𝑥 , 𝑎𝑥+1)
(i.e., more path instances in Γ𝑎𝑥 ,𝑎𝑥+1), then the number of shortest

P-paths from 𝑎𝑠 to 𝑎𝑡 which contains (𝑎𝑥 , 𝑎𝑥+1) is larger, so the

communication from 𝑎𝑠 to 𝑎𝑡 is more robust, i.e., 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] ∝
|Γ𝑎𝑥 ,𝑎𝑥+1 |. We define coarse-grained 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] = |Γ𝑎𝑥 ,𝑎𝑥+1 |. In
such a case, we call the BC in Eq. (1) as the cBC. In Fig. 2(a),

coarse-grained 𝛽P𝑎𝑢
1
𝑎𝑣 [𝑎𝑢1

, 𝑎𝑣] = 𝛽P𝑎𝑠𝑎𝑣 [𝑎𝑢1
, 𝑎𝑣] = |Γ𝑎𝑢

1
𝑎𝑣 | = 3.

From a fine-grained perspective, the influence of the vertices
whose type are not 𝐴 to the communication from 𝑎𝑠 to 𝑎𝑡 is consid-

ered. The influence is greater if more path instances pass through

the same vertex whose type is not 𝐴, it often occurs when this

vertex type is the symmetry point type (supposing 𝐷) of P.
For ease of presentation, we firstly only consider the influence

of the vertices with type 𝐷 (more complex situations are discussed

in Section 5), then the communication from 𝑎𝑠 to 𝑎𝑡 based on the

path instances between a P-pair (𝑎𝑥 , 𝑎𝑥+1) is more robust if:

i)More path instances in Γ𝑎𝑥 ,𝑎𝑥+1 , i.e., 𝛽
P
𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] ∝ |Γ𝑎𝑥 ,𝑎𝑥+1 |.

ii) Each path instance 𝑝𝑖𝑛𝑠 ∈ Γ𝑎𝑥 ,𝑎𝑥+1 is more independent and not

easy to be interfered by other path instances while 𝑝𝑖𝑛𝑠 is partici-

pating in the communication from 𝑎𝑠 to 𝑎𝑡 . When 𝑎𝑠 communicates

to 𝑎𝑡 along a shortest P-path 𝑝𝑖 , each 𝑝𝑖𝑛𝑠 contained in 𝑝𝑖 is in-

terfered by the following path instances (Let 𝐼𝑑𝑎𝑠 (𝑝𝑖𝑛𝑠) be the set
of all such path instances, including 𝑝𝑖𝑛𝑠) : such path instances

are contained in other shortest P-paths whose sources are all 𝑎𝑠 ,
and such path instances and 𝑝𝑖𝑛𝑠 pass through the same vertex 𝑑

with type 𝐷 . For example, in Fig. 2(a), when the communication

starts from 𝑎𝑢1
(𝑎𝑠 resp.) to other vertices, 𝑝𝑖𝑛𝑠1 would be interfered

by two path instances (𝑎𝑢1
,𝑚6, 𝑑3,𝑚5, 𝑎𝑢2

) and (𝑎𝑢1
,𝑚6, 𝑑3,𝑚6, 𝑎𝑣)

(three path instances (𝑎𝑢1
,𝑚6, 𝑑3,𝑚6, 𝑎𝑣), (𝑎𝑢2

,𝑚5, 𝑑3,𝑚5, 𝑎𝑣) and

3363

(𝑎𝑢2
,𝑚5, 𝑑3,𝑚6, 𝑎𝑣) resp.), marked in green in Fig. 2(b) (Fig. 2(c)

resp.). Thus, |𝐼𝑑3𝑎𝑢
1

(𝑝𝑖𝑛𝑠1) | = 3, |𝐼𝑑3𝑎𝑠 (𝑝𝑖𝑛𝑠1) | = 4. W.l.o.g., assume

that the interference of the path instances in 𝐼𝑑𝑎𝑠 (𝑝𝑖𝑛𝑠) on each

other is equivalent, so the independence of each 𝑝𝑖𝑛𝑠 is denoted by

1/|𝐼𝑑𝑎𝑠 (𝑝𝑖𝑛𝑠) |. Then we have 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] ∝ 1/|𝐼𝑑𝑎𝑠 (𝑝𝑖𝑛𝑠) |.
iii) The path instances in Γ𝑎𝑥 ,𝑎𝑥+1 pass through more different ver-

tices with type 𝐷 (let |𝐷P𝑎𝑥 ,𝑎𝑥+1 | be the number of those vertices

with type 𝐷), i.e., 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] ∝ |𝐷
P
𝑎𝑥 ,𝑎𝑥+1 |.

Let |𝑉𝐷 | be the number of all vertices with type 𝐷 on G, then∑︁
𝑝𝑖𝑛𝑠∈Γ𝑎𝑥 ,𝑎𝑥+1

1/|𝐼𝑑𝑎𝑠 (𝑝𝑖𝑛𝑠) | ∈ (0, |𝑉𝐷 |], and |𝐷
P
𝑎𝑥 ,𝑎𝑥+1 | ∈ [1, |𝑉𝐷 |].

Thus, we define fine-grained 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] as follows.
𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] =

(︂ ∑︂
𝑝𝑖𝑛𝑠∈Γ𝑎𝑥 ,𝑎𝑥+1

1

|𝐼𝑑𝑎𝑠 (𝑝𝑖𝑛𝑠) |

)︂
+ |𝐷P𝑎𝑥 ,𝑎𝑥+1 | (2)

In such a case, we call the BC in Eq. (1) as the fBC. Note that
the definition of 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] in Eq. (2) is a straightforward form

based on intuitive observations. In the future, we will continue to

analyze whether there are other factors affecting 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1]
and improve Eq. (2) accordingly. Even though the form of Eq. (2)

is changed, our proposed algorithms and optimization strategies

could still be applicable only with simple modifications. For cBC,

𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] = 𝛽P𝑎𝑡𝑎𝑠 [𝑎𝑥 , 𝑎𝑥+1], so 𝛽P𝑎𝑠𝑎𝑡 = 𝛽P𝑎𝑡𝑎𝑠 (𝑎𝑠 ≠ 𝑎𝑡); for
fBC, 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] ≠ 𝛽P𝑎𝑡𝑎𝑠 [𝑎𝑥 , 𝑎𝑥+1], so 𝛽P𝑎𝑠𝑎𝑡 ≠ 𝛽P𝑎𝑡𝑎𝑠 (𝑎𝑠 ≠ 𝑎𝑡).

Problem 1 (Meta Path-based BC Computation, MBCC for
short). Given an HIN G, a meta path P (where 𝐴1 = 𝐴𝑙+1 = 𝐴),

return the cBC or fBC for all vertices with type 𝐴.

3 MBCC ALGORITHM
To solve the MBCC problem, the first key step is to find all shortest

P-paths. However, each path instance of P is often contained in

many shortest P-paths. Thus, while finding all shortest P-paths in
an HIN G, each path instance will be visited many times. To reduce

the time of visiting each path instance from 𝑂 (|P|) to 𝑂 (1), we
build a P-multigraph 𝐺P from G in advance so that each path

instance between a P-pair (𝑎𝑣, 𝑎𝑢) in G corresponds to an edge

between those two vertices on 𝐺P . After that, finding all shortest
P-paths on G is equivalent to finding all shortest paths on 𝐺P .
Furthermore, computing cBC or fBC for all vertices with type 𝐴 on

G is equivalent to computing cBC or fBC for all vertices on 𝐺P .
Our Basic algorithm for MBCC has two steps: (1) build the P-

multigraph 𝐺P from the HIN G; (2) compute cBC or fBC for all

vertices on 𝐺P .
Definition 3. (P-multigraph) Given an HIN G and a meta

path P, the P-multigraph 𝐺P = (𝑉P , 𝐸P) is a multigraph (where
every two vertices may be connected by more than one edge) such
that the vertices in 𝑉P are all vertices with type 𝐴 on G, and each
edge in 𝐸P between two vertices 𝑎𝑣 and 𝑎𝑢 on 𝐺P corresponds to a
path instance between a P-pair (𝑎𝑣, 𝑎𝑢) on G.
Building a P-Multigraph from an HIN. The key to build a P-
multigraph 𝐺P from an HIN G is to compute the number of path

instances of P between each P-pair on G. The step (1) of Basic
handles this with the commuting matrix [45].

Definition 4. (Commuting Matrix[45]) Given an HIN G and
a meta path P = (𝐴1𝐴2 . . . 𝐴𝑙+1), the commuting matrix 𝐹P for
P is defined as 𝐹P =𝑊𝐴1𝐴2

𝑊𝐴2𝐴3
. . .𝑊𝐴𝑙𝐴𝑙+1 , where𝑊𝐴𝑖𝐴 𝑗

is the
adjacency matrix between vertex type 𝐴𝑖 and 𝐴 𝑗 .

To build 𝐺P from G, we firstly compute the commuting matrix

𝐹P for P on G. 𝐹P is just the adjacency matrix 𝑀P of 𝐺P , since
𝐹P [𝑖, 𝑗] = 𝑀P [𝑖, 𝑗] represents the number of path instances of P
between 𝑎𝑖 and 𝑎 𝑗 on G (i.e., the number of edges between 𝑎𝑖 and

𝑎 𝑗 on 𝐺P). Since P is symmetric, 𝐹P = 𝐹𝑙 (P)𝐹
𝑇
𝑙 (P) where 𝐹𝑙 (P) is

the commuting matrix for 𝑙 (P) (i.e., the left half meta path of P).
After building 𝐺P , let 𝑁𝑒𝑖𝐺P (𝑎𝑣) be the set of neighbors of 𝑎𝑣

on 𝐺P , then 𝑎𝑣 and each of those vertices in 𝑁𝑒𝑖𝐺P (𝑎𝑣) form a

P-pair on the HIN G. A path from 𝑎𝑠 to 𝑎𝑡 on 𝐺P , denoted by

𝑎𝑠 ⇝ 𝑎𝑡 , is a sequence of vertices such that each two adjacent

vertices are linked by at least one edge on 𝐺P . A shortest 𝑎𝑠 ⇝ 𝑎𝑡
path is the 𝑎𝑠 ⇝ 𝑎𝑡 path which contains the smallest number

of vertices on 𝐺P . Obviously, each shortest P-path from 𝑎𝑠 to

𝑎𝑡 on G corresponds to a shortest 𝑎𝑠 ⇝ 𝑎𝑡 path on 𝐺P . Thus,
𝛽P𝑎𝑠𝑎𝑡 = 𝛽

𝐺P
𝑎𝑠𝑎𝑡 , 𝛽

P
𝑎𝑠𝑎𝑡 (𝑎𝑣) = 𝛽

𝐺P
𝑎𝑠𝑎𝑡 (𝑎𝑣), and 𝐶P

𝐵
(𝑎𝑣) = 𝐶

𝐺P
𝐵
(𝑎𝑣).

That is, computing cBC or fBC for all vertices with type 𝐴 on G is

equivalent to computing cBC or fBC for all vertices on 𝐺P .
Computing cBC or fBC on a P-Multigraph. Let 𝛿𝑎𝑠𝑎𝑡 (𝑎𝑣) =

𝛽
𝐺P
𝑎𝑠𝑎𝑡 (𝑎𝑣)/𝛽

𝐺P
𝑎𝑠𝑎𝑡 be the pair dependency of 𝑎𝑠 and 𝑎𝑡 on𝐺P , then

Eq. (1) is equivalentlywritten as𝐶
𝐺P
𝐵
(𝑎𝑣) =

∑︁
𝑎𝑠≠𝑎𝑣≠𝑎𝑡 ∈𝑉P 𝛿𝑎𝑠𝑎𝑡 (𝑎𝑣).

To compute cBC or fBC for vertices on 𝐺P , the key is to compute

𝛿𝑎𝑠𝑎𝑡 (𝑎𝑣) for all 𝑎𝑠 ∈ 𝑉P , 𝑎𝑡 ∈ 𝑉P and 𝑎𝑣 ∈ 𝑉P . A simple method

that totally needs 𝑂 (𝑛3P) time is: (1) find all shortest paths on 𝐺P ,
(2) find which shortest paths pass through 𝑎𝑣 for each 𝑎𝑣 ∈ 𝑉P .

To reduce the time, we compute all pair dependencies in groups

where each group of pair dependencies have the same𝑎𝑠 : let𝛿𝑎𝑠• (𝑎𝑣)
=
∑︁
𝑎𝑡 ∈𝑉 𝛿𝑎𝑠𝑎𝑡 (𝑎𝑣) be the source dependency of 𝑎𝑠 on 𝐺P . Then

Eq. (1) is equivalently written as 𝐶
𝐺P
𝐵
(𝑎𝑣) =

∑︁
𝑎𝑠≠𝑎𝑣 ∈𝑉P 𝛿𝑎𝑠• (𝑎𝑣).

Now the key is given a 𝑎𝑠 ∈ 𝑉P , compute 𝛿𝑎𝑠• (𝑎𝑣) for all 𝑎𝑣 ∈ 𝑉P .
The step (2) of Basic handles this by performing BFS and reverse

BFS on a breadth-first search directed acyclic graph (BFS DAG) of
𝑎𝑠 on 𝐺P (the correctness is held by Theorem 1 and Theorem 2).

Definition 5. (BFSDAG)Given aP-multigraph𝐺P = (𝑉P , 𝐸P)
and a vertex 𝑎𝑠 ∈ 𝑉P , the BFS DAG of 𝑎𝑠 on 𝐺P denoted by 𝐵

𝐺P
𝑎𝑠 =

(𝑉 𝐵
𝑎𝑠
, 𝐸𝐵𝑎𝑠) (𝑉

𝐵
𝑎𝑠
⊆ 𝑉P , 𝐸𝐵𝑎𝑠 ⊆ 𝐸P) is a directed acyclic graph which

represents all shortest paths from 𝑎𝑠 to all other reachable vertices
as discovered by conducting the BFS algorithm on 𝐺P , where 𝑉 𝐵

𝑎𝑠

includes all vertices reachable from 𝑎𝑠 on 𝐺P , and 𝐸𝐵𝑎𝑠 consists of all
edges that are part of the shortest paths from 𝑎𝑠 to each vertex on𝐺P .

Specifically, the step (2) of Basic contains two phases. Phase I:
take each vertex on 𝐺P as a source 𝑎𝑠 , compute 𝛿𝑎𝑠• (𝑎𝑣) for each
𝑎𝑣 ∈ 𝑉P : (1) Conduct BFS from 𝑎𝑠 (i.e., build the BFS DAG of 𝑎𝑠)

to compute 𝛽
𝐺P
𝑎𝑠𝑎𝑣 for each 𝑎𝑣 ∈ 𝑉P by Eq. (3), and record the BFS

DAG of 𝑎𝑠 using the set 𝑃𝑟𝑒𝑑𝑎𝑠 (𝑎𝑣) which contains all predecessors

of a vertex 𝑎𝑣 on the BFS DAG, and the stack 𝑆 which records the

BFS sequence of vertices. (2) Perform reverse BFS (i.e., from the

bottom to the top of the BFS DAG of 𝑎𝑠) to compute each 𝛿𝑎𝑠• (𝑎𝑣)
by Eq. (4). Phase II: for each 𝑎𝑣 ∈ 𝑉P , compute its BC by adding

the source dependencies 𝛿𝑎𝑠• (𝑎𝑣) of all 𝑎𝑠 ∈ 𝑉P (𝑎𝑠 ≠ 𝑎𝑣).
Theorem 1. While conducting BFS from 𝑎𝑠 on 𝐺P (i.e., building

the BFS DAG of𝑎𝑠), 𝛽
𝐺P
𝑎𝑠𝑎𝑣 (𝑎𝑠 ≠ 𝑎𝑣 ∈ 𝑉P) can be computed recursively

as follows (initially, 𝛽𝐺P𝑎𝑠𝑎𝑠 = 1):

𝛽
𝐺P
𝑎𝑠𝑎𝑣 =

∑︂
𝑎𝑢 ∈𝑃𝑟𝑒𝑑𝑎𝑠 (𝑎𝑣)

𝛽
𝐺P
𝑎𝑠𝑎𝑢 × 𝛽

𝐺P
𝑎𝑠𝑎𝑣 [𝑎𝑢 , 𝑎𝑣] (3)

3364

Proof. 𝑝𝑔
𝑗
𝑎𝑠𝑎𝑢 ◦ (𝑎𝑢 , 𝑎𝑣) means that each shortest P-path in

𝑝𝑔
𝑗
𝑎𝑠𝑎𝑢 correspondingly concatenates to each path instance from 𝑎𝑢 to

𝑎𝑣 . By the additivity and multiplicativity properties in Subsection 2,
𝛽
𝐺P
𝑎𝑠𝑎𝑣 =

∑︁
𝑝𝑔 𝑗 ⊆Ψ𝑎𝑠𝑎𝑣 𝛽

𝐺P
𝑎𝑠𝑎𝑣 [𝑝𝑔 𝑗]

=
∑︁

𝑎𝑢 ∈𝑃𝑟𝑒𝑑𝑠 (𝑎𝑣)
(︂ ∑︁

𝑝𝑔 𝑗 ⊆Ψ𝑎𝑠𝑎𝑢 𝛽
𝐺P
𝑎𝑠𝑎𝑣 [𝑝𝑔 𝑗 ◦ (𝑎𝑢 , 𝑎𝑣)]

)︂
=
∑︁

𝑎𝑢 ∈𝑃𝑟𝑒𝑑𝑠 (𝑎𝑣)
(︂ ∑︁

𝑝𝑔 𝑗 ⊆Ψ𝑎𝑠𝑎𝑢 𝛽
𝐺P
𝑎𝑠𝑎𝑣 [𝑝𝑔 𝑗] × 𝛽

𝐺P
𝑎𝑠𝑎𝑣 [𝑎𝑢 , 𝑎𝑣]

)︂
=
∑︁

𝑎𝑢 ∈𝑃𝑟𝑒𝑑𝑎𝑠 (𝑎𝑣)
(︂
𝛽
𝐺P
𝑎𝑠𝑎𝑢 × 𝛽

𝐺P
𝑎𝑠𝑎𝑣 [𝑎𝑢 , 𝑎𝑣]

)︂
■

To compute 𝛽
𝐺P
𝑎𝑠𝑎𝑣 by Eq. (3), 𝛽

𝐺P
𝑎𝑠𝑎𝑣 [𝑎𝑢 , 𝑎𝑣] for eachP-pair (𝑎𝑢 , 𝑎𝑣)

on the BFS DAG of 𝑎𝑠 should be acquired in advance. For cBC,

𝛽
𝐺P
𝑎𝑠𝑎𝑣 [𝑎𝑢 , 𝑎𝑣] = 𝐹P [𝑎𝑢 , 𝑎𝑣] (directly acquired while building 𝐺P
in the step (1) of Basic). For fBC, in the step(1) of Basic, while

building 𝐺P from the HIN, we simultaneously establish the data

structure 𝐸𝐼 (𝑎𝑢 , 𝑎𝑣) for each P-pair (𝑎𝑢 , 𝑎𝑣) to package the infor-

mation which will be used for computing 𝛽
𝐺P
𝑎𝑠𝑎𝑣 [𝑎𝑢 , 𝑎𝑣] in the step

(2) of Basic, including |𝐷P𝑎𝑢 ,𝑎𝑣 |, and between 𝑎𝑢 and 𝑎𝑣 , each path

instance passes through which vertex with type 𝐷 . Then in the

step (2) of Basic, we conduct BFS twice in Phase I-(1): firstly, check

𝐸𝐼 (𝑎𝑢 , 𝑎𝑣) to compute 𝐼𝑑𝑎𝑠 (𝑝𝑖𝑛𝑠); secondly, compute 𝛽
𝐺P
𝑎𝑠𝑎𝑣 [𝑎𝑢 , 𝑎𝑣]

with |𝐷P𝑎𝑢 ,𝑎𝑣 | and 𝐼
𝑑
𝑎𝑠
(𝑝𝑖𝑛𝑠) by Eq. (2), and compute 𝛽

𝐺P
𝑎𝑠𝑎𝑣 by Eq. (3).

Theorem 2. While conducting reverse BFS from the bottom to the
top of the BFS DAG of 𝑎𝑠 on 𝐺P , 𝛿𝑎𝑠• (𝑎𝑣) (𝑎𝑠 ≠ 𝑎𝑣 ∈ 𝑉P) can be
computed recursively from each leaf node 𝑎𝑣 (𝛿𝑎𝑠• (𝑎𝑣) = 0) of the
BFS DAG as follows:

𝛿𝑎𝑠• (𝑎𝑣) =
∑︂

𝑎𝑤 :𝑎𝑣 ∈𝑃𝑟𝑒𝑑𝑎𝑠 (𝑎𝑤)

𝛽
𝐺P
𝑎𝑠𝑎𝑣 × 𝛽

𝐺P
𝑎𝑠𝑎𝑤 [𝑎𝑣, 𝑎𝑤]

𝛽
𝐺P
𝑎𝑠𝑎𝑤

× (1 + 𝛿𝑎𝑠• (𝑎𝑤))

(4)

Proof. On the BFS DAG of 𝑎𝑠 , if 𝑎𝑡 is not a descendant of 𝑎𝑣 , then
all shortest P-paths from 𝑎𝑠 to such an 𝑎𝑡 would not pass through
𝑎𝑣 , i.e., 𝛽

𝐺P
𝑎𝑠𝑎𝑡 (𝑎𝑣) = 0. Let 𝐷𝑐 (𝑎𝑣) be the set of all descendants of 𝑎𝑣

on the BFS DAG of 𝑎𝑠 , then 𝛿𝑎𝑠• (𝑎𝑣) =
∑︁

𝑎𝑡 ∈𝐷𝑐 (𝑎𝑣)
𝛽
𝐺P
𝑎𝑠𝑎𝑡

(𝑎𝑣)

𝛽
𝐺P
𝑎𝑠𝑎𝑡

. Divide

𝐷𝑐 (𝑎𝑣) into two subsets, one is the set of all children of 𝑎𝑣 (denoted by
𝐶𝑙 (𝑎𝑣)), the other is the set of the remaining descendants but not the

children of 𝑎𝑣 (denoted by𝐷𝑐 (𝑎𝑣) \𝐶𝑙 (𝑎𝑣)), so
∑︁

𝑎𝑡 ∈𝐷𝑐 (𝑎𝑣)
𝛽
𝐺P
𝑎𝑠𝑎𝑡

(𝑎𝑣)

𝛽
𝐺P
𝑎𝑠𝑎𝑡

=

∑︁
𝑎𝑤 ∈𝐶𝑙 (𝑎𝑣)

𝛽
𝐺P
𝑎𝑠𝑎𝑤

(𝑎𝑣)

𝛽
𝐺P
𝑎𝑠𝑎𝑤

+∑︁𝑎𝑡 ∈𝐷𝑐 (𝑎𝑣)\𝐶𝑙 (𝑎𝑣)
𝛽
𝐺P
𝑎𝑠𝑎𝑡

(𝑎𝑣)

𝛽
𝐺P
𝑎𝑠𝑎𝑡

.

Based on the additivity and multiplicativity properties,
𝛽
𝐺P
𝑎𝑠𝑎𝑡

(𝑎𝑣)

𝛽
𝐺P
𝑎𝑠𝑎𝑡

=

∑︁
𝑎𝑤 ∈𝐶𝑙 (𝑎𝑣) 𝛽

𝐺P
𝑎𝑠𝑎𝑡

(𝑎𝑣 ,𝑎𝑤)

𝛽
𝐺P
𝑎𝑠𝑎𝑡

=

∑︁
𝑎𝑤 ∈𝐶𝑙 (𝑎𝑣) 𝛽

𝐺P
𝑎𝑠𝑎𝑣

·𝛽𝐺P𝑎𝑣𝑎𝑤
·𝛽𝐺P𝑎𝑤𝑎𝑡

𝛽
𝐺P
𝑎𝑠𝑎𝑡

=
∑︁

𝑎𝑤 ∈𝐶𝑙 (𝑎𝑣)
𝛽
𝐺P
𝑎𝑠𝑎𝑣

·𝛽𝐺P𝑎𝑣𝑎𝑤

𝛽
𝐺P
𝑎𝑠𝑎𝑤

× 𝛽
𝐺P
𝑎𝑠𝑎𝑤

·𝛽𝐺P𝑎𝑤𝑎𝑡

𝛽
𝐺P
𝑎𝑠𝑎𝑡

.

Then we have 𝛿𝑎𝑠• (𝑎𝑣) =
∑︁

𝑎𝑤 :𝑎𝑣 ∈𝑃𝑟𝑒𝑑𝑠 (𝑎𝑤)
𝛽
𝐺P
𝑎𝑠𝑎𝑤

(𝑎𝑣)

𝛽
𝐺P
𝑎𝑠𝑎𝑤

+∑︁𝑎𝑡 ∈𝐷𝑐 (𝑎𝑣)\𝐶𝑙 (𝑎𝑣)
∑︁

𝑎𝑤 :𝑎𝑣 ∈𝑃𝑟𝑒𝑑𝑠 (𝑎𝑤)
𝛽
𝐺P
𝑎𝑠𝑎𝑣

·𝛽𝐺P𝑎𝑣𝑎𝑤

𝛽
𝐺P
𝑎𝑠𝑎𝑤

× 𝛽
𝐺P
𝑎𝑠𝑎𝑤

·𝛽𝐺P𝑎𝑤𝑎𝑡

𝛽
𝐺P
𝑎𝑠𝑎𝑡

=
∑︁

𝑎𝑤 :𝑎𝑣 ∈𝑃𝑟𝑒𝑑𝑠 (𝑎𝑤)
𝛽
𝐺P
𝑎𝑠𝑎𝑤

(𝑎𝑣)

𝛽
𝐺P
𝑎𝑠𝑎𝑤

× (1+∑︁𝑎𝑡 ∈𝐷𝑐 (𝑎𝑣)\𝐶𝑙 (𝑎𝑣)
𝛽
𝐺P
𝑎𝑠𝑎𝑤

·𝛽𝐺P𝑎𝑤𝑎𝑡

𝛽
𝐺P
𝑎𝑠𝑎𝑡

)

=
∑︁

𝑎𝑤 :𝑎𝑣 ∈𝑃𝑟𝑒𝑑𝑠 (𝑎𝑤)
𝛽
𝐺P
𝑎𝑠𝑎𝑤

(𝑎𝑣)

𝛽
𝐺P
𝑎𝑠𝑎𝑤

× (1 + 𝛿𝑎𝑠• (𝑎𝑤)) . ■

Fig. 3 gives the process of computing 𝛽
𝐺P
𝑎𝑠𝑎𝑣 and 𝛿𝑎𝑠• (𝑎𝑣) on the

BFS DAG of 𝑎𝑠 (the HIN topolopy is in Fig. 2(a)). The pseudo-code

Algorithm 1: Basic(G, P, 𝐴, 𝐷)
1: Build the P-multigraph𝐺P = (𝑉P , 𝐸P) from the HIN G, and record 𝐸𝐼 (𝑎𝑢 , 𝑎𝑣) for

each P-pair (𝑎𝑢 , 𝑎𝑣) ;
2: 𝐶𝐵 [𝑎𝑣] ← 0, 𝑎𝑣 ∈ 𝑉P ;
3: for 𝑎𝑠 ∈ 𝑉P do
4: the queue𝑄 ← ∅, the stack 𝑆 ← ∅; Enqueue 𝑎𝑠 → 𝑄 ;

5: 𝛽 [𝑎𝑡] ← 0, 𝑃𝑟𝑒𝑑 (𝑎𝑡) ← empty list, 𝐷𝑖𝑠𝑡 [𝑎𝑡] ← ∞, 𝑎𝑡 ∈ 𝑉P ;
6: 𝛽 [𝑎𝑠] ← 1, 𝐷𝑖𝑠𝑡 [𝑎𝑠] ← 0; |𝐼𝑑𝑎𝑠 | ← 0, 𝑑 ∈ 𝑉𝐷 ;

7: while𝑄 is not empty do // first BFS
8: Dequeue 𝑎𝑢 ← 𝑄 ; push 𝑎𝑢 → 𝑆 ;

9: for each 𝑎𝑣 ∈ 𝑁𝑒𝑖𝐺P (𝑎𝑢) do
10: if 𝐷𝑖𝑠𝑡 [𝑎𝑣] = ∞ then
11: 𝐷𝑖𝑠𝑡 [𝑎𝑣] ← 𝐷𝑖𝑠𝑡 [𝑎𝑢] + 1; Enqueue 𝑎𝑣 → 𝑄 ;

12: if 𝐷𝑖𝑠𝑡 [𝑎𝑣] = 𝐷𝑖𝑠𝑡 [𝑎𝑢] + 1 then
13: for each 𝑝𝑖𝑛𝑠 ∈ (𝑎𝑢 , 𝑎𝑣) do
14: Get 𝑑 of 𝑝𝑖𝑛𝑠 from 𝐸𝐼 (𝑎𝑢 , 𝑎𝑣) ; |𝐼𝑑𝑎𝑠 | + +;

15: while𝑄 is not empty do // second BFS
16: Dequeue 𝑎𝑢 ← 𝑄 ;

17: for each 𝑎𝑣 ∈ 𝑁𝑒𝑖𝐺P (𝑎𝑢) do
18: if 𝐷𝑖𝑠𝑡 [𝑎𝑣] = 𝐷𝑖𝑠𝑡 [𝑎𝑢] + 1 then
19: for each 𝑝𝑖𝑛𝑠 ∈ (𝑎𝑢 , 𝑎𝑣) do
20: Get 𝑑 of 𝑝𝑖𝑛𝑠 from 𝐸𝐼 (𝑎𝑢 , 𝑎𝑣) ;
21: 𝛽 [𝑎𝑢 , 𝑎𝑣]+ = 1/|𝐼𝑑𝑎𝑠 | ;
22: 𝛽 [𝑎𝑢 , 𝑎𝑣] ← 𝛽 [𝑎𝑢 , 𝑎𝑣] + |𝐷𝑎𝑢,𝑎𝑣 | ;
23: 𝛽 [𝑎𝑣]+ = 𝛽 [𝑎𝑢]×𝛽 [𝑎𝑢 , 𝑎𝑣];
24: Append (𝑎𝑢 , 𝛽 [𝑎𝑢 , 𝑎𝑣]) → 𝑃𝑟𝑒𝑑 (𝑎𝑣) ;

25: 𝛿 [𝑎𝑣] ← 0, 𝑎𝑣 ∈ 𝑉P ;
26: while 𝑆 is not empty do // reverse BFS
27: Pop 𝑎𝑤 ← 𝑆 ;

28: for (𝑎𝑣 , 𝛽 [𝑎𝑣 , 𝑎𝑤]) ∈ 𝑃𝑟𝑒𝑑 (𝑎𝑤) do
29: 𝛿 [𝑎𝑣]+ = 𝛽 [𝑎𝑣]×𝛽 [𝑎𝑣,𝑎𝑤]

𝛽 [𝑎𝑤] (1 + 𝛿 [𝑎𝑤]) ;

30: if 𝑎𝑤 ≠ 𝑎𝑠 then
31: 𝐶𝐵 [𝑎𝑤]+ = 𝛿 [𝑎𝑤];

32: return𝐶𝐵 ;

Figure 3: Example of Computing 𝛽
𝐺P
𝑎𝑠𝑎𝑣 and 𝛿𝑎𝑠• (𝑎𝑣).

of Basic for computing fBC is shown in Alg. 1. For computing cBC,

it just needs to remove the lines about computing 𝛽
𝐺P
𝑎𝑠𝑎𝑣 [𝑎𝑢 , 𝑎𝑣].

Complexity Analysis. In the step (1) of Basic, for P = (𝐴1𝐴2 . . .

𝐴(𝑙+1)/2 . . . 𝐴𝑙𝐴𝑙+1), it costs the time of 𝑂 (|𝐴1 | |𝐴2 | . . . |𝐴(𝑙+1)/2 | +
|𝐴1 | |𝐴(𝑙+1)/2 | + |𝐴1 | |𝐴(𝑙+1)/2 | |𝐴1 |) to compute the commuting ma-

trix for building 𝐺P , note that 𝐸𝐼 can be simultaneously recorded

while computing the commuting matrix so no extra time cost is re-

quired. In the step (2) of Basic, for each 𝑎𝑠 ∈ 𝑉P , a BFS DAG of 𝑎𝑠 is

built, which corresponds to conduct BFS once or twice and conduct

reverse BFS once based on the BFS DAG. Let 𝑛P = |𝐴1 | (𝑚P resp.)

be the number of vertices (edges resp.) on𝐺P , and𝑚P be the num-

ber of vertex pairs which have at least one edge between them on

𝐺P (also the number of P-pairs on the HIN), obviously𝑚P < 𝑚P .
Storing 𝑁𝑒𝑖𝐺P (𝑎𝑣) and 𝑃𝑟𝑒𝑑𝑎𝑠 (𝑎𝑣) for each 𝑎𝑣 with lists, the worst

time complexity for the step (2) of Basic is 𝑂 (𝑛P ×𝑚P) for cBC

3365

and 𝑂 (𝑛P ×𝑚P × 𝑙𝑚𝑎𝑥) for fBC respectively, where 𝑙𝑚𝑎𝑥 is the

maximum number of path instances between each P-pair.

4 OPTIMIZATION STRATEGIES
The bottleneck of Basic is step (2). There are two main parame-

ters which affect the CPU time of step (2): firstly, the number of

BFS DAGs actually built, i.e., 𝑛P ; secondly, the worst time cost

of performing BFS and reverse BFS on a BFS DAG, i.e., 𝑂 (𝑚P).
Thus, to greatly speed up BC computation but not cause loss to

BC results, we develop the P-Multigraph compression strategy

to reduce 𝑛P and𝑚P (Subsections 4.1), and the BFS DAG sharing

strategy to further reduce𝑛P (Subsections 4.2). Since the definitions

of 𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] for cBC and fBC are different, the optimization

strategies for cBC and fBC are also different. So in each subsection,

we introduce optimization strategies for cBC and fBC separately.

4.1 Compressing P-Multigraph
4.1.1 Compressing 𝐺P for cBC. There are two basic ideas to

compress 𝐺P for cBC. Firstly, for a vertex 𝑎𝑣 on 𝐺P , if no shortest

paths pass through 𝑎𝑣 , then 𝑎𝑣 can be removed from 𝐺P since

𝐶
𝐺P
𝐵
(𝑎𝑣) = 0. We call such 𝑎𝑣 as a side vertex and give two kinds

of definitions of side vertices (1-side vertex and 2-side vertex)
for cBC. By removing all side vertices, 𝐺P would be compressed.

Secondly, for two vertices 𝑎𝑢 and 𝑎𝑣 on 𝐺P , if their neighborhood
information is the same, then 𝑎𝑢 and 𝑎𝑣 can be merged as one

vertex 𝑎𝑢 (or 𝑎𝑣) since𝐶
𝐺P
𝐵
(𝑎𝑢) = 𝐶

𝐺P
𝐵
(𝑎𝑣). We call such 𝑎𝑢 and 𝑎𝑣

as identical vertices and give two kinds of definitions of identical

vertices (1-identical vertices and 2-identical vertices) for cBC.
By merging each group of identical vertices as one vertex, 𝐺P
would also be compressed.

Graph Compression with Side Vertices. Firstly, we give the def-
inition of the 1-side vertex by extending the definition of the side

vertex from an homogeneous network[43] to the P-multigraph.

Secondly, to reduce the time of identifying side vertices for cBC,

we propose a relaxed definition of the 1-side vertex, i.e., the 2-side
vertex, which is defined directly on the HIN.

Definition 6. (1-Side Vertex) Given the P-multigraph 𝐺P =

(𝑉P , 𝐸P), a vertex 𝑎𝑖 ∈ 𝑉P is a 1-side vertex on 𝐺P , iff there exist at
least one edge between each two vertices in 𝑁𝑒𝑖𝐺P (𝑎𝑖)

⋃︁{𝑎𝑖 }.
Definition 7. (2-Side Vertex) Given an HIN G and a symmetric

meta path P (whose symmetry point type is 𝐷), a vertex 𝑎𝑖 with type
𝐴 is a 2-side vertex onG, iff there is only one vertex with type𝐷 which
forms a 𝑙 (P)-pair with 𝑎𝑖 on G (𝑙 (P) is the left half meta path of P).

For example, in Fig. 4(a), 𝑎𝑥1 , 𝑎𝑥2 and 𝑎𝑥3 are 1-side vertices. In

Fig. 4(b), 𝑎𝑥1 and 𝑎𝑥2 are 2-side vertices.

Remark 1. Comparing Def. 6 with Def. 7, the set of 2-side vertices

is a subset of the set of 1-side vertices because of relaxing. However,

according to extensive experiments on many real-world HINs (Sec-

tion 6), it indicates that in most cases, using 2-side vertices is better,

because identifying 2-side vertices is faster, and the compression

effects of 1-side vertices and 2-side vertices are very close.

Observation 1. If those 2-side vertices which have the same 𝑙 (P)-
neighbor 𝑑 𝑗 (𝜙𝑉 (𝑑 𝑗) = 𝐴(𝑙+1)/2) are divided into the same group

(called a 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡), then𝑁𝑒𝑖𝐺P (𝑎𝑖)
⋃︁{𝑎𝑖 } for each side vertex

𝑎𝑖 in a 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 is the same. For example, in Fig. 4(b), 𝑎𝑥1 and

𝑎𝑥2 forms a 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 .

Figure 4: Example of Side Vertices for cBC.

Figure 5: Example of Identical Vertices for cBC.

Figure 6: Example of Identical Vertices for fBC.

Graph Compression with Identical Vertices. Firstly, we intro-

duce the definition of the 1-identical vertices which is extended

from an homogeneous network[43] to the P-multigraph. Secondly,

to speed up the time of finding identical vertices, we give a re-

laxed definition of the 1-identical vertices, called the 2-identical
vertices, which is defined on the HIN directly.

Definition 8. (1-Identical Vertices) Given the P-multigraph
𝐺P = (𝑉P , 𝐸P), two vertices 𝑎1 ∈ 𝑉P and 𝑎2 ∈ 𝑉P are type-
I (or type-II) 1-identical on 𝐺P iff 𝑁𝑒𝑖𝐺P (𝑎1) = 𝑁𝑒𝑖𝐺P (𝑎2) (or
𝑁𝑒𝑖𝐺P (𝑎1)

⋃︁{𝑎1} = 𝑁𝑒𝑖𝐺P (𝑎2)
⋃︁{𝑎2}), and for any𝑎𝑢 ∈ 𝑁𝑒𝑖𝐺P (𝑎1)⋂︁

𝑁𝑒𝑖𝐺P (𝑎2) (𝑎𝑢 ≠ 𝑎1, 𝑎2),𝑀P [𝑎1, 𝑎𝑢] = 𝑀P [𝑎2, 𝑎𝑢].
Definition 9. (2-Identical Vertices)Given an HING and a sym-

metric meta path P (whose symmetry point type is 𝐷), two vertices
𝑎1 and 𝑎2 both with type 𝐴 are 2-identical on G iff 𝐹𝑙 (P) [𝑎1, 𝑑𝑖] =
𝐹𝑙 (P) [𝑎2, 𝑑𝑖] for each 𝑑𝑖 (𝑑𝑖 ∈ 𝐷).

For example, in Fig. 5(a), 𝑎𝑥1 and 𝑎𝑥2 are type-I 1-identical ver-

tices. In Fig. 5(b), 𝑎𝑥3 and 𝑎𝑥4 are type-II 1-identical vertices. In

Fig. 5(c), 𝑎𝑥5 and 𝑎𝑥6 are 2-identical vertices.

Remark 2.Due to relaxing, the set of 2-identical vertices is a subset
of the set of type-II 1-identical vertices. By lots of experiments

(Section 6), it indicates only identifying type-II 1-identical vertices

is the best choice. Since the time of identifying type-II 1-identical

vertices and the time of identifying 2-identical vertices are similar,

but type-II 1-identical vertices contain all 2-identical vertices.

4.1.2 Compressing 𝐺P for fBC. For fBC, 𝛽P𝑎𝑠𝑎𝑡 ≠ 𝛽P𝑎𝑡𝑎𝑠 , so the

idea of side vertices for cBC can’t apply to fBC. However, the idea

of identical vertices still works for fBC. Thus, we propose the new

definition of identical vertices for fBC which can be merged as

one vertex on 𝐺P so that 𝐺P would be compressed.

Graph Compression with Identical Vertices. In the following,

we give the new definition of identical vertices for fBC on 𝐺P .
Definition 10. (Identical Vertices) Given the P-multigraph

𝐺P = (𝑉P , 𝐸P), two vertices 𝑎1 ∈ 𝑉P and 𝑎2 ∈ 𝑉P are identical on
𝐺P iff the following two conditions are satisfied simultaneously:
(1) 𝑁𝑒𝑖𝐺P (𝑎1)

⋃︁{𝑎1} = 𝑁𝑒𝑖𝐺P (𝑎2)
⋃︁{𝑎2}, and for any a neighbor

𝑎𝑢 ∈ 𝑁𝑒𝑖𝐺P (𝑎1)
⋂︁

𝑁𝑒𝑖𝐺P (𝑎2) (𝑎𝑢 ≠ 𝑎1, 𝑎2),𝐸𝐼 (𝑎1, 𝑎𝑢) = 𝐸𝐼 (𝑎2, 𝑎𝑢).

3366

Algorithm 2: SdAdvCBC(G, P, 𝐴)
1: Identify all 2-side vertices and divide them into different 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡s;

2: The same as lines 1-2 in Alg. 1;
3: for each 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 do
4: CBC_SameSide(𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡);

5: 𝐺P ← Delete 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 from𝐺P ;

6: Basic(𝐺P , P ,𝐴);

7: return (𝐶𝐵 [𝑎𝑤] +𝐶′𝐵 [𝑎𝑤]) for each 𝑎𝑤 ∈ 𝑉P ;

8: procedure CBC_SameSide(𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡)

9: the queue𝑄 ← ∅, the stack 𝑆 ← ∅;
10: 𝑃𝑟𝑒𝑑 (𝑎𝑡) ← empty list, 𝐷𝑖𝑠𝑡 [𝑎𝑡] ← ∞, 𝑎𝑡 ∈ 𝑉P ;
11: for 𝑎𝑖 ∈ 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 do
12: for 𝑎𝑡 ∈ 𝑉P do
13: 𝛽𝑎𝑖 [𝑎𝑡] ← 0; 𝛽𝑎𝑖 [𝑎𝑖] ← 1; 𝐷𝑖𝑠𝑡 [𝑎𝑖] ← 0;

14: Proxy 𝑎𝑠 ← 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 [0]; Push 𝑎𝑠 → 𝑆 ;

15: for each 𝑎𝑣 ∈ 𝑁𝑒𝑖𝐺P (𝑎𝑠) but 𝑎𝑣 ∉ 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 do
16: The same as lines 10-11 in Alg. 1 (replace 𝑎𝑢 with 𝑎𝑠);

17: if 𝐷𝑖𝑠𝑡 [𝑎𝑣] = 𝐷𝑖𝑠𝑡 [𝑎𝑠] + 1 then
18: for 𝑎𝑖 ∈ 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 do
19: 𝛽𝑎𝑖 [𝑎𝑣]+ = 𝛽𝑎𝑖 [𝑎𝑖]×𝐹P [𝑎𝑖 , 𝑎𝑣];
20: Append 𝑎𝑠 → 𝑃𝑟𝑒𝑑 (𝑎𝑣) ;

21: while𝑄 is not empty do
22: Dequeue 𝑎𝑢 ← 𝑄 ; push 𝑎𝑢 → 𝑆 ;

23: for each 𝑎𝑣 ∈ 𝑁𝑒𝑖𝐺P (𝑎𝑢) do
24: The same as lines 10-11 in Alg. 1;
25: if 𝐷𝑖𝑠𝑡 [𝑎𝑣] = 𝐷𝑖𝑠𝑡 [𝑎𝑢] + 1 then
26: for 𝑎𝑖 ∈ 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 do
27: 𝛽𝑎𝑖 [𝑎𝑣]+ = 𝛽𝑎𝑖 [𝑎𝑢]×𝐹P [𝑎𝑢 , 𝑎𝑣];
28: Append 𝑎𝑢 → 𝑃𝑟𝑒𝑑 (𝑎𝑣) ;

29: for 𝑎𝑖 ∈ 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 do
30: 𝛿𝑎𝑖 [𝑎𝑣] ← 0, 𝑎𝑣 ∈ 𝑉P ;
31: while 𝑆 is not empty do
32: Pop 𝑎𝑤 ← 𝑆 ;

33: for 𝑎𝑣 ∈ 𝑃𝑟𝑒𝑑 (𝑎𝑤) do
34: for 𝑎𝑖 ∈ 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 do

35: 𝛿𝑎𝑖 [𝑎𝑣]+ =
𝛽𝑎𝑖 [𝑎𝑣]×𝐹P [𝑎𝑣,𝑎𝑤]

𝛽𝑎𝑖 [𝑎𝑤]
(1 + 𝛿𝑎𝑖 [𝑎𝑤]) ;

36: if 𝑎𝑤 ≠ 𝑎𝑠 then
37: for 𝑎𝑖 ∈ 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 do
38: 𝐶′

𝐵
[𝑎𝑤] ← 𝐶′

𝐵
[𝑎𝑤] + 𝛿𝑎𝑖 [𝑎𝑤] × 2;

39: return𝐶′
𝐵
;

Figure 7: Sharing a BFS DAG for a 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 (𝑎𝑥1 , 𝑎𝑥2 , 𝑎𝑥3).

(2) For a set of identical vertices (i.e., 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡), when the number of
identical vertices in the 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 is larger than 2, for any two P-pairs
𝑝𝑟𝑖 and 𝑝𝑟 𝑗 whose vertices are in the 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 , 𝐸𝐼 (𝑝𝑟𝑖) = 𝐸𝐼 (𝑝𝑟 𝑗).

For example, in Fig. 6, 𝑎𝑥1 , 𝑎𝑥2 and 𝑎𝑥3 are identical vertices.

4.2 Sharing BFS DAGs
To further reduce the number of BFS DAGs actually built, the basic

idea is that if a group of vertices have the same neighborhood

information, then they can build and share only one BFS DAG

while computing their source dependencies.

4.2.1 Sharing BFS DAGs for cBC. By Observation 1 in Sub-

section 4.1.1, all 2-side vertices in a 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 have the same

neighborhood information, so we propose the side vertices-based

advanced algorithm for cBC computation (SdAdvCBC) which can

build and share only one BFS DAG for all 2-side vertices in a

𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 while computing their source dependencies, then

remove those 2-side vertices from 𝐺P in batch.

SdAdvCBC Algorithm. For each vertex 𝑎𝑤 on 𝐺P = (𝑉P , 𝐸P),
SdAdvCBC computes its cBC in two parts: (1) the sum of source

dependencies 𝛿𝑎𝑖• (𝑎𝑤) for all 2-side vertex 𝑎𝑖 ∈ 𝑉P ; (2) the sum
of source dependencies 𝛿𝑎 𝑗• (𝑎𝑤) for all non-2-side vertex 𝑎 𝑗 ∈ 𝑉P .
The pseudo-code of SdAdvCBC is in Alg. 2.

SdAdvCBC contains four steps. Firstly, identify all 2-side vertices

and divide them into different 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡s based on their 𝑙 (P)-
neighbors (i.e., the grouping strategy mentioned in Observation

1). Secondly, for each 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 , invoke our CBC_SameSide
algorithm to compute the above cBC part (1) for each 𝑎𝑤 on 𝐺P ,
then remove the whole 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 from 𝐺P , repeat the second
step until all 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡s are removed and get compressed 𝐺P .
Thirdly, invoke our Basic algorithm to compute the above cBC part

(2) for each 𝑎𝑤 on compressed 𝐺P . Fourthly, sum the results of

parts (1) and (2) to get the final cBC for each 𝑎𝑤 ∈ 𝑉P .
Take a 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 (𝑎𝑥1 , 𝑎𝑥2 , 𝑎𝑥3) as an example, we show

how CBC_SameSide builds and shares only one BFS DAG for all

2-side vertices in a 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 while computing their source

dependencies. Assuming no BFS DAG sharing, for each 𝑎𝑥𝑖 (𝑖 =

1, 2, or 3), it firstly perform BFS from 𝑎𝑥𝑖 (i.e., build a BFS DAG

of 𝑎𝑥𝑖) to compute 𝛽P𝑎𝑥𝑖 𝑎𝑣 , secondly perform reverse BFS on the

BFS DAG of 𝑎𝑥𝑖 to compute 𝛿𝑎𝑥𝑖 • (𝑎𝑣). In total, three BFS DAGs

would be built (in Fig. 7(a)), which is time wasting. Fortunately,

for each source 𝑎𝑥1 , 𝑎𝑥2 or 𝑎𝑥3 of those three BFS DAGs, after

dividing its children into two groups (one is 𝐵1 whose vertices don’t

belong to the 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 , another is 𝐵2 whose vertices belong

to the 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡), the following two observations are naturally

acquired: (1) all 𝐵1s as well as their descendants are completely the

same; (2) all 𝐵2s have no descendants so that 𝛿𝑎𝑥𝑖 • (𝑎𝑣) (𝑎𝑣 ∈ 𝐵2,

𝑖 = 1, 2, or 3) is 0, thus, it doesn’t need to perform BFS from each 𝑎𝑥𝑖
to its 𝐵2. Based on the above, CBC_SameSide merges those three

BFS DAGs in Fig. 7(a) into one shared BFS DAG in Fig. 7(b) while

computing source dependencies. Specifically, by choosing 𝑎𝑥1 as

a proxy for (𝑎𝑥1 , 𝑎𝑥2 , 𝑎𝑥3), CBC_SameSide only needs to perform

one BFS from 𝑎𝑥1 (i.e., build only one shared BFS DAG which

contains 𝑎𝑥1 , a 𝐵1 and the descendants of the 𝐵1), but can compute

𝛽P𝑎𝑥𝑖 𝑎𝑣 for all 𝑎𝑥𝑖 (𝑖 = 1, 2, or 3). Similarly, CBC_SameSide only

needs to perform one reverse BFS on the shared BFS DAG, but can

compute 𝛿𝑎𝑥𝑖 • (𝑎𝑣) of all 𝑎𝑥𝑖 (𝑖 = 1, 2, or 3).

Remark 3.When the third step of SdAdvCBC computes the cBC

part (2) for each 𝑎𝑤 ∈ 𝑉P by Basic, the aggregated pair dependen-

cies

∑︁
𝑎 𝑗≠𝑎𝑤 𝛿𝑎 𝑗𝑎𝑖 (𝑎𝑤) (𝑎𝑖 is a 2-side vertex, 𝑎 𝑗 is a non-2-side ver-

tex) are missed, because the second step of SdAdvCBC has removed

each 2-side vertex 𝑎𝑖 . To compensating such pair dependencies, in

the second step of SdAdvCBC, whenCBC_SameSide computes the

cBC part (2) for each 𝑎𝑤 , each source dependency 𝛿𝑎𝑖• (𝑎𝑤) times

2, because 𝛿𝑎𝑖• (𝑎𝑤) =
∑︁
𝑎 𝑗≠𝑎𝑤 𝛿𝑎 𝑗𝑎𝑖 (𝑎𝑤) (𝑎𝑖 is a 2-side vertex, 𝑎 𝑗

is a non-2-side vertex).

4.2.2 Sharing BFS DAGs for fBC. By Def. 10, each set of iden-

tical vertices (called an 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡) have the same neighborhood in-

formation, so we present the identical vertices-based advanced

3367

Algorithm 3: FBC_Identical(𝑎𝑠)
1: the queue𝑄 ← ∅, the stack 𝑆 ← ∅; Enqueue 𝑎𝑠 → 𝑄 ;

2: 𝛽𝑎𝑠 [𝑎𝑡] ← 0, 𝑃𝑟𝑒𝑑 [𝑎𝑡] ← empty list, 𝐷𝑖𝑠𝑡 [𝑎𝑡] ← ∞, 𝑎𝑡 ∈ 𝑉P ;
3: 𝛽𝑎𝑠 [𝑎𝑠] ← 1, 𝐷𝑖𝑠𝑡 [𝑎𝑠] ← 0; |𝐼𝑑𝑎𝑠 | ← 0, 𝑑 ∈ 𝑉𝐷 ;

4: while𝑄 is not empty do
5: Dequeue 𝑎𝑢 ← 𝑄 ; push 𝑎𝑢 → 𝑆 ;

6: The same as lines 9-14 in Alg. 1 (replace |𝐼𝑑𝑎𝑠 | in line14 in Alg. 1 with

|𝐼𝑑𝑎𝑠 |+ = 1×(1 + 𝑖𝑑𝑒𝑛𝑡 [𝑎𝑣]));
7: if 𝑎𝑢 = 𝑎𝑠 then
8: for 𝑎𝑢𝑖 ∈ 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 [𝑎𝑢] and 𝑎𝑢𝑖 ≠ 𝑎𝑢 do
9: for each 𝑝𝑖𝑛𝑠 ∈ (𝑎𝑢 , 𝑎𝑢𝑖) do
10: Get 𝑑 of 𝑝𝑖𝑛𝑠 from 𝐸𝐼 (𝑎𝑢 , 𝑎𝑢𝑖) ; |𝐼𝑑𝑎𝑠 | + +;

11: The same as lines 15-24 in Alg. 1 (replace line23 in Alg. 1 with

𝛽𝑎𝑠 [𝑎𝑣]+ = 𝛽𝑎𝑠 [𝑎𝑢]×𝛽 [𝑎𝑢 , 𝑎𝑣]×(1 + 𝑖𝑑𝑒𝑛𝑡 [𝑎𝑢]));
12: 𝛿𝑎𝑠 [𝑎𝑣] ← 0, 𝑎𝑣 ∈ 𝑉P ;
13: while 𝑆 is not empty do
14: Pop 𝑎𝑤 ← 𝑆 ;

15: for (𝑎𝑣 , 𝛽 [𝑎𝑣 , 𝑎𝑤]) ∈ 𝑃𝑟𝑒𝑑 [𝑎𝑤] do
16: 𝛿𝑎𝑠 [𝑎𝑣]+ =

𝛽𝑎𝑠 [𝑎𝑣]×𝛽 [𝑎𝑣,𝑎𝑤]
𝛽𝑎𝑠 [𝑎𝑤]

× (1 + 𝛿𝑎𝑠 [𝑎𝑤])×(1 + 𝑖𝑑𝑒𝑛𝑡 [𝑎𝑤]) ;

17: if 𝑎𝑤 ≠ 𝑎𝑠 then
18: for 𝑎𝑤𝑖 ∈ 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 [𝑎𝑤] do
19: 𝐶′

𝐵
[𝑎𝑤𝑖]+ = 𝛿𝑎𝑠 [𝑎𝑤]×(1 + 𝑖𝑑𝑒𝑛𝑡 [𝑎𝑠]) ;

20: return𝐶′
𝐵
;

Figure 8: Sharing a BFS DAG for an 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 (𝑎𝑥1 , 𝑎𝑥2 , 𝑎𝑥3).

algorithm for fBC computaion (IdAdvFBC) which can build and

share only one BFS DAG for all identical vertices in an 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡

while computing their source dependencies.

IdAdvFBC Algorithm. IdAdvFBC contains four steps to compute

the fBC for each 𝑎𝑤 ∈ 𝑉P . Firstly, identify all identical vertices

by Def. 10, merge all vertices in an 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 as a proxy vertex.

Let 𝑖𝑑𝑒𝑛𝑡 [𝑎𝑣] be the number of identical vertices (excluding 𝑎𝑣)

for the vertex 𝑎𝑣 ∈ 𝑉P . Secondly, for each proxy of an 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 ,

use our FBC_Identical algorithm to compute the sum of source

dependencies 𝛿𝑎𝑖• (𝑎𝑤) of all 𝑎𝑖 where 𝑎𝑖 is the proxy or other

vertices in the 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 , repeat the second step until all proxies are

considered. Thirdly, use our Basic algorithm to compute the sum

of source dependencies 𝛿𝑎 𝑗• (𝑎𝑤) of all 𝑎 𝑗 where 𝑎 𝑗 doesn’t belong
to any 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 . Fourthly, sum the results of the second and third

steps to get the final FBC for 𝑎𝑤 .

Take an 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 (𝑎𝑥1 , 𝑎𝑥2 , 𝑎𝑥3) as an example. 𝑎𝑥1 is the proxy

after merging this 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 , and 𝑖𝑑𝑒𝑛𝑡 [𝑎𝑥1] = 2. FBC_Identical
merges three BFS DAGs in Fig. 8(a) into one shared BFS DAG in

Fig. 8(b) while computing source dependencies. Note that all 𝐵2s are

not on the shared BFS DAG since each 𝑎𝑥𝑖 (𝑖 = 1, 2, and 3) and its

𝐵2 have been merged as the proxy 𝑎𝑥1 in the first step of IdAdvFBC.

Specifically, FBC_Identical works as follows (the pseudo-code in

Alg. 3): (1) Perform BFS from the proxy 𝑎𝑥1 to its 𝐵1, and then

visit the 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 of 𝑎𝑥1 to check 𝐸𝐼 (𝑎𝑥1 , 𝑎𝑥 𝑗
) (𝑗 = 2 or 3), so as

to compute 𝐼𝑎𝑥𝑖 (𝑝𝑖𝑛𝑠) (each 𝑝𝑖𝑛𝑠 is between the first two levels of

the shared BFS DAG). Continue to perform BFS from 𝑎𝑥1 ’s 𝐵1 to

its descendants to compute 𝐼𝑎𝑥
1

(𝑝𝑖𝑛𝑠) (each 𝑝𝑖𝑛𝑠 is between the

Figure 9: HINs vs. Weighted Homogeneous Networks

remaining levels of the shared BFSDAG). (2) Perform one BFS on the

shared BFS DAG to compute 𝛽
𝐺P
𝑎𝑥

1
𝑎𝑣 [𝑎𝑢 , 𝑎𝑣] and 𝛽

P
𝑎𝑥

1
𝑎𝑣 . (3) Perform

one reverse BFS on the shared BFS DAG to compute 𝛿𝑎𝑥
1
• (𝑎𝑣).

Remark 4. Based on Def. 10, 𝛽P𝑎𝑥
1
𝑎𝑣 = 𝛽P𝑎𝑥

2
𝑎𝑣 = 𝛽P𝑎𝑥

3
𝑎𝑣 , 𝛿𝑎𝑥1• (𝑎𝑣) =

𝛿𝑎𝑥
2
• (𝑎𝑣) = 𝛿𝑎𝑥

3
• (𝑎𝑣). Thus, FBC_Identical only needs to compute

𝛽P𝑎𝑥
1
𝑎𝑣 and 𝛿𝑎𝑥

1
• (𝑎𝑣) on the shared BFS DAG, but can naturally

acquire 𝛽P𝑎𝑥
2
𝑎𝑣 , 𝛽

P
𝑎𝑥

3
𝑎𝑣 and 𝛿𝑎𝑥

2
• (𝑎𝑣) and 𝛿𝑎𝑥

3
• (𝑎𝑣). Note that in

fact, any vertex 𝑎𝑓 on the shared BFS DAG might be a proxy of

𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 [𝑎𝑓]. Thus, FBC_Identical multiplies some temporary re-

sults by 𝑖𝑑𝑒𝑛𝑡 [𝑎𝑓] + 1 when necessary (in lines 6, 11, 16 and 19).

Remark 5. For fBC, the neighborhood information of a vertex 𝑎𝑣
on a BFS DAG contains two parts: (1) the neighbors of 𝑎𝑣 , (2) the

𝐸𝐼 between 𝑎𝑣 and its neighbors. A set of identical vertices have

both the same neighbors and 𝐸𝐼 information. We also introduce a

concept of similar vertices[5] for fBC which only requires each

set of similar vertices have the same neighbors, and develop the

similar vertices-based advanced algorithm (called SmAdvFBC)
which can build and share only one BFS DAG for all similar vertices

in a 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑠𝑒𝑡 while computing their source dependencies. We

omit the similar details here for space limitation. The performance

of SmAdvFBC and IdAdvFBC are compared in our experiments.

Theorem 3. Network compression and BFS DAG sharing strategies
do not cause any loss to cBC or fBC of vertices on 𝐺P (Proof in [5]).
Complexity Analysis. (1) Suppose there are 𝑞 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡s on

𝐺P . After removing the 𝑖th 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡 from 𝐺P , there left 𝑛𝑖
vertices and𝑚𝑖 vertex pairs which have at least one edge between

them. The worst time complexity of SdAdvCBC (Alg. 2) reduces to

𝑂 (𝑚P +
∑︁𝑞−1
𝑖=1

𝑚𝑖 +𝑛𝑞 ×𝑚𝑞) compared with the step (2) of Basic. (2)

Suppose𝐺 ′′P is generated by compressing𝐺P with identical vertices.

Let 𝑛′′P (𝑚′′P resp.) be the number of vertices (vertex pairs which

have at least one edge between them resp.) on 𝐺 ′′P , then the worst

time complexity of FBC_Identical (Alg. 3) is𝑂 (𝑚′′P × 𝑙𝑚𝑎𝑥), and the
worst time complexity of IdAdvFBC reduces to𝑂 (𝑛′′P ×𝑚

′′
P × 𝑙𝑚𝑎𝑥)

compared with the step (2) of Basic.

5 DISCUSSION
Firstly, HINs capture complex semantic relationships between dif-

ferent types of vertices, but some of which cannot be expressed

by weighted homogeneous networks. For example, Fig. 9(a) and

Fig. 9(b) show two different movie HINs, but would be transformed

to the same weighted homogeneous network in Fig. 9(c) where

vertices are actors, a vertex weight represents the number of di-

rectors an actor cooperated with, an edge weight represents the

cooperative times of two actors in movies which are directed by

the same director. Considering fBC, in Fig. 9(a), 𝑎4 is more impor-

tant bridge than 𝑎2 or 𝑎3 to the communication between 𝑎1 and

𝑎5, while in Fig. 9(b), 𝑎2, 𝑎3 and 𝑎4 are equally important. How-

ever, the difference between Fig. 9(a) and Fig. 9(b) is missed when

3368

considering BC in Fig. 9(c), since Fig. 9(c) loses the topology infor-

mation which the vertices with type 𝐷 participate. Secondly, for

a symmetric meta path P, when we consider the influence of the

vertices whose type (supposing 𝑄) is neither 𝐴 nor the symmetry

point type 𝐷 to the communication from 𝑎𝑠 to 𝑎𝑡 , the definition of

𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] for fBC should be modified. Since P is symmetric,

𝑄 would appears multiple times on P. Let 𝑐 be the number of times

which 𝑄 appears on P, then we just need to modify Eq. (2) into

𝛽P𝑎𝑠𝑎𝑡 [𝑎𝑥 , 𝑎𝑥+1] =
(︂ ∑︁

𝑝𝑖𝑛𝑠∈Γ𝑎𝑥 ,𝑎𝑥+1
1∑︁𝑐

𝑖=1 (1/𝑐)×𝐼
𝑞𝑖
𝑎𝑠 (𝑝𝑖𝑛𝑠)

)︂
+|𝑄P𝑎𝑥 ,𝑎𝑥+1 |,

where 𝑞𝑖 is the 𝑖th type-𝑄 vertex on the path instance 𝑝𝑖𝑛𝑠 . When

P is asymmetric, if 𝑄 only appears once on P, Eq. (2) still holds,
while if 𝑄 appears multiple times on P (supposing 𝑐 times), Eq. (2)

is modified into the same form as above. When we simultaneously

consider the influence of multiple different types of vertices whose

types are not 𝐴 to the communication from 𝑎𝑠 to 𝑎𝑡 , the modifica-

tion to Eq. (2) is similar as above. Note that our Basic algorithm does

not need any changes but can be directly applicable to all the above

cases. Moreover, our optimization strategies only need to simply

adjust the information in 𝐸𝐼 then can apply to all the above cases,

except for the strategies based on 2-side and 2-identical vertices

whose definitions depend on the symmetry point type 𝐷 .

6 EXPERIMENTS
All experiments are implemented with C++, on a machine with an

Intel(R) Xeon(R) Gold 6226R CPU 2.9 GHz and 32GB main memory.

Algorithms. For effectiveness testing, we compare PathRank[32],

influence spread[15], or structural diversity[23] rankings with cBC

or fBC rankings for vertices on HINs. For efficiency testing, we

compare our Basic algorithms with different optimization strategies

for cBC and fBC (Table 2).

Datasets.We use four real datasets: Movies[4, 48], Yelp[6], DBLP[2,

49] and IMDb[3]. Table 3(a) shows the statistics of the datasets.

Movies records relationships among movies, actors, directors and

writers from Wikipedia. Yelp records relationships among users,

reviews, businesses and cities on a restaurant review website. DBLP

records relationships among authors, papers and venues on an

online bibliographic database. IMDb records relationships among

movies, actors, directors and writers on a movie website. Table 3(b)

shows the meta path P used in each dataset for efficiency evalua-

tion. For IMDb, we extract four sub datasets with different sizes to

variously test the efficiency of our algorithms.

6.1 Effectiveness Evaluation
Case Study on Movies. On Movies, we randomly extract a sub

dataset, with 1628 actors (A), 701 movies (M) and 200 directors

(D). Given P = (𝐴𝑀𝐷𝑀𝐴), Fig. 10(a) shows the P-multigraph

of the sub dataset. Computing cBC and fBC for all vertices with

type A, it verifies that a vertex with higher cBC or fBC is really

an important "bridge" in the communication among other vertices.

For example, the yellow vertex 117 whose cBC ranks at top-1, is

the bridge between two well-connected communities (each marked

with a yellow dashed circle), i.e., once vertex 117 is removed, the

communication between most of those two communities’ members

would be broken. Similarly, the red vertex 300 whose fBC ranks

at top-1 is the bridge among four communities (each marked with

Table 2: Summary of Algorithms.
Strategy Description

BA

Graph splitting by bridge removing and articulation vertex cloning[43],

proposed for homogeneous networks, but can be directly used for HINs.

SD1 Acceleration with 1-Side Vertices (Sec. 4.1.1)

SD2 (SdAdvCBC) Acceleration with 2-Side Vertices (Sec. 4.1.1, Sec.4.2.1)

ID1 Acceleration with type-I (T1) and type-II (T2) 1-identical Vertices (Sec. 4.1.1)

ID2 Acceleration with 2-Identical Vertices (Sec. 4.1.1)

SL (SmAdvFBC) Acceleration with Similar Vertices (Sec. 4.2.2)

ID (IdAdvFBC) Acceleration with Identical Vertices (Sec. 4.1.2, Sec.4.2.2)

Algorithm(cBC)
BasC (Basic for cBC) BasC+BA BasC+BA+SD1 BasC+BA+SD2

BasC+BA+ID1_T1_T2 BasC+BA+ID1_T2 BasC+BA+ID2 BasC+BA+SD2+ID1_T2

Algorithm(fBC)
BasF (Basic for fBC) BasF+BA BasF+BA+SL BasF+BA+ID

Table 3: Statistics of Datasets.
(a)

Dataset Vertices Edges

Vertex

types

Edge

types

Num of fre-

quently used

meta paths

Movies 34,283 56,094 4 3 10

Yelp 9,129,970 15,039,821 4 4 10

DBLP 2,677,139 5,898,161 3 2 6

IMDb 1,586,997 2,602,969 4 3 10

(b)

Dataset P 𝑛P 𝑚P
Movies AMDMA 10,128 352,600

Yelp BRURB 16,000 1,321,978

DBLP APVPA 18,275 32,247,867

IMDb AMDMA

(1) 15,868 (1) 2,193,938

(2) 19,225 (2) 2,607,706

(3) 32,426 (3) 3,881,039

(4) 100,037 (4) 6,550,895

Figure 10: Case Study on Movies.

(a) Academic Development Trajectory of Ion Stoica

(b) Academic Development Trajectory of Hector Garcia-Molina

Figure 11: Case Study on DBLP.

a red dashed circle). We also compute edge BC[13] of all edges

and mark the edges whose edge BC rank at top-1 and top-2 in

green in Fig. 10(a). We can see that an edge has the highest edge

BC, it doesn’t mean that the endpoints of this edge also have the

highest vertex BC, and vice versa. Thus, vertex BC and edge BC[8]

are substantially different. One of our future work is to redefine

and efficiently compute edge BC on HINs. Moreover, we compute

PathRank, influence spread and structural diversity for vertices

3369

with type 𝐴. Vertices rankings under PathRank, influence spread

or structural diversity are completely different from their cBC or

fBC rankings. Furthermore, Fig. 10(b) shows the heterogeneous

subgraph that contains the common P-neighbors of vertex 117 (Eli
Wallach, short for EW) and vertex 300 (Michael Caine, short for

MC). Compared with EW, the shortest P-paths from actors in 𝑆1 to

𝑆2 which pass through MC (marked with a red box) contain more

directors. Suppose that MC lost contact with 𝑑5, MC still could be a

cooperation bridge between actors in 𝑆1 and 𝑆2 with the help of 𝑑6,

𝑑7 or𝑑8. However, once EW lost contact with𝑑4, EWwould not be a

cooperation bridge between actors in 𝑆1 and 𝑆2. It is consistent with

the fact that MC has higher fBC rank than EW. In reality, MC acted

in numerous films spanning various genres which were directed

by many directors. We asked ChatGPT[1] “Michael Caine and Eli

Herschel Wallach, which of these two actors is more famous?" The

answer is “Both Michael Caine and Eli Wallach were renowned

actors, but if we were to gauge global recognition and influence,

Michael Caine is generally considered the more famous of the two."

Finally, given P=(𝐴𝑀𝑊𝑀𝐴), cBC and fBC rankings both occur

changes, since the communication network topologies are different.

Case Study on DBLP. On DBLP, we extract a sub dataset of DBLP

from 6 research areas. To observe the variation of cBC or fBC for

vertices with type𝐴 over time, from 1970-2009, we divide every five

years’ data into a snapshot. Given P = (𝐴𝑃𝑉𝑃𝐴) which represents

two authors (𝐴) published papers (𝑃) in the same venues (𝑉), we

compute cBC and fBC for vertices with type 𝐴 on each snapshot

respectively. As shown in Fig. 11, there are two interesting findings:

(1) When the cBC or fBC of an author grows over time, his/her

academic achievements are also gradually increasing. This can help

to find rising stars. (2) When the cBC of an author remains high

over time, but his/her fBC suddenly increases (or decreases) in a

snapshot, we manually verify that during this period, the author

began to explore multiple research areas (or deeply devoted to a

specific research area). This can help to find multi-field researchers.

6.2 Efficiency Evaluation
Analysis of Side Vertices & Identical Vertices for cBC. Firstly,
we compare 1-side and 2-side vertices for cBC by testing the num-

ber of side vertices (SD_Num), the number of 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒_𝑠𝑒𝑡𝑠 for

all 2-side vertices (Set_Num), the number of edges which would be

subsequently removed after removing side vertices (E_rmv_Num),

as well as the CPU time of identifying (ident_Time) and removing

(rmv_Time) side vertices on each dataset. As shown in Table 4, to

reduce the cBC computation time, generally, using 2-side vertices is

better than 1-side vertices. Since in most cases (except for Yelp with

no 2-side vertices), SD_Num (E_rmv_Num resp.) for 2-side vertices

is just slightly less than that for 1-side vertices, which means that

the network compression effects of 1-side and 2-side vertices are

close. Whereas, both ident_Time and rmv_Time for 2-side vertices

are greatly smaller than those for 1-side vertices.

Secondly, we compare 1-identical and 2-identical vertices for cBC

by testing the number of identical vertices (ID_Num), the number

of 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡𝑠 (Set_Num), the number of edges which would be sub-

sequently removed after merging identical vertices (E_rmv_Num),

and the total CPU time of identifying and merging identical ver-

tices (Time) on each dataset. We also compare type-I and type-II

Table 4: Statistics of Side Vertices& Identical Vertices for cBC.
Movies IMDb(1) Yelp IMDb(3) IMDb(4) DBLP

SD1

SD_Num 3,209 9,324 525 18,489 66,409 15,675

E_rmv_Num 72,016 661,815 6,007 1,049,859 2,177,980 30,060,433

ident_Time (Sec.) 1.354 39.452 0.729 61.929 148.665 6918.62

rmv_Time (Sec.) 49.01 755.092 40.868 2882.5 18597.9 33275.2

SD2

SD_Num 2,936 8,577 0 17,366 61,801 15,675

Set_Num 1,097 1,070 0 2,817 11,962 9

E_rmv_Num 64,557 656,580 0 1,039,920 2,147,938 30,060,433

ident_Time (Sec.) 0.001 0.002 0.001 0.004 0.005 0.001

rmv_Time (Sec.) 17.005 122.043 0 587.17 3976.51 4511.75

ID1 type-I

ID_Num 0 0 0 2 33 0

Set_Num 0 0 0 1 11 0

E_rmv_Num 0 0 0 1 34 0

Time (Sec.) 8.603 168.101 89.944 348.147 467.45 18.49

ID1 type-II

ID_Num 2,207 7,335 8 14,265 49,778 17436

Set_Num 890 1,212 6 2,800 10,625 315

E_rmv_Num 66,908 608,699 385 933,596 1,934,527 32,054,019

Time (Sec.) 0.178 4.947 0.293 6.951 39.22 1692.52

ID2

ID_Num 2,166 7,302 0 14,190 49,052 17,436

Set_Num 908 1,222 0 2,822 10,813 315

E_rmv_Num 66,100 608,025 0 931,715 1,926,716 32,054,019

Time (Sec.) 0.159 4.25 0 6.544 7.677 1685.8

Figure 12: Comparison ofOptimization Strategies as for BasC.

Movies IMDb(1) IMDb(2) Yelp DBLP

SL

SL_Num 3292 9289 11337 17 18239

SL_Set_Num 872 1160 1488 7 72

ident_Time (Sec.) 0.014 0.08 0.089 0.048 4.601

ID

ID_Num 2205 7332 8840 8 17436

ID_Set_Num 890 1214 1547 6 315

E_rmv_Num 66882 608686 696482 385 32054019

Time (Sec.) 0.219 4.402 5.659 0.055 1854.79

(a) Statistics of Similar Vertices & Identical Vertices
for fBC

(b) Comparison of Optimization
Strategies as for BasF.

Figure 13: Evaluating Optimization Strategies for fBC.

(a) IMDb(3), P=(AMDMA) (b) Yelp, P=(BRURB) (c) IMDb(1), P=(AMDMA)

(d) Yelp, P=(BRURB) (e) Movies, P=(AMDMA) (f) Yelp, P=(BUB)

(g) Movies, meta path groups (h) Movies, P=(AMDMA) (i) Movies, P=(AMDMA)

Figure 14: Scalability Test and Impact of Meta Path Length.

1-identical vertices for cBC by testing their ID_Num, Set_Num and

Time. As shown in Table 4, to reduce cBC computation time with

3370

identical vertices, only using type-II 1-identical vertices is the best

choice. Because ID_Num for type-II vertices is greatly larger than

that for type-I vertices, but the time of identifying and merging

type-II vertices is much smaller than that of type-I vertices in most

cases (in DBLP, there only exist type-II vertices). Besides, ID_Num

and E_rmv_Num (which means the network compression effect) of

type-II 1-identical vertices is a little larger than that of 2-identical

vertices, while the identifying and merging time of them are close.

Comparison of Optimization Strategies as for BasC. In Fig. 12,
to evaluate the effects of different optimization strategies (listed in

Table 2), we respectively integrate BA, BA+SD1, BA+SD2, BA+ID1

_T1_T2, BA+ID1_T2, BA+ID2, or BA+SD2+ID1_T2 to BasC (our

Basic algorithm for cBC) to test their CPU time. Firstly, SD2 has

better acceleration effect than SD1 in general, except for Yelp (be-

cause there are only a few 1-side vertices and no 2-side vertices in

Yelp). In particular, on DBLP, SD2 reduces cBC computation time

from 20.45 hours to 1.5 hours. Secondly, in each dataset, ID1_T2

has the best acceleration effect on speeding up cBC calculation

compared with ID1_T1_T2 or ID2. Particularly, on DBLP, both ID1

and ID2 work extremely well, reducing cBC computation time from

20.45 hours to about 0.5 hours. Thirdly, on most datasets, BA has

great effect on speeding up cBC calculation. However, it is still

quite meaningful to develop other strategies, because sometimes

there exist no bridges and articulation vertices[43] on a dataset like

DBLP, then BA would lose the acceleration effect. In sum, whether

a strategy works depends on the characteristic of each dataset (e.g.,

the number of side vertices, identical vertices). Based on our exper-

imental results, using BA+ID1_T2 would be a good choice since it

has the best acceleration effect in most cases.

Analysis of Similar Vertices & Identical Vertices for fBC.We

compare similar vertices with identical vertices for fBC by testing

the number of similar vertices (SL_Num), the number of 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑠𝑒𝑡𝑠

(SL_Set _Num), the CPU time of identifying similar vertices (ident_

Time), the number of identical vertices (ID_Num), the number of

𝑖𝑑𝑒𝑛_𝑠𝑒𝑡𝑠 (ID_Set_Num), the number of edges which would be sub-

sequently removed after merging identical vertices (E_rmv_Num),

and the CPU time of identifying and merging identical vertices

(Time). As shown in Fig. 13(a), in most cases, only with very little

ident_Time (Time resp.), lots of similar vertices (identical vertices

resp.) can be identified (identified and merged resp.). Moreover, on

each dataset, SL_Num (ID_Num resp.) is large but SL_Set_Num

(ID_Set_Num resp.) is small, it indicates that our SL (ID resp.) strat-

egy would have good effect on speeding up fBC calculation due to

BFS DAG sharing. Note that Yelp has only a few similar vertices

and identical vertices, and DBLP spends much time on merging

17436 identical vertices into 315 proxy vertices, however, our SL

and ID strategies still work very well as shown in Fig. 13(b).

Comparison of Optimization Strategies as for BasF. In Fig. 13
(b), to evaluate the effects of different optimization strategies (listed

in Table 2), we respectively integrate BA, BA+SL or BA+ID to BasF

(our Basic algorithm for fBC) to test their CPU time. Compared with

BA, our SL and ID strategies have remarkably better acceleration

effect for fBC computation. Moreover, ID is superior to SL. Because

ID greatly reduces the graph size by merging each 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 into a

proxy, while for SL, similar vertices can’t be removed or merged

on 𝐺P . In addition, for a 𝑖𝑑𝑒𝑛_𝑠𝑒𝑡 , ID only needs to compute the

proxy’s source dependency, while for a 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑠𝑒𝑡 , SL still needs to

compute all similar vertices’ source dependencies. All in all, based

on our experimental results, using BA+ID would be a good choice

since it has the best acceleration effect in all used datasets.

Scalability Test.We generate five sub datasets by randomly select-

ing 20%, 40%, 60%, 80%, and 100% of vertices with type A (B resp.) for

IMDb(3) and IMDb(1) (Yelp resp.). Then we conduct two advanced

cBC (fBC resp.) computation algorithms on each sub dataset. As

shown in Fig. 14(a)-(d), generally, those algorithms all scale well

with the number of vertices with type𝐴 (B resp.). We also add edges

to 1.2, 1.4, 1.6 and 1.8 times the original size for Movies and Yelp.

Fig. 14(e) and (f) show our basic and advanced algorithms all scale

well with the number of edges, and our optimization strategies still

work well when the HINs get denser.

Impact of Meta Path length. Firstly, we group all meta paths in

Movies based on their lengths, then conduct our algorithms for each

group. Fig. 14(g) shows the average CPU Time of each algorithm

for each group (the meta paths with length 6 are asymmetric, so

SD2 and ID1_T2 cannot be used). As the length of meta paths

grows, each algorithm costs more CPU time. Since longer meta

paths lead to more edges on the P-multigraph. Secondly, for P =

(𝐴𝑀𝐷𝑀𝐴) in Movies, by repeating P different times (e.g., P2 =

(𝐴𝑀𝐷𝑀𝐴𝑀𝐷𝑀𝐴)), we compute
𝑚P
𝑚C

on each P𝑘 -multigraph (𝑘 ∈
[1, 8]), where 𝑚C =

∑︁
𝑐∈C

𝑛𝑐×(𝑛𝑐−1)
2

(C is the set of connected

components on the P𝑘 -multigraph, 𝑛𝑐 is the number of vertices

in 𝑐 ∈ C). In Fig. 14(h), as P𝑘 gets longer,
𝑚P
𝑚C

gradually becomes

1 which means that each two vertex pairs have at least one edge

between them on the P𝑘 -multigraph, then it makes no sense to

find shortest paths since the BC of all vertices is 0. After that, we

test the CPU time of each algorithm when the meta path is P𝑘
(𝑘 ∈ [1, 4]). As shown in Fig. 14(i), when 𝑘 grows, the CPU time

of 5 algorithms all becomes larger. However, the growth trends of

those algorithms are slowing down when 𝑘 is larger than 3, since

in such cases, each vertex pairs have edges between them on the

P𝑘 -multigraph so that𝑚P remains unchanged.

7 CONCLUSIONS
In this paper, we are the first to focus on a specific type of vertices’

BC on HINs. We propose a meta path-based BC framework on HINs

and formalize cBC and fBC measures under the framework. We

develop a generalized basic BC computation algorithm for cBC, fBC

and their variants, and several optimization strategies which can

greatly speed up cBC or fBC computation. Our experimental results

on several real-life HINs reveal the great significance of both cBC

and fBC, and verify that our optimization strategies are practically

effective, and our algorithms have good scalability. In the future,

we will try to integrate our cBC and fBC algorithms into existing

graph databases (e.g, Neo4j), and study how to perform cBC or fBC

computation on distributed computing platform (e.g., Spark).

ACKNOWLEDGMENTS
This work was supported by (i) NSFC Grants 62202277, U22A2025,

U2241211, U20B2046; (ii) the RGC ofHongKong, China, No.14205520;

(iii) Major Basic Research Program of Shandong Provincial NSF

Grants ZR2022ZD02. Dongxiao Yu is the corresponding author.

3371

REFERENCES
[1] ChatGPT. last accessed:01/06/2024. https://chatgpt.com/

[2] DBLP. last accessed:01/06/2024. https://www.aminer.org/billboard/citation

[3] IMDb. last accessed:01/06/2024. https://www.IMDb.com/interfaces/

[4] Movies. last accessed:01/06/2024. https://www.aminer.cn/data-sna#Movie

[5] Technical report(password:HINbcVLDB2024). last accessed:01/06/2024. https:

//github.com/1ran/BccH

[6] Yelp. last accessed:01/06/2024. https://www.yelp.com/dataset/

[7] Jac M. Anthonisse. 1971. The rush in a directed graph. J. Comput. Phys. (1971),
1–10.

[8] Phiradet Bangcharoensap, Tsuyoshi Murata, Hayato Kobayashi, and Nobuyuki

Shimizu. 2016. Transductive Classification on Heterogeneous Information Net-

works with Edge Betweenness-based Normalization. In Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining. 437–446.

[9] Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. 2012.

Expressive Languages for Path Queries over Graph-Structured Data. ACM Trans.
Database Syst. 37, 4 (2012), 31:1–31:46.

[10] Ivona Bezáková and Andrew Searns. 2018. On Counting Oracles for Path Prob-

lems. In ISAAC, Vol. 123. 56:1–56:12.
[11] Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Antti Ukkonen. 2014.

Distance oracles in edge-labeled graphs. In EDBT. 547–558.
[12] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of

mathematical sociologyJ Math Sociol 25, 2 (2001), 163–177.
[13] Ulrik Brandes. 2008. On variants of shortest-path betweenness centrality and

their generic computation. Soc. Networks 30, 2 (2008), 136–145.
[14] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual

web search engine. Comput. Networks 30, 1-7 (1998), 107–117.
[15] Suqi Cheng, Huawei Shen, Junming Huang, Wei Chen, and Xueqi Cheng. 2014.

Imrank: influence maximization via finding self-consistent ranking. In SIGIR.
475–484.

[16] Cyrus Cousins, Chloe Wohlgemuth, and Matteo Riondato. 2021. Bavarian: Be-

tweenness Centrality Approximation with Variance-Aware Rademacher Aver-

ages. In SIGKDD. 196–206.
[17] Elizabeth M. Daly and Mads Haahr. 2007. Social network analysis for routing in

disconnected delay-tolerant MANETs. In MobiHoc. 32–40.
[18] Martin Everett and Stephen P Borgatti. 2005. Ego network betweenness. Soc.

Networks 27, 1 (2005), 31–38.
[19] Martin G Everett and Stephen P Borgatti. 2005. Extending centrality. Models and

methods in social network analysis 35, 1 (2005), 57–76.
[20] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.

Effective and efficient community search over large heterogeneous information

networks. Proc. VLDB Endow. 13, 6 (2020), 854–867.
[21] Linton C Freeman. 1977. A set of measures of centrality based on betweenness.

Sociometry (1977), 35–41.

[22] Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. 2015. Fully Dynamic

Betweenness Centrality Maintenance on Massive Networks. Proc. VLDB Endow.
9, 2 (2015), 48–59.

[23] Xin Huang, Hong Cheng, Rong-Hua Li, Lu Qin, and Jeffrey Xu Yu. 2013. Top-k

structural diversity search in large networks. Proc. VLDB Endow. 6, 13 (2013),
1618–1629.

[24] Yanan Jiang and Hui Xia. 2024. Adversarial attacks against dynamic graph neural

networks via node injection. High-Confidence Computing 4, 1 (2024), 100185.

[25] Ayoub Jibouni, Dounia Lotfi, and Ahmed Hammouch. 2023. Link prediction

using betweenness centrality and graph neural networks. Soc. Netw. Anal. Min.
13, 1 (2023), 5.

[26] Shuangshuang Jin, Zhenyu Huang, Yousu Chen, Daniel Chavarría-Miranda, John

Feo, and Pak Chung Wong. 2010. A novel application of parallel betweenness

centrality to power grid contingency analysis. In IPDPS. 1–7.
[27] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In SIGKDD. 137–146.
[28] Dirk Koschützki and Falk Schreiber. 2008. Centrality analysis methods for

biological networks and their application to gene regulatory networks. Gene
regulation and systems biology 2 (2008), GRSB–S702.

[29] Nicolas Kourtellis, Gianmarco De Francisci Morales, and Francesco Bonchi. 2015.

Scalable Online Betweenness Centrality in Evolving Graphs. ACM Trans. Knowl.
Discov. Data 27, 9 (2015), 2494–2506.

[30] Tomás Lagos, Oleg A Prokopyev, and Alexander Veremyev. 2024. Finding groups

with maximum betweenness centrality via integer programming with random

path sampling. J. Glob. Optim. 88, 1 (2024), 199–232.
[31] Min-Joong Lee, Jungmin Lee, Jaimie Yejean Park, Ryan Hyun Choi, and Chin-

Wan Chung. 2012. QUBE: a quick algorithm for updating betweenness centrality.

InWWW. 351–360.

[32] Sangkeun Lee, Sungchan Park, Minsuk Kahng, and Sang-goo Lee. 2013. PathRank:

Ranking nodes on a heterogeneous graph for flexible hybrid recommender sys-

tems. Expert Syst. Appl. 40, 2 (2013), 684–697.
[33] Loet Leydesdorff. 2007. Betweenness centrality as an indicator of the interdisci-

plinarity of scientific journals. J. Assoc. Inf. Sci. Technol. 58, 9 (2007), 1303–1319.

[34] Jongmin Park, Seunghoon Han, Soohwan Jeong, and Sungsu Lim. 2024. Hyper-

bolic Heterogeneous Graph Attention Networks. In WWW. 561–564.

[35] Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos Faloutsos.

2019. Estimating Node Importance in Knowledge Graphs Using Graph Neural

Networks. In SIGKDD. 596–606.
[36] Leonardo Pellegrina and Fabio Vandin. 2024. Silvan: estimating betweenness

centralities with progressive sampling and non-uniform rademacher bounds.

ACM Trans. Knowl. Discov. Data 18, 3 (2024), 52:1–52:55.
[37] You Peng, Jeffrey Xu Yu, and Sibo Wang. 2023. PSPC: Efficient Parallel Shortest

Path Counting on Large-Scale Graphs. In ICDE. 896–908.
[38] Yu-Xuan Qiu, Dong Wen, Lu Qin, Wentao Li, Ronghua Li, and Ying Zhang. 2022.

Efficient Shortest Path Counting on Large Road Networks. Proc. VLDB Endow.
15, 10 (2022), 2098–2110.

[39] Sai Charan Regunta, Sai Harsh Tondomker, Kshitij Shukla, and Kishore Kothapalli.

2023. Efficient parallel algorithms for dynamic closeness-and betweenness

centrality. Concurr. Comput. Pract. Exp. 35, 17 (2023), e6650.
[40] Yuanfang Ren, Ahmet Ay, and Tamer Kahveci. 2018. Shortest path counting in

probabilistic biological networks. BMC Bioinform. 19, 1 (2018), 465:1–465:19.
[41] Michael N. Rice and Vassilis J. Tsotras. 2010. Graph Indexing of Road Networks

for Shortest Path Queries with Label Restrictions. Proc. VLDB Endow. 4, 2 (2010),
69–80.

[42] Diego Santoro and Ilie Sarpe. 2022. Onbra: Rigorous estimation of the temporal

betweenness centrality in temporal networks. In WWW. 1579–1588.

[43] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek. 2017.

GraphManipulations for Fast Centrality Computation. ACMTrans. Knowl. Discov.
Data 11, 3 (2017), 26:1–26:25.

[44] Julian Shun. 2020. Practical parallel hypergraph algorithms. In PPoPP. 232–249.
[45] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-

Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information

Networks. Proc. VLDB Endow. 4, 11 (2011), 992–1003.
[46] Yizhou Sun, Brandon Norick, Jiawei Han, Xifeng Yan, Philip S Yu, and Xiao

Yu. 2013. Pathselclus: Integrating meta-path selection with user-guided object

clustering in heterogeneous information networks. ACM Trans. Knowl. Discov.
Data 7, 3 (2013), 1–23.

[47] Guangming Tan, Dengbiao Tu, and Ninghui Sun. 2009. A Parallel Algorithm for

Computing Betweenness Centrality. In ICPP. 340–347.
[48] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. 2009. Social influence analysis in

large-scale networks. In SIGKDD. 807–816.
[49] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-

miner: extraction and mining of academic social networks. In SIGKDD. 990–998.
[50] Vianney Kengne Tchendji and Jerry Lacmou Zeutouo. 2019. An Efficient CGM-

Based Parallel Algorithm for Solving the Optimal Binary Search Tree Problem

Through One-to-All Shortest Paths in a Dynamic Graph. Data Sci. Eng. 4, 2
(2019), 141–156.

[51] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg. 2012.

Structural diversity in social contagion. Proc. Natl. Acad. Sci. 109, 16 (2012),

5962–5966.

[52] Leslie G. Valiant. 1979. The Complexity of Enumeration and Reliability Problems.

SIAM J. Comput. 8, 3 (1979), 410–421.
[53] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang. 2020. Effective and

Efficient Truss Computation over Large Heterogeneous Information Networks.

In ICDE. 901–912.
[54] Vahan Yoghourdjian, Tim Dwyer, Karsten Klein, Kim Marriott, and Michael

Wybrow. 2018. Graph Thumbnails: Identifying and Comparing Multiple Graphs

at a Glance. IEEE Trans. Vis. Comput. Graph. 24, 12 (2018), 3081–3095.
[55] Xingtong Yu, Yuan Fang, Zemin Liu, and Xinming Zhang. 2024. Hgprompt:

Bridging homogeneous and heterogeneous graphs for few-shot prompt learning.

In AAAI, Vol. 38. 16578–16586.
[56] Qi Zhang, Rong-Hua Li, Minjia Pan, Yongheng Dai, Guoren Wang, and Ye Yuan.

2022. Efficient Top-k Ego-Betweenness Search. In ICDE. 380–392.
[57] Tianming Zhang, Yunjun Gao, Jie Zhao, Lu Chen, Lu Jin, Zhengyi Yang, Bin Cao,

and Jing Fan. 2024. Efficient Exact and Approximate Betweenness Centrality

Computation for Temporal Graphs. InWWW. 2395–2406.

[58] Xiaofei Zhang and M. Tamer Özsu. 2019. Correlation Constraint Shortest Path

over Large Multi-Relation Graphs. Proc. VLDB Endow. 12, 5 (2019), 488–501.
[59] Yikai Zhang and Jeffrey Xu Yu. 2020. Hub Labeling for Shortest Path Counting.

In SIGMOD. 1813–1828.
[60] Zhigao Zheng, Bo Du, Chen Zhao, and Peichen Xie. 2023. Path Merging Based

Betweenness Centrality Algorithm in Delay Tolerant Networks. IEEE J. Sel. Areas
Commun. 41, 10 (2023), 3133–3145.

[61] Yingli Zhou, Yixiang Fang, Wensheng Luo, and Yunming Ye. 2023. Influential

community search over large heterogeneous information networks. Proc. VLDB
Endow. 16, 8 (2023), 2047–2060.

[62] Ying Zou, Zihan Fang, Zhihao Wu, Chenghui Zheng, and Shiping Wang. 2024.

Revisiting multi-view learning: A perspective of implicitly heterogeneous Graph

Convolutional Network. Neural Networks 169 (2024), 496–505.

3372

https://chatgpt.com/
https://www.aminer.org/billboard/citation
https://www.IMDb.com/interfaces/
https://www.aminer.cn/data-sna#Movie
https://github.com/1ran/BccH
https://github.com/1ran/BccH
https://www.yelp.com/dataset/

	Abstract
	1 Introduction
	2 Problem Description
	3 MBCC Algorithm
	4 Optimization Strategies
	4.1 Compressing P-Multigraph
	4.2 Sharing BFS DAGs

	5 Discussion
	6 Experiments
	6.1 Effectiveness Evaluation
	6.2 Efficiency Evaluation

	7 Conclusions
	Acknowledgments
	References

