
PCSP: E�iciently Answering Label-Constrained Shortest Path
�eries in Road Networks

Libin Wang
The Hong Kong University of Science and Technology

lwangct@cse.ust.hk

Raymond Chi-Wing Wong
The Hong Kong University of Science and Technology

raywong@cse.ust.hk

ABSTRACT

Shortest path queries are ubiquitous in many spatial applications.

Existing solutions assign numerical weights to edges and compute

the path with the minimum sum of edge weights. However, in

practice, the road categories associated with edges (e.g., toll) can

make shortest paths undesirable, e.g., they may use unfavorable toll

roads. Augmenting each edge with a label to denote its category, we

study the Label-Constrained Shortest Path (LCSP) query that �nds

the shortest path under the constraint that the edge labels along

the path should follow a pattern expressed by a formal language.

There have been extensive LCSP solutions, but they are either inef-

�cient in query processing or limited to special languages with low

expressiveness capacity. In this paper, we propose the index called

Partially Constrained Shortest Path (PCSP), which answers each

query quickly by concatenating two shortest paths that partially

satisfy the constraint and support more general regular languages.

We also present pruning techniques that further optimize query

e�ciency. Experimental comparison with the state-of-the-art index

demonstrates the superiority of PCSP. It can answer each LCSP

query in around 100 microseconds and runs faster than the best-

known solution by up to two orders of magnitude.

PVLDB Reference Format:

Libin Wang and Raymond Chi-Wing Wong. PCSP: E�ciently Answering

Label-Constrained Shortest Path Queries in Road Networks. PVLDB, 17(11):

3082 - 3094, 2024.

doi:10.14778/3681954.3681985

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/lbwang95/PCSP/.

1 INTRODUCTION

The point-to-point shortest path query is one of the fundamental

operations in road networks and is widely used in GPS naviga-

tion, online car-hailing and urban planning. Based on appropriate

numerical weights assigned to each edge (representing road seg-

ments), it provides users with the shortest path by minimizing the

sum of weights of the traversed edges. However, these shortest

paths regard all edges as the same and ignore di�erent road cat-

egories behind edges (e.g., highways, toll roads and rural roads).

In most cases, users are more concerned with shortest paths that

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3681985

use speci�c types of roads following a �exible and realistic prede-

�ned pattern. For example, commercial navigation products often

plan to use highways in the continuous middle part of a route.

Environmentalists are interested in shortest paths that combine

several public transport modes (e.g., shared bikes and subways).

Augmenting each edge with an additional “label” (apart from the

numerical edge weight) to represent its road category, we study the

Label-Constrained Shortest Path (LCSP) query that �nds the shortest

paths of desired patterns.

LCSP is formalized in the context of formal languages [7]. Specif-

ically, all edge labels form the alphabet Σ, and the path label con-

catenated by the edge labels along the path can be seen as a word.

Given a formal language ! (de�ned on Σ) used to represent the

desired patterns, the LCSP query asks for the shortest path such

that its path label (or word) belongs to !. For example, web mapping

platforms (such as Google Maps) may be interested in the language

�∗�+�∗, where � and � stand for highways and secondary roads,

respectively. The returned LCSP should �rst use secondary roads,

then highways, and �nally secondary roads. Without the language

constraint, the recommended shortest paths could interleave high-

ways with some shortcut secondary roads to reduce distances, but

it is inconvenient for drivers to follow the paths. In the example of

multimodal-trip planning, the pattern can be described by 1∗~∗1∗,

where 1 and ~ represent shared bikes and subways, respectively.

The LCSP answer satisfying the language constraint should use

bikes before and after subways.

Much research e�ort has been devoted to designing LCSP algo-

rithms [5–7, 24, 37, 43]. However, early index-free solutions were

ine�cient in query processing [5–7]. Recent indexing approaches

focused on the restricted Kleene languages that only allow the use

of speci�c labels in an input label set without caring about their

order, frequencies, and more complex relationships [24, 37, 43].

This may result in many unreasonable paths, such as the previous

example of highways interleaved with shortcut secondary roads.

On the other hand, due to the limited expressiveness of Kleene

languages, it cannot satisfy users’ demand for more various and

realistic path patterns. Furthermore, their solutions did not fully

harness the indexing power to provide fast query processing. They

mainly preprocessed auxiliary data to prune the search space in

query time. However, when the data volume and device memory

increase, the indexes could directly store su�ciently many partial

path answers in hash tables to process queries quickly by few table

lookups. For example, the state-of-the-art index, called LSD [43], is

based on the tree decomposition (which is a popular technique for

path queries [35]) that allows us to focus on a “small set” of vertices

given a source and a destination, with the correctness guaranteed.

LSD’s query processing then recursively updates the distances from

the source (or destination) to the vertices in the “small set”. But,

3082

https://doi.org/10.14778/3681954.3681985
https://github.com/lbwang95/PCSP/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681985
https://www.acm.org/publications/policies/artifact-review-and-badging-current

in fact, these search processes could be done in the preprocessing

phase by storing partial path answers for more e�cient querying

based on table lookups.

Motivated by the above challenges, we aim to design an LCSP

index that supports faster querying for the more general regular

languages, which can express many �exible label constraints as

in previous examples. Speci�cally, we propose the index called

Partially Constrained Shortest Path (PCSP) that tries to �nd the

LCSP by concatenating two shortest paths (stored in the index)

that partially satisfy the label constraint (and fully satisfy it after

concatenation). We also utilize the tree decomposition to �nd the

small vertex set as in LSD. However, our main novelty lies in PCSPs,

which means that any other new techniques that provide this vertex

set can be adopted. For Kleene languages, LSD can extend the

idea for the unconstrained shortest path by maintaining several

distances w.r.t. di�erent label sets (not just a single one in the

unconstrained case). However, for regular languages, we cannot

simply focus on several label sets as in LSD since there are various

regular languages that indicate di�erent orders, frequencies, and

relationships of labels. It is nontrivial to preprocess useful PCSPs

for query processing. Therefore, we try to provide an index for a

given �xed regular language so that we can de�ne some useful

PCSPs with the help of the deterministic �nite automaton (DFA)

behind the �xed regular language. It is useful for applications with

clear purposes, e.g., online mapping wants to return paths without

unreasonable shortcuts, and a visitor prefers to travel through at

most three sightseeing spots (on some roads) in a day. In practice,

all popular regular languages can be preprocessed once since the

number of patterns of interest is often small. To further improve

query e�ciency, we design pruning techniques that prune the

“small set” without a�ecting the correctness. The experiments in

real networks show that our index can answer LCSP queries faster

than the best-known LSD by up to two orders of magnitude. We

summarize our contributions as follows.

• We propose the index called PCSP, which is by far the

fastest known LCSP solution. It answers LCSP queries with

label constraints expressed by regular languages. We also

propose several e�cient pruning techniques.

• We theoretically analyze the correctness and complexities

of the proposed index and pruning techniques.

• Experimental results show that PCSP answers each LCSP

query in around 100 microseconds and outperforms the

best-known LCSP solution by orders of magnitude.

The remainder of the paper is organized as follows. Section 2

states the problem. Section 3 gives an overview of the index and

query processing, detailed in Section 4 and Section 5, respectively.

Section 6 shows our experiments. Section 7 reviews the related

work. Section 8 concludes our paper.

2 PRELIMINARIES

2.1 Problem Statement

De�nition 2.1 (Labeled Road Network). Let� (+ , �, Σ, ;, 3) be an

undirected graph where + and � are the vertex and edge sets,

respectively, and the alphabet Σ is a �nite nonempty set of labels.

Let = = |+ | and< = |� |. Each edge 4 ∈ � is associated with two

attributes: its label ; (4) ∈ Σ and distance 3 (4) ∈ R+.

�1
�4 �7 �6

�8
�2

�5
2, ÿ 7, �

3, �
1, � 3, �

1, ÿ

2, Ā 2, Ā
2, ��3 �9

�10
1, � 2, �1, �

�0 �1
�2 �3

ÿ ÿ
�� ÿ ÿ
�

Initial State

Figure 1: A labeled road network �

Example 2.2. Figure 1 shows a labeled road network � . Let Σ =

{1,~, 2} where 1,~, 2 represent bike, subway, and car, respectively.

Beside each edge 4 , we show its distance 3 (4) and label ; (4).

When a road segment is associated with multiple labels or dis-

tances, we create multiple edges for it. We will discuss how to

handle directed graphs in Section 5. The path pattern constraint is

formulated by a regular language [2, 7].

De�nition 2.3 (Regular Expression and Regular Language). Given

an alphabet Σ disjoint from {n, ∅, (,),∪, ·, ∗}, we can de�ne the

collection of regular expressions over Σ recursively. 1) The empty

set ∅, each 0 ∈ Σ, and the empty string n are regular expressions. 2)

If � and � are regular expressions, �∗ (Kleene Star), � ∪ � (union),

and � · � (concatenation) are regular expressions. We can similarly

de�ne the corresponding regular languages by these notations. Each

regular language ! can be de�ned by a regular expression.

De�nition 2.4 (Path). A D-E path ?īĬ of length : is a �nite se-

quence of vertices ïE0 = D, E1, E2, . . . , Eġ = Eð such that each 4ğ =

(Eğ−1, Eğ) ∈ � for 1 f 8 f : . Its distance is de�ned by 3 (?īĬ) =
∑ġ
ğ=1 3 (4ğ), where 3 (4ğ) is the distance of edge 4ğ , and its label is

de�ned by ; (?īĬ) = ; (41) · ; (42) . . . ; (4ġ), which is the concatena-

tion of the edge labels along the path. Let ?ĩĬ · ?ĬĪ be the path

concatenation of ?ĩĬ and ?ĬĪ . We only consider simple paths.

Example 2.5. In Figure 1, the path ?Ĭ1Ĭ2 = ïE1, E3, E4, E7, E6, E2ð

has its distance 3 (?Ĭ1Ĭ2) = 9 and label ; (?Ĭ1Ĭ2) = 1~~1~.

De�nition 2.6 (Label-Constrained Path). Given a regular language

! over Σ, a path ? is a label-constrained path if its label ; (?) satis�es

the language !, i.e., ; (?) ∈ !.

Example 2.7. Consider a regular language ! de�ned by 1∗~∗1∗,

which means that we can �rst ride a bike, then take the subway, and

�nally ride a bike. In Figure 1, the path ?Ĭ1Ĭ2 = ïE1, E3, E4, E7, E6, E2ð

is not a label-constrained path since its label ; (?Ĭ1Ĭ2) = 1~~1~ ∉

!. We will not consider this path (which uses a bike to trans-

fer between subway stations) by using the regular language !.

In fact, using the Kleene language cannot express this require-

ment to avoid generating this unreasonable path. The path ?ĥĦĪ =

ïE1, E3, E4, E7, E9, E8, E6, E2ð is a label-constrained path since its label

; (?ĥĦĪ) = 1~~~~~~ ∈ !.

De�nition 2.8 (Label-Constrained Shortest Path (LCSP) Problem).

Given a labeled network � (+ , �, Σ, ;, 3) and a regular language !,

we aim to build an in-memory index to answer the LCSP query

with a source B and a destination C by the LCSP ?ĥĦĪ such that it

has the shortest distance among all the label-constrained B-C paths.

3083

�1
�4 �7 �6

�8
�2

�5
2, ÿ 7, �

3, �
1, � 3, �

1, ÿ

2, Ā 2, Ā
2, ��3 �9

�10
1, � 2, �1, �

�0 �1
�2 �3

ÿ ÿ
�� ÿ ÿ
�

Initial State

Figure 2: A DFA for 1∗~∗1∗

Example 2.9. We still use the labeled road network and the reg-

ular language in the previous examples. Suppose that we want to

answer an LCSP query with B = E1 and C = E2. Without the con-

straint, the shortest path is ïE1, E3, E4, E7, E6, E2ð with a distance of

9, but its label cannot be accepted by !. Under the constraint, the

LCSP is ?ĥĦĪ = ïE1, E3, E4, E7, E9, E8, E6, E2ð with its label ; (?ĥĦĪ) ∈ !

and the minimum distance 3 (?ĥĦĪ) = 14.

2.2 Deterministic Finite Automatons (DFA)

We will use the DFA to judge whether a path label ; (?) can be

accepted by a regular language !.

De�nition 2.10 (Deterministic Finite Automaton (DFA)). A deter-

ministic �nite automaton (DFA) is a 5-tuple (&, Σ, X, @0, �), consist-

ing of 1) a �nite set of states& , 2) a �nite set of input labels, i.e., the

alphabet Σ, 3) a transition function X : & × Σ→ & , which de�nes

the next state given the current state and a label, 4) an initial state

@0 ∈ & , and 5) a set of accepting or �nal states � ¦ & .

Example 2.11. Figure 2 shows a DFA for the regular language

! de�ned by 1∗~∗1∗, where & = {@0, @1, @2, @3}, @0 is the initial

state, and all states are �nal states, i.e., � = & . The state transition

function X is shown by the arrows.

Each regular expression or regular language can be represented

by a DFA [3]. A path label is accepted by a regular language if and

only if on its corresponding DFA, we can start with the initial state,

use the edge labels one by one for transition, and halt on a �nal

state. We de�ne an indicator function for a path label as follows.

De�nition 2.12 (Indicator Function). Given a path label ; (?), we

de�ne an indicator function 1ħ,ħ′ (; (?)) for state @ and @′ as 1 if

; (?) can be accepted by the DFA from state @ to @′ (which uses the

edge labels of ; (?) sequentially from state @ to @′) and 0 otherwise.

Clearly, for each label-constrained path ? with its label ; (?),

1ħ0,ħĜ (; (?)) = 1 hold for at least one @Ĝ ∈ � .

Example 2.13. Back to previous Example 2.9, ; (?ĥĦĪ) = 1~~~~~~

and 1ħ0,ħ2 (; (?
ĥĦĪ)) = 1 since ; (?ĥĦĪ) can be accepted by the DFA

in Figure 2 from state @0 to state @2 by using the labels sequentially.

Table 1 lists the main notations used throughout the paper.

3 OVERVIEW

Given two vertices B and C , we utilize a small set of vertices that lie

in each B-C path, called an B-C separator, to improve query e�ciency.

Table 1: List of notations

Symbol Meaning

+ , � vertex and edge sets

Σ, ! the alphabet of all labels and the regular language

&, � the set of states and the set of �nal states

1ħ,ħ′ (; (?)) the indicator function for state @ and @′

; (4), 3 (4) the label and distance of an edge 4

; (?), 3 (?) the label and distance of a path ?

- (E), � the tree node for E and a separator

P1
Ĭĭ ,P

2
ĭĬ the two PCSP sets for - (E) and its ancestor - (F)

U , the ratio U and the the top- separators

� sour (�, E) pruned separators for � and E as the source

�des (�, E) and the destination

De�nition 3.1 (Separator). A D-E separator � is a set of vertices

such that D and E are disconnected after we remove the vertices in

� . In other words, any D-E path must visit at least one vertex in � .

Given an B-C separator � , a natural idea is to divide the problem

into two subproblems of �nding two subpaths. For example, for

an unconstrained shortest B-C path ?
ĥĦĪ
ĩĪ (where ! = (

⋃
ė∈Σ 0)

∗

that allows any label), we can compute the shortest distance by

3 (?
ĥĦĪ
ĩĪ) = minℎ∈Ą {3 (?

ĥĦĪ

ĩℎ
) + 3 (?

ĥĦĪ

ℎĪ
)} (where ?

ĥĦĪ

ĩℎ
and ?

ĥĦĪ

ℎĪ
are

the shortest B-ℎ and ℎ-C paths, respectively) since the shortest path

?
ĥĦĪ
ĩĪ must visit at least one vertex ℎ ∈ � and any subpath of ?

ĥĦĪ
ĩĪ

is also a shortest path [35]. The query processing can be fast if we

can obtain a small B-C separator � quickly and have stored 3 (?
ĥĦĪ

ĩℎ
)

and 3 (?
ĥĦĪ

ℎĪ
) for each ℎ ∈ � in the index.

However, given a regular language !, for the LCSP ?
ĥĦĪ
ĩĪ , we

cannot use the same idea because the label concatenation may not

satisfy the language ! (i.e., ; (?
ĥĦĪ

ĩℎ
) · ; (?

ĥĦĪ

ℎĪ
) ∉ ! though ; (?

ĥĦĪ

ĩℎ
) ∈ !

and ; (?
ĥĦĪ

ℎĪ
) ∈ !). Instead of storing just one shortest B-ℎ (or ℎ-C)

path, our Partially Constrained Shortest Path (PCSP) index stores

a set of partially constrained shortest B-ℎ paths (and ℎ-C paths)

that satisfy the language constraint partially. Speci�cally, the path

concatenated by an B-ℎ PCSP ? with 1ħ0,ħ (; (?)) = 1 and an ℎ-C

PCSP ?′ with 1ħ,ħĜ (; (?
′)) = 1 for any @ ∈ & and @Ĝ ∈ � will satisfy

the language constraint completely since the label concatenation

; (?) · ; (?′) (or ; (? ·?′)) can be accepted by the DFA from the initial

state@0 to a state@ and from@ to a �nal state@Ĝ ∈ � . The LCSP ?
ĥĦĪ
ĩĪ

is the one with the shortest distance among all the concatenated

paths for all ℎ ∈ � . To obtain a small B-C separator � quickly, we

will use the tree decomposition, which is a commonly used data

structure for separators [35, 38]. We will also call the vertices in �

as “hoplinks” since each vertex ℎ ∈ � links one “hop” (i.e., a path)

from B to ℎ and the other hop from ℎ to C .

We observe that an B-C separator � may use redundant hoplinks

that are irrelevant to �nding the �nal LCSP ?ĥĦĪ . We prune a ho-

plink ℎ ∈ � if whenever the LCSP ?ĥĦĪ traverses ℎ, we can always

�nd another hoplink ℎ′ ∈ � such that ?ĥĦĪ also traverses ℎ′, which

means that ℎ′ also lies in the LCSP and checking ℎ′ is su�cient.

To further improve query e�ciency, our PCSP index additionally

preprocesses some pruned separators for speci�c types of queries

and directly uses them in query processing.

3084

�3�1 �(�2)�4�3 �10�7�4 �10�8�7 �9 �10
�6�2�7�6 �8 �8�5 �10�9�8 �10�10�9

�(�6)

�10

�(�5)
�1

�4 �7 �6
�8

�2

�5(ÿ, 2) (�, 7)
(�, 3) (�, 1)(�, 1)

(�, 1) (�, 3)
(ÿ, 1) (�, 2)

(Ā, 2)
(Ā, 2)
(�, 2)

�0 �1
�2 �3

ÿ ÿ
�� ÿ ÿ
�

�3 �9
�10

Figure 3: A tree decomposition of �

4 INDEX CONSTRUCTION

We �rst give some basics of the tree decomposition since we utilize

it and then explain how to preprocess PCSPs and pruned separators.

4.1 Tree Decomposition

Tree decomposition embeds the structural information of a graph

into a tree so that we can solve graph problems e�ciently. Many

state-of-the-art solutions for path queries are based on it [13, 32,

35, 41, 43, 47]. Though it is irrelevant to edge labels, we can use it

to get a small separator to improve query e�ciency.

De�nition 4.1 (Tree Decomposition [38]). A tree decomposition of

a graph � (+ , �) is a rooted tree with its tree nodes {- (E) |E ∈ + }.

Each vertex E is mapped to a tree node - (E) that represents a

vertex set that includes E (i.e., - (E) ¦ + and E ∈ - (E)). The tree

decomposition satis�es the following three conditions:

(1) ∪Ĭ∈Ē- (E) = + ;

(2) For each edge 4 = (D, E) ∈ �, there is a tree node - (E ′) such

that D ∈ - (E ′) and E ∈ - (E ′);

(3) For each E ∈ + , the tree nodes that contain E (i.e., {- (E ′) |E ∈

- (E ′)}) form a connected subtree.

Example 4.2. We plot the tree decomposition for the network

� of Figure 1 in Figure 3. Each tree node - (E) is a set of vertices

including E , which we mark in a grey block. For example, - (E5) =

{E5, E8, E10}.

For better clarity, we will use “node” for the tree decomposi-

tion and “vertex” for the graph. We de�ne its treewidth as l =

maxĬ∈Ē |- (E) | and its treeheight [as the maximum depth of a tree

node (i.e., the length of the simple tree path to the root node).

Lemma 4.3 ([13]). For any two vertices B and C such that - (B)

and - (C) have no ancestor-descendant relationship, the least common

ancestor (LCA) of - (B) and - (C), denoted by - (2), is a separator. Let

- (2ĩ) and - (2Ī) be the two child nodes of - (2) in the two branches

containing - (B) and - (C), respectively. Then, both - (2ĩ)\{2ĩ } and

- (2Ī)\{2Ī } are separators.

Example 4.4. For E1 and E2,- (E7) is the LCA of- (E1) and- (E2).

Thus, - (E7) = {E7, E8, E9, E10} is a separator for E1 and E2. Since

- (2ĩ) = - (E4) and - (2Ī) = - (E6), - (2ĩ)\{2ĩ } = {E7, E10} and

- (2Ī)\{2Ī } = {E7, E8} are two separators.

Minimum Degree Elimination (MDE). The tree decomposi-

tion can be built by the MDE algorithm (Algorithm 6 in [35] adapted

from [10]). It �rst creates tree nodes iteratively and then links them

by a tree. In the �rst phase, in each iteration of creating a tree

node, it �rst �nds the vertex E with the minimum degree in the

graph � ′ (which is initially �). Then, - (E) is formed by E and its

current neighbors in � ′. It next removes E and its incident edges

and adds an edge between each pair of E ’s neighbors in � ′ if the

edge does not exist. In this way, any two neighbors of E are still

connected after we remove E and all E ’s incident edges (since they

are connected via E before the removal). In the second phase, the

parent of each node - (E) is set to the node - (E ′) where E ′ is the

�rst removed vertex in - (E)\{E}.

Example 4.5. MDE �rst creates- (E1) = {E1, E3} since E1’s degree

is currently the minimum. It removes the edge (E1, E3) and adds

no new edge. It similarly creates - (E2). For - (E3) = {E3, E4, E10},

it removes the two edges (E3, E4) and (E3, E10) and adds (E4, E10).

Similarly, it creates - (E4), - (E5), . . . , - (E10). Next, MDE links all

nodes. The parent of - (E1) is - (E3) because E3 is the �rst removed

vertex in - (E1)\{E1}. We can similarly do the rest steps and �nally

get the tree decomposition in Figure 3.

4.2 Partially Constrained Shortest Path

4.2.1 Two PCSP Sets. Formally, for each node - (E), whenever

- (F) is an ancestor of - (E), our PCSP preprocesses the following

two sets of PCSPs:

(1) The �rst set P1
Ĭĭ = {(@, ?

1ħ
Ĭĭ) |@ ∈ &, (

1ħ
Ĭĭ ≠ ∅}, where (

1ħ
Ĭĭ =

{?Ĭĭ |1ħ0,ħ (; (?Ĭĭ)) = 1} is the set of all E-F paths ?Ĭĭ whose

labels ; (?Ĭĭ) can be accepted by the DFA from the initial state @0

to the state @, and ?
1ħ
Ĭĭ = argmin

Ħ∈ď
1ħ
Ĭĭ
3 (?) is the one in (

1ħ
Ĭĭ with

the shortest distance.

(2) The second set P2
ĭĬ = {(@, ?

2ħ
ĭĬ) |@ ∈ &, (

2ħ
ĭĬ ≠ ∅}, where

(
2ħ
ĭĬ = {?ĭĬ |∃@Ĝ (@Ĝ ∈ � '1ħ,ħĜ (; (?ĭĬ)) = 1)} is the set of allF-E

paths ?ĭĬ whose labels ; (?ĭĬ) can be accepted by the DFA from

the state @ to a �nal state @Ĝ ∈ � , and ?
2ħ
ĭĬ = argmin

Ħ∈ď
2ħ
ĭĬ
3 (?) is

the one in (
2ħ
ĭĬ with the shortest distance.

The two sets P1
Ĭĭ and P2

ĭĬ store a set of shortest E-F paths

?
1ħ
Ĭĭ from the initial state @0 to some states (which will be used in

the “�rst” B-ℎ subpath) and a set of shortest F-E paths ?
2ħ
ĭĬ from

some states to �nal states (which will be used in the “second” ℎ-C

subpath), respectively. They can be fetched by looking up a hash

table w.r.t. the node- (E) and its ancestor- (F). Note that the order

of E andF in the subscript is important because the labels of E-F

paths are di�erent from the labels of F-E paths. Also, note that

“1” and “2” in the superscript indicate whether the path label is

accepted by the DFA from an initial state to intermediate states or

from intermediate states to �nal states. We do not need to store

P2
Ĭĭ and P1

ĭĬ since they will never be used in query processing.

Example 4.6. For - (E1), its ancestors are - (E10), - (E9), - (E8),

- (E7), - (E4), and - (E3). For its ancestor - (E10), we store P
1
Ĭ1Ĭ10

and P2
Ĭ10Ĭ1 . In P

1
Ĭ1Ĭ10 , for @2, ?

1ħ2
Ĭ1Ĭ10 = ïE1, E3, E4, E7, E9, E10ð because

3085

Ā āÿ

…

� Ā \{Ā} �ÿā , �āÿ�Āÿ , �ÿĀ

Figure 4: The simpli�ed graph � ′ in the iteration for - (E)

it has the shortest distance of 8 with its label ; (?
1ħ2
Ĭ1Ĭ10) = 1~~~~ and

1ħ0,ħ2 (; (?
1ħ2
Ĭ1Ĭ10)) = 1. In P2

Ĭ10Ĭ1 , for @0, ?
2ħ0
Ĭ10Ĭ1 = ïE10, E9, E7, E4, E3, E1ð

with its label ; (?
2ħ0
Ĭ10Ĭ1) = ~~~~1 and 1ħ0,ħ3 (; (?

2ħ0
Ĭ10Ĭ1)) = 1. For @1

and @2, ?
2ħ1
Ĭ10Ĭ1 = ?

2ħ2
Ĭ10Ĭ1 = ?

2ħ0
Ĭ10Ĭ1 .

Given B and C , if - (C) (or - (B)) is an ancestor of - (B) (or - (C)),

we �rst fetch P1
ĩĪ (or P

2
ĩĪ) from the hash table. Then, we only need

to consider ?
1ħ
ĩĪ ∈ P

1
ĩĪ with @ ∈ � (or ?

2ħ
ĩĪ ∈ P

2
ĩĪ with @ = @0) and

return the one with the shortest distance as the LCSP since its label

can be accepted by the DFA from the initial state to a �nal state.

If - (B) and - (C) have no ancestor-descendant relationship, we

set a separator� as the one with a smaller size between- (2ĩ)\{2ĩ }

and- (2Ī)\{2Ī } by Lemma 4.3. By the property of the tree decompo-

sition [38], for each ℎ ∈ - (2ĩ)\{2ĩ } and ℎ ∈ - (2Ī)\{2Ī }, - (ℎ) is an

ancestor of both - (B) and - (C). Thus, for each ℎ ∈ � , we can fetch

P1
ĩℎ

and P2
ℎĪ

from the hash tables at nodes - (B) and - (C), respec-

tively. Next, for each ℎ ∈ � , we �nd the path ?
ĥĦĪ

ℎ
with the shortest

distance among {?
1ħ

ĩℎ
· ?

2ħ

ℎĪ
|@ ∈ &, (@, ?

1ħ

ĩℎ
) ∈ P1

ĩℎ
, (@, ?

2ħ

ℎĪ
) ∈ P2

ℎĪ
},

where the concatenation requires that the two paths share the same

hoplink ℎ and the same state @. Finally, we compare the distances of

all ?
ĥĦĪ

ℎ
for ℎ ∈ � and return the LCSP with the shortest distance.

4.2.2 Preprocessing PCSP Sets. For each node- (E) and each- (E)’s

ancestor - (F), we need to preprocess the two sets P1
Ĭĭ and P2

ĭĬ

of PCSPs. Instead of directly deriving them, we consider their two

supersets so that we can perform concise recursive computations

in a top-down manner in the tree. We will �nally extract the two

sets from their supersets.

Speci�cally, for each node - (E) and each - (E)’s ancestor - (F),

we consider two supersets PĬĭ = {(@, @′, ?
ħħ′

Ĭĭ) |@, @
′ ∈ &, (

ħħ′

Ĭĭ ≠ ∅}

(for E-F paths) and PĭĬ (for F-E paths) similarly, where (
ħħ′

Ĭĭ =

{?Ĭĭ |1ħ,ħ′ (; (?Ĭĭ)) = 1} is the set of all E-F paths ?Ĭĭ whose

labels ; (?Ĭĭ) can be accepted by the DFA from state @ to state @′,

and ?
ħħ′

Ĭĭ is the one in (
ħħ′

Ĭĭ with the shortest distance, i.e., ?
ħħ′

Ĭĭ =

argmin
Ħ∈ď

ħħ′

Ĭĭ
3 (?). We can easily extract P1

Ĭĭ and P2
ĭĬ from PĬĭ

andPĭĬ by considering the initial state and �nal states, respectively.

Note that one shortest path ?
ħħ′

Ĭĭ in PĬĭ may not be in PĭĬ since it

may not be a shortestF-E path when its label ; (?
ħħ′

Ĭĭ) is reversed.

The main idea of deriving PĬĭ and PĭĬ is that in the MDE

algorithm, in the iteration of creating the node - (E) that includes

E and E ’s neighbors in � ′, we can regard all E ’s neighbors in � ′

(i.e., - (E)\{E}) as a separator between E andF in � ′, as shown in

Figure 4. Since the shortest paths in PĬĭ and PĭĬ must visit at

least one E ’s neighbor D ∈ - (E)\{E}, we can concatenate each of

Algorithm 1: PCSPJoin

input :Two path sets %1 and %2 and a joined path set %res
output :Updated joined path set %res

1 foreach (@1, @
′
1, ?1) ∈ %1 do

2 foreach (@2, @
′
2, ?2) ∈ %2 where @

′
1 = @2 do

3 if there exists no (@1, @
′
2, ?) in %res or

3 (?1) + 3 (?2) < 3 (?) then

4 ? ← ?1 · ?2

5 Update (@1, @
′
2, ?) in %res

6 %res ← %2 (or %1) if %1 (or %2) is a set of E-E paths for any E

E ’s incident edges (E,D) with the shortest D-F andF-D paths (i.e.,

Pīĭ and Pĭī) to update PĬĭ and PĭĬ , respectively.

For the latter Pīĭ and Pĭī , we can follow a top-down man-

ner recursively in the tree and obtain them from the previously

computed hash table w.r.t. the node - (D) and its ancestor - (F)

(if - (F) is the ancestor of - (D)) or the node - (F) and its an-

cestor - (D) (otherwise). For the former E ’s incident edges, one

problem is that some incident edges (E,D) are newly added be-

fore the iteration of creating - (E). For example, in the iteration

of creating - (E ′), we may add (E,D) if both (E, E ′) and (E ′, D) ex-

ist. Moreover, (E, E ′) and (E ′, D) may also be newly added edges

in the previous iterations. We associate two path sets % (Ĭ,ī) and

% (ī,Ĭ) with each existing and new (undirected) edge (E,D) to pre-

serve the information about the shortest paths when removing

edges. Initially, for each 4 = (E,D) ∈ �, as a path with a sin-

gle edge, % (Ĭ,ī) = {(@, @′, ïE,Dð) |@, @′ ∈ &,1ħ,ħ′ (; (4)) = 1} and

% (ī,Ĭ) = {(@, @
′, ïD, Eð) |@, @′ ∈ &,1ħ,ħ′ (; (4)) = 1}. Each time two

edges (E, E ′) and (E ′, D) are removed, we join % (Ĭ,Ĭ′) and % (Ĭ′,ī) to

update % (Ĭ,ī) and % (ī,Ĭ′) and % (Ĭ′,Ĭ) to update % (ī,Ĭ) . When con-

catenating each of E ’s incident edge (E,D) with paths in Pīĭ and

Pĭī , we are joining % (Ĭ,ī) and Pīĭ to update PĬĭ and Pĭī and

% (ī,Ĭ) to update PĭĬ .

To join two path sets, we concatenate two paths in the two re-

spective sets such that they share a common intermediate state.

For a pair (@, @′) with @, @′ ∈ & , we only maintain the shortest

path ? with 1ħ,ħ′ (; (?)) = 1. For example, 1ħ0,ħ2 (; (ïE7, E6, E8ð)) =

1ħ0,ħ2 (; (ïE7, E9, E8ð)) = 1, and we only need to maintain ïE7, E6, E8ð

with a smaller distance w.r.t. (@0, @2). Let %res denote the result of

joining two path sets. For the concatenated path ?1 · ?2 with

1ħ,ħ′ (; (?1 · ?2)) = 1, if there is no (@, @′, ?) ∈ %res w.r.t. the

pair (@, @′), we directly put (@, @′, ?1 · ?2) in %res. If there exists

(@, @′, ?) ∈ %res and 3 (?) > 3 (?1 · ?2), we update ? as ?1 · ?2.

Algorithm 1 describes the operation called PCSPJoin. In Line 1,

we iterate the shortest path ?1 in %1 with 1ħ1,ħ
′
1
(; (?1)) = 1 for

(@1, @
′
1) and only need to concatenate it with those ?2 in %2 with

1ħ2,ħ
′
2
(; (?2)) = 1 for (@2, @

′
2) where @

′
1 = @2 in Line 2. In Lines 3–5,

if we have not stored a shortest path with 1ħ1,ħ
′
2
(; (?1) · ; (?2)) = 1

for (@1, @
′
2), we put it in the resulting path set %res. Otherwise, we

update the shortest path for (@1, @
′
2) if the sum of the two paths’ dis-

tances is smaller than the current one. In Line 6, we handle a special

case where D = F that may happen in Lines 19–20 of Algorithm 1.

Algorithm 2 summarizes the whole procedure of preprocessing

PCSPs. In Lines 1–3, we initialize % (Ĭ,ī) and % (ī,Ĭ) by considering

3086

Algorithm 2: Preprocessing PCSPs

input :A road network �

output :A tree decomposition and PĬĭ and PĭĬ for each

node - (E) and each - (E)’s ancestor - (F)

1 foreach 4 = (E,D) ∈ � do

2 % (Ĭ,ī) ← {(@, @
′, ïE,Dð) |@, @′ ∈ &,1ħ,ħ′ (; (4)) = 1}

3 % (ī,Ĭ) ← {(@, @
′, ïD, Eð) |@, @′ ∈ &,1ħ,ħ′ (; (4)) = 1}

4 � ′ ← �

5 while � ′ is not empty do

6 E ← the vertex in � ′ with the smallest degree

7 create a node - (E) by E and E ’s current neighbors

8 foreach pair (D,F) where they are E ’s neighbors do

9 if the edge (D,F) does not exist in � ′ then

10 add an new edge (D,F)

11 % (ī,ĭ) ← PCSPJoin(% (ī,Ĭ) , % (Ĭ,ĭ) , % (ī,ĭ))

12 % (ĭ,ī) ← PCSPJoin(% (ĭ,Ĭ) , % (Ĭ,ī) , % (ĭ,ī))

13 Remove E and its incident edges in � ′

14 foreach node - (E) do

15 set - (E)’s parent as - (E ′) where E ′ is the �rst

eliminated vertex in - (E)\{E}

16 foreach node - (E) in a top-down manner do

17 foreach ancestor - (F) of - (E) do

18 foreach D ∈ - (E)\{E} do

19 PĬĭ ← PCSPJoin(% (Ĭ,ī) ,Pīĭ ,PĬĭ)

20 PĭĬ ← PCSPJoin(Pĭī , % (ī,Ĭ) ,PĭĬ)

all state pair (@, @′). Speci�cally, for each edge 4 = (E,D), since we

can only use one label ; (4), we only need to consider each @ ∈ &

and its next state @′ that could be reached by using ; (4). In Lines 4–

10 and 13–15, we follow the standard procedure of building the

tree decomposition. In Lines 11-12, we update % (ī,ĭ) and % (ĭ,ī) by

joining the path sets related to the two edges (D, E) and (E,F). In

Lines 16-18, we consider a tree node - (E), its ancestor - (F), and

the separator - (E)\{E}. Finally, in Lines 19–20, we obtain PĬĭ and

PĭĬ by joining the two path sets % (Ĭ,ī) and % (ī,Ĭ) related to the

edge (E,D) and those related to D-F andF-D paths.

Example 4.7. We still use Example 2.9. For ease of presentation,

we will identify each path ? by its distance 3 (?). The path retrieval

procedure is given in Section 5. In Lines 1–3, we initialize % (Ĭ,ī)
and % (ī,Ĭ) for each 4 = (E,D) ∈ �. For example, for (E3, E4), we set

% (Ĭ3,Ĭ4) = {(@0, @2, ïE3, E4ð), (@1, @2, ïE3, E4ð), (@2, @2, ïE3, E4ð)} and

similarly % (Ĭ3,Ĭ4) . For ease of presentation, we will identify each

path ? by its distance 3 (?), and the path retrieval by using 3 (?) is

given in Section 5. In Lines 5–13, we build the tree decomposition.

We add no new edge when creating - (E1) and - (E2). For - (E3),

for the pair (E4, E10), we add a new edge (E4, E10) with % (Ĭ4,Ĭ10) and

% (Ĭ10,Ĭ4) . We join % (Ĭ4,Ĭ3) = {(@0, @2, 3), (@1, @2, 3), (@2, @2, 3)} and

% (Ĭ3,Ĭ10) = {(@0, @2, 7), (@1, @2, 7), (@2, @2, 7)} to obtain % (Ĭ4,Ĭ10) =

{(@0, @2, 10), (@1, @2, 10), (@2, @2, 10)}. We similarly create the other

nodes and path sets. In Lines 16–20, for - (E9) and its ancestor

- (E10), we create PĬ9Ĭ10 = %Ĭ9Ĭ10 and PĬ10Ĭ9 = %Ĭ10Ĭ9 since PĬ10Ĭ10 =

∅. For - (E8), we similarly build PĬ8Ĭ10 and PĬ10Ĭ8 for its ancestor

- (E10) and PĬ8Ĭ9 and PĬ9Ĭ8 for its ancestor - (E9). We can then

process the remaining nodes similarly.

Theorem 4.8. Algorithm 2 correctly builds P1
Ĭĭ and P2

ĭĬ .

Proof. It su�ces to prove that we correctly build PĬĭ and

PĭĬ since they are supersets of P1
Ĭĭ and P2

ĭĬ , respectively. We

�rst prove by induction that in each iteration of creating - (E),

any LCSP between vertices in � ′ can be found by using % (ī,ĭ)
and % (ĭ,ī) for each 4 = (D,F) ∈ � (� ′). Next, we can prove the

correctness of PĬĭ and PĭĬ by induction on the tree about using

the separator - (E)\{E} to concatenate the incident edge with path

sets, as stated previously. For the �rst statement, the base case for

� ′ = � holds since % (ī,ĭ) and % (ĭ,ī) for each 4 = (D,F) ∈ � only

store the corresponding edge information. Now assume that any

LCSP can be found before E ’s incident edges are removed. After

they are removed, any LCSP either traverses E or not. The latter

case holds due to the hypothesis. For the former one, the LCSP

consists of an B-D subpath, (D, E) and (E,F), and aF-C subpath. The

�rst one and the last one can be restored by the hypothesis, and

the middle one (D, E,F) can be restored by using % (ī,ĭ) and % (ĭ,ī)
since we integrate the shortest path information in Lines 11–12. □

Theorem 4.9. Algorithm 2’s time complexity is O(|+ | log |+ | +

|+ |l2 |& |2 + |+ |[l |& |2)), where l and [are the treewidth and tree-

height, respectively, and |& | is the number of states. The space cost of

PCSPs is O(|+ |[|& |2).

Proof. The �rst term in the time complexity represents the

time cost of selecting the vertex with the smallest degree (Line 6),

which is implemented by a priority queue. The second term uses l

to bound the number of E ’s neighbors and |& |2 for the PCSPJoin

operation (Algorithm 1). The third term is the time cost of Lines 16–

20, where [andl are upper bounds of the number of ancestors and

|- (E)\{E}|, respectively. The space cost is O(|+ |[|& |2) because we

store PĬĭ and PĭĬ for each node - (E) and its ancestor - (F). □

It can be observed that both time and space complexities are

related to the number of states |& |. Thus, we performDFAminimiza-

tion to reduce |& |, which can be done by Hopcroft’s algorithm [26].

Moreover, our PCSP index only needs to storeP1
Ĭĭ andP2

ĭĬ (not the

two supersets) for query processing, which would use O(|+ |[|& |)

and O(|+ |[|& | |� |) space, respectively.

4.3 Pruned Separator

Assume that we have known that the sources of some LCSP queries

are all Eĩ ∈ + (or the destinations are EĪ ∈ +) in advance. Given a

separator� from the node in the tree decomposition used to answer

these queries, we can prune some hoplinks in � beforehand. The

main idea of pruning a hoplink ℎ ∈ � is that each of the shortest

Eĩ -ℎ (or ℎ-EĪ) paths in P
1
Ĭĩℎ

is not superior to one Eĩ -ℎ
′ (or ℎ′-EĪ)

path via another hoplink ℎ′ ∈ � , which indicates that it is su�cient

to check ℎ′ during query processing. We will then select some

important separators and preprocess pruned separators for them.

Note that we do not assume that we know both the source and the

destination at the same time beforehand because it would require

us to preprocess pruned separators for nearly |+ |2 queries, which

is infeasible and prohibitive on large road networks.

3087

Algorithm 3: Separator Pruning for Sources

input :A separator � and a source E

output :A pruned separator � sour (�, E)

1 foreach ℎ ∈ � in the decreasing order of minĦ∈P1
Ĭℎ
3 (?) do

2 foreach (@, ?
1ħ

Ĭĩℎ
) ∈ P1

Ĭĩℎ
do

3 ConditionFlag[@] ← 5 0;B4

4 foreach ℎ′ s.t. minĦ∈P1
Ĭℎ′
3 (?) < minĦ∈P1

Ĭℎ
3 (?) do

5 if 3 (?) = 3 (?
1ħ

Ĭĩℎ
) where (@, ?) ∈ P1

Ĭĩℎ′ℎ
then

6 ConditionFlag[@] ← CAD4

7 Prune ℎ if all ConditionFlag[@] is true

4.3.1 Pruning Rules. Let PĬĩℎ′ℎ denote the result of PCSPJoin (Al-

gorithm 1) on PĬĩℎ′ and Pℎ′ℎ . Let P
1
Ĭĩℎ′ℎ

= {(@′, ?) | (@, @′, ?) ∈

PĬĩℎ′ℎ, @ = @0} be the set of paths in PĬĩℎ′ℎ that starts with the

initial state @0. We similarly de�ne Pℎℎ′ĬĪ and P2
ℎℎ′ĬĪ

. Then, we

check if ℎ can be pruned by comparing P1
Ĭĩℎ

and P1
Ĭĩℎ′ℎ

(or P2
ℎĬĪ

and P2
ℎℎ′ĬĪ

). Speci�cally, we propose the following two pruning

rules for sources and destinations:

(1) Given a source Eĩ ∈ + , a hoplink ℎ ∈ � can be pruned if

for each (@, ?
1ħ

Ĭĩℎ
) ∈ P1

Ĭĩℎ
, there exists one ℎ′ ∈ � such that for

(@, ?) ∈ P1
Ĭĩℎ′ℎ

, 3 (?) = 3 (?
1ħ

Ĭĩℎ
).

(2) Given a destination EĪ ∈ + , a hoplink ℎ ∈ � can be pruned

if for each (@, ?
2ħ

ℎĬĪ
) ∈ P2

ℎĬĪ
, there exists one ℎ′ ∈ � such that for

(@, ?) ∈ P2
ℎℎ′ĬĪ

, 3 (?) = 3 (?
2ħ

ℎĬĪ
).

Note that in either rule, the hoplinkℎ′ that satis�es the condition

can be di�erent for each (@, ?
1ħ

Ĭĩℎ
) ∈ P1

Ĭĩℎ
or (@, ?

2ħ

ℎĬĪ
) ∈ P2

ℎĬĪ
. The

following lemma shows the correctness of the two rules.

Lemma 4.10. Assume w.l.o.g. there is only one ?ĥĦĪ . Given a sepa-

rator� , if oneℎ ∈ � can be pruned w.r.t. ?ĥĦĪ ’s source B or destination

C and ?ĥĦĪ traverses ℎ, then ?ĥĦĪ traverses another ℎ′ ∈ � .

Proof. Consider the case of ?ĥĦĪ ’s source B . Let ? be the B-

ℎ subpath of ?ĥĦĪ . There is only one @ such that 1ħ0,ħ (; (?)) =

1 and 3 (?) must be the minimum among all B-ℎ paths ?ĩ with

1ħ0,ħ (; (?ĩℎ)) = 1, which indicates that (@, ?) ∈ P1
ĩℎ

and ? = ?
1ħ

ĩℎ
for @. According to the pruning rule, there is one ℎ′ and a path

?′ via ℎ′ such that 3 (?′) = 3 (?), which suggests that ?ĥĦĪ also

traverses ℎ′. For the case of ?ĥĦĪ ’s destination C , we can similarly

consider the ℎ-C subpath of ?ĥĦĪ . Note that when there are several

LCSP ?ĥĦĪ with the same distance, we can �nd one of them. □

By Lemma 4.10, we can prune one ℎ ∈ � since the LCSP ?ĥĦĪ

also traverses another hoplink in � . After pruning ℎ, we can �nd

the next hoplink according to the pruning rule and repeat the

procedure again. Note that we cannot alternatively use the two

rules since no vertex can be both the source and the destination.

For the �rst pruning rule, if there exists ℎ′ such that there are ?Ĭĩℎ′

and ?ℎ′ℎ with 3 (?Ĭĩℎ′ · ?ℎ′ℎ) = 3 (?
1ħ

Ĭĩℎ
), we can easily derive that

3 (?Ĭĩℎ′) < 3 (?
1ħ

Ĭĩℎ
). To �nd such ℎ′, a heuristic idea is to �rst sort

all the hoplinks ℎ in the increasing order of their unconstrained

Algorithm 4: Preprocessing Pruned Separators

input :A set ' of random queries and a parameter U

output :� sour (�, E) and �des (�, E) for top- separators

1 foreach (B, C) ∈ ' do

2 - (2) ← the LCA of - (B) and - (C)

3 if - (2) = - (B) or - (2) = - (C) then

4 continue

5 Let 2ĩ and 2Ī be the two child nodes of - (2) in the two

branches containing B and C , respectively

6 � ← argminĄ ′∈{Ĕ (ęĩ)\{ęĩ },Ĕ (ęĪ)\{ęĪ }} |�
′ |

7 # (�) ← # (�) + 1
|Ď |

8 Sort all � in the decreasing order of # (�) to get �1, �2, . . .

9 for 8 = 1, 2, . . . , argminć
∑ć
ğ=1 # (�ğ) g U do

10 foreach E s.t. - (E) is the descendent of �ğ do

11 Get � sour (�ğ , E) by Algorithm 3 and similarly

�des (�ğ , E)

distances without the label constraint, i.e.,minĦ∈P1
Ĭĩℎ

3 (?). We then

�nd ℎ′ among those hoplinks with smaller unconstrained distances.

Algorithm 3 gives the procedure of pruning a separator � and a

source E . Let � sour (�, E) denote the pruned separator. We omit a

similar procedure for a destination E to get�des (�, E). In Line 1, we

check the hoplinks in the decreasing order of their unconstrained

shortest distances. In Lines 2–6, for each (@, ?
1ħ

Ĭĩℎ
) ∈ P1

Ĭĩℎ
, we assign

ConditionFlag[@] as true if the pruning rule is discovered and false

otherwise. We prune ℎ �nally in Line 7 if all �ags are true.

Example 4.11. Given a separator � = {E7, E10} and a source

E1, we show how to get � sour (�, E1) by Algorithm 3. We can get

P1
Ĭ1Ĭ7 = {(@2, 6), (@3, 16)} and P

1
Ĭ1Ĭ10 = {(@2, 8)}. Since we have

minĦ∈P1
Ĭ1Ĭ10

3 (?) = 8 g minĦ∈P1
Ĭ1Ĭ7

3 (?) = 6, we �rst process E10.

Let ConditionFlag[@2] = 5 0;B4 . For (@2, 8) ∈ P
1
Ĭ1Ĭ10 , we can �nd

ℎ′ = E7 such that (@2, 8) ∈ P
1
Ĭ1Ĭ7Ĭ10 and set ConditionFlag[@2] =

CAD4 . We �nally prune E10 and set � sour (�, E1) = {E7}.

Theorem 4.12. Algorithm 3 needs O(|� | log |� | + |� |2 |& |) time.

Proof. The �rst term is because we sort all the hoplinks. The

second term corresponds to the three for-loops. □

4.3.2 Preprocessing Pruned Separators. Algorithm 3 shows how to

prune a separator. However, it is ine�cient to preprocess� sour (�, E)

and �des (�, E) for all the possible separators since each child of

each branching node (with two or more children) can be a possi-

ble separator and the number of vertices |+ | can be large. It has

been shown that there are some important branching nodes in the

tree decomposition that would be selected as the LCA with high

probabilities [13] due to the tree structure. Therefore, we would

use a set ' of random queries with sources and destinations that

are randomly generated from+ to �nd the set of separators with

largest frequencies.

Algorithm 4 describes the procedure of preprocessing pruned

separators. In Lines 1–6, we �nd the corresponding separator used

for each random query. We use # (�) to denote the frequency of

3088

�3�1�4�3 �10�7�4 �10�8�7 �9 �10
�6�2�7�6 �8

LCA �7
�10

� ��1�71 = {(þ2, 6), (þ3, 16)}��7�22 = {(þ0, 3), (þ1, 3), (þ2, 8)}� ý�7ýþ� = 14
�

Pruned
Figure 5: PCSP’s query processing

� over the total number |' | and update it in Line 7. In Line 8,

we sort all the separators � in the decreasing order of # (�) to

get �1, �2, In Lines 9–11, we only consider the top- frequent

separators with largest # (�) such that the sum of their # (�) is

at least U , where U ∈ (0, 1) is a user parameter to control the ratio

of queries that we would like to cover. We then apply the pruning

rules (Algorithm 3) to obtain pruned separators � sour (�, E) and

�des (�, E) for all vertices.

Example 4.13. ConsiderU = 0.6 and' = {(E1, E2), (E3, E6), (E3, E5)}.

For the �rst two queries, they all use- (E4)\{E4} and# (- (E4)\{E4}) =
2
3 . For (E3, E5), they use - (E5)\{E5} and # (- (E5)\{E5}) =

1
3 . We

use the top-1 separator- (E4)\{E4} since # (- (E4)\{E4}) g 0.6. We

prune it by Algorithm 3 as stated before.

Theorem 4.14. Algorithm 4 takesO(|' |+� log�+ |+ | (|� | log |� |+

|� |2 |& |)) time andO(|+ | |� |) space, where� is atmost the treewidth

l and � is the number of nodes that has two or more child nodes.

Proof. Lines 1–7 uses O(|' |) time since in each iteration, we

can �nd the LCA in O(1) time [9], set � and update # (�) in O(1)

time. Lines 8 needs O(� log�) time to sort at most � separators

since only branching nodes can be the LCA. The two for-loops in

Lines 9–10 consider separators and at most |+ | descendants of

� . Line 11 follows Theorem 4.12. The space cost is because for the

top- separators, we store a �ag for each hoplink w.r.t. a vertex. □

5 QUERY PROCESSING

Algorithm 5 summarizes how to process a query (B, C) by our PCSP

index, which consists of PCSPs stored inP1
Ĭĭ andP2

ĭĬ for each node

- (E) and its ancestor - (F) and pruned separators � sour (�, B) and

�des (�, C) for separators. For ease of presentation, let� sour (�, B)

and �des (�, B) be � if we do not preprocess them. In Lines 1–5, if

- (B) is the descendant or ancestor of - (C), we directly return the

LCSP from P1
ĩĪ or P

2
ĩĪ as stated in Section 3. Otherwise, we �nd the

separator � with a smaller size from - (2ĩ)\{2ĩ } and - (2ĩ)\{2ĩ } in

Lines 6–7. In Line 8, we select the pruned separator with a smaller

size as the set of hoplinks. We �nd ?
ĥĦĪ

ℎ
by concatenating paths in

Lines 9–10 and return the LCSP among all ?
ĥĦĪ

ℎ
in Line 11.

Example 5.1. Back to Example 2.9, for the query (E1, E2), the LCA

of - (E1) and - (E2) is - (E7). Then, - (2ĩ) = - (E4) and - (2Ī) =

- (E6) with equal sizes. The procedure is also shown in Figure 5. we

set �>?;8=:B = � sour (- (E4)\{E4}, E1) = {E7}. For ℎ = E7, we fetch

P1
Ĭ1Ĭ7 = {(@2, 6), (@3, 16)} and P

2
Ĭ7Ĭ2 = {(@0, 3), (@1, 3), (@2, 8)} from

Algorithm 5: Query Processing

input :A query (B, C), PCSPs, and pruned separators

output :LCSP ?ĥĦĪ

1 - (2) ← the LCA of - (B) and - (C)

2 if - (2) = - (C) or - (2)=X(s) then

3 return ?
1ħ
ĩĪ in P1

ĩĪ with @ ∈ � or ?
2ħ
ĩĪ in P2

ĩĪ with @ = @0

4 Let 2ĩ and 2Ī be the two child nodes of - (2) in the two

branches containing B and C , respectively

5 � ← argminĄ ′∈{Ĕ (ęĩ)\{ęĩ },Ĕ (ęĪ)\{ęĪ }} |�
′ |

6 �>?;8=:B ← argminĄ ′∈{Ą sour (Ą,ĩ),Ą des (Ą,Ī) } |�
′ |

7 foreach ℎ ∈ �>?;8=:B do

8 ?
ĥĦĪ

ℎ
← the shortest path in

{?
1ħ

ĩℎ
· ?

2ħ

ℎĪ
|@ ∈ &, (@, ?

1ħ

ĩℎ
) ∈ P1

ĩℎ
, (@, ?

2ħ

ℎĪ
) ∈ P2

ℎĪ
}

9 return ?ĥĦĪ ← argminℎ∈ĄĥĦĢğĤġĩ 3 (?
ĥĦĪ

ℎ
)

the index. We obtain 3 (?
ĥĦĪ
Ĭ7) = 14 by concatenating (@2, 6) and

(@2, 8) and �nally return ?ĥĦĪ = ?
ĥĦĪ
Ĭ7 with 3 (?ĥĦĪ) = 14.

Theorem 5.2. Algorithm 5’s time complexity is O(|& |l).

Proof. Note that the LCSPs in Lines 3 and 5 can be preprocessed

in the index and given in O(1) time in query processing. Therefore,

the query time mainly depends on Lines 9–10 with O(|& | |� |) time

(by the hashing technique), which is bounded by O(|& |l). □

Theorem 5.3. Algorithm 5 correctly returns the LCSP ?ĥĦĪ .

Proof. If - (C) (or - (B)) is an ancestor of - (B) (or - (C)), we

correctly �nd it since 1ħ0,ħĜ (; (?
ĥĦĪ)) = 1 for one @Ĝ ∈ � and it

must be in P1
ĩĪ or P

2
ĩĪ by de�nitions. Otherwise, we can �nd a

separator � , and ?ĥĦĪ must traverse one ℎ ∈ � . However, since we

use the pruned separator as �>?;8=:B , ℎ may not exist in �>?;8=:B .

By Lemma 4.10, we know that ?ĥĦĪ also traverses one ℎ′. If ℎ′ is

not in �>?;8=:B , we could apply Lemma 4.10 repeatedly until one

ℎ′′ that is in �>?;8=:B and considered by Lines 10–11. Consider

the B-ℎ′′ subpath ?1 and ℎ
′′-C subpath ?2 of ?

ĥĦĪ , we can �nd the

only state @ such that 1ħ0,ħ (; (?1)) = 1 and 1ħ,ħĜ (; (?2)) = 1 for

@Ĝ ∈ � . Since ?1 and ?2 must be the shortest paths w.r.t. the state @

(otherwise we can get a contradiction), ?1 and ?2 are in P
1
ĩℎ

and

P2
ℎĪ
, respectively. We must consider ?ĥĦĪ in Line 11. □

Path Retrieval. To save space cost, our PCSP index only stores

�ve values for each shortest path ? : its distance 3 (?), source, desti-

nation, and a pair of states (@, @′) such that 1ħ,ħ′ (; (?)) = 1. They

are su�cient for all the algorithms. Finally, we also get these �ve

values of the LCSP ?ĥĦĪ . To retrieve ?ĥĦĪ as a sequence of vertices,

we store two more values Eģ (?) and @ģ (?) for each shortest path

? ∈ PĬĭ ,PĭĬ to be the middle vertex F in Lines 19–20 of Algo-

rithm 2 and the middle state @′1 in Lines 11–12 of Algorithm 1 used

to link ? , respectively. For each edge 4 = (D, E), as a path of a single

edge, we set the two values for ïD, Eð and ïE,Dð as null. Each time we

call PCSPJoin, in Line 5 of updating a path ? concatenated by two

paths ?1 and ?2, we update E
ģ (?) and @ģ (?) accordingly. Finally,

when retrieving the LCSP ?
ĥĦĪ
ĩĪ , we can unfold this B-C path ?ĥĦĪ

3089

Table 2: Datasets

Dataset Region |+ | |� | Storage

NY New York City 264,346 733,846 17.9 MB

BAY San Francisco Bay 321,270 800,172 19.6 MB

COL Colorado 435,666 1,057,066 26.4 MB

FLA Florida 1,070,376 2,712,798 68.5 MB

by adding Eģ (?ĥĦĪ) in the middle (i.e., (B, Eģ (?ĥĦĪ), C)) and recur-

sively unfold the B-Eģ (?ĥĦĪ) path and Eģ (?ĥĦĪ)-C path by using

the middle vertex and state until the middle vertex is null.

Directed Graphs.We still build the tree decomposition by re-

garding each directed edge as undirected, which can only increase

the connectivity and make all results about separators hold [13].

However, in Algorithm 2, we only maintain % (Ĭ,ī) for each directed

edge 4 = (E,D) (instead of building % (Ĭ,ī) and % (ī,Ĭ) in Lines 11–12

of Algorithm 2) and concatenate two paths by considering their

directions in PCSPJoin. We use the same Lines 16–20 of Algorithm 2

to generate PĬĭ and PĭĬ for E-F andF-E PCSPs, respectively, and

then extract the two set P1
Ĭĭ and P2

ĭĬ from them. The separator

pruning and query processing algorithms remain the same because

all these sets PĬĭ ,PĭĬ,P
1
Ĭĭ ,P

2
ĭĬ use directed edges.

6 EXPERIMENTS

6.1 Experimental Setup

We conducted all experiments on a machine with two Intel Xeon

E5-2650 v4 2.2 GHz processors and 512 GB RAM running CentOS

Linux distribution. All algorithms were implemented in C++ and

compiled with GNU C++ compiler.

Datasets. Following existing work [43], we mainly used four

publicly available real road networks from DIMACS [1] with their

statistics shown in Table 2. For each edge (also a road segment), its

spatial distance (in meters) and road category were used as the edge

weight and label in our experiments, respectively. The road category

code has two digits, where the �rst one denotes four main road

types: 1) A, Primary Highway With Limited Access; 2) B, Primary

Road Without Limited Access; 3) C, Secondary and Connecting

Road; and 4) D, Local, Neighborhood, and Rural Road, and the

second digit ranging from 1 to 5 represents a �ner classi�cation of

roads. For example, the code “D1” denotes a local road, which is

the most frequent edge label in any network.

Algorithms. We compared the following three LCSP solutions:

• Dijkstra [7]: a Dijkstra-based algorithm that searches the

network by storing distances for vertex-state pairs.

• LSD [43]: the state-of-the-art index that searches the ver-

tices in the tree decomposition and maintains the shortest

distances w.r.t. di�erent label sets.

• PCSP: our proposed index based on e�cient table lookups

and separator pruning.

For PCSP, we set the parameter |' | = 1,000,000 and U = 0.9 in

Algorithm 4 which makes the pruned separators cover around 90%

of the random queries in '. Note that PCSP is built based on all

possible queries that satisfy the default language !. We studied the

e�ect of U and justi�ed this setting in Section 6.2. For the e�ciency

of LSD, we implemented set operations by bit operations.

6.2 Query E�ciency

Exp-1: Query e�ciency when varying the query distance.

This experiment aims to evaluate algorithms’ query e�ciency by

varying the shortest distance between sources and destinations of

queries. Following [43], for each network, we generated 10 query

sets with increasing query distances. Speci�cally, we �rst found

the maximum distance ;ģėĮ between any two vertices in a network

and set a variable G = (;ģėĮ/;ģğĤ)
1/10 where ;ģğĤ = 1, 000, e.g.,

;ģėĮ = 154, 745 and G = 1.6556 in NY. We then generated 10 query

sets �1, �2, . . . , �10, where the query distances in �ğ lie in (;ģğĤ ×

Gğ−1, ;ģğĤ ×G
ğ] for 1 f 8 f 10. Following [43], to compare LSD that

only supports Kleene languages, we set the default language ! =

(∪ė∈Σ100)
∗ where Σ10 is the set of the top-10 frequent labels. Here,

the frequency refers to number of edges in all the road networks

having this label. We report the average query time in Figure 6.

For each network, it can be observed that Dijkstra and LSD tend

to have a larger query time as the query distance increases. This

is because they are all search-based solutions that search vertices

from the source and destination to update distances recursively. As

the query distance becomes larger, they all need to search more

vertices. However, PCSP’s query time is independent of the query

distance since it preprocesses partial path answers in the hash

tables and performs table lookups when checking very few related

hoplinks. The query time is basically stable since the number of

related hoplinks does not increase. Moreover, PCSP is the fastest

one among the three algorithms. It can answer each LCSP query

in around 100 microseconds and outperform LSD by almost two

orders of magnitude on �10 of COL.

Exp-2: Query e�ciency when varying the number of al-

lowed labels. We used �10 as the default query set because the

query distances of �10 are longer than those of the others, which

implies that �10 is the hardest set and covers the whole range of

the network. We tested the e�ect of the number of allowed labels

in the Kleene languages by setting ! = (∪ė∈Σġ0)
∗, where Σġ is

the set of the top-: frequent labels for : = 1, 2, . . . , 10. Figure 7

presents the average query time. It can be seen that all algorithms

are insensitive to the number of allowed labels. The main reason is

that we use the same query set with the same query distance. The

label-constrained shortest distances for most queries do not vary

much with more allowed labels. The search space of Dijkstra and

LSD remains unchanged. For PCSP, it only uses a small number of

hoplinks, which is independent of the number of allowed labels.

We can draw a similar conclusion about the superiority of PCSP.

Exp-3: Query e�ciencywhen varying the number of states.

Since the number of states |& | is an important factor in query pro-

cessing, we also studied its e�ect by considering the linear regular

language in the form 0∗10
∗
2 . . ., which is also widely used [6, 37].

It has a useful property that the number of states is equal to the

number of used labels (or the half length of the regular expression),

which we vary from 1 to 10 by using the top-10 frequent labels in-

crementally. We still use �10 as the query set and show the average

processing time in Figure 8. We omit LSD here because LSD cannot

handle linear regular languages.

It can be discovered that the query times of Dijkstra and PCSP are

irrelevant to the number of states. For Dijkstra, the query distance

is the dominant factor in query e�ciency, but it is the same for all

3090

10
-1

10
0

10
1

10
2

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Q
u

e
ry

 t
im

e
 (

m
s
)

D
i

Dijkstra
LSD

PCSP

(a) NY

10
-1

10
0

10
1

10
2

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Q
u

e
ry

 t
im

e
 (

m
s
)

D
i

Dijkstra
LSD

PCSP

(b) BAY

10
-1

10
0

10
1

10
2

10
3

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Q
u

e
ry

 t
im

e
 (

m
s
)

D
i

Dijkstra
LSD

PCSP

(c) COL

10
-1

10
0

10
1

10
2

10
3

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Q
u

e
ry

 t
im

e
 (

m
s
)

D
i

Dijkstra
LSD

PCSP

(d) FLA

Figure 6: Query processing time (ms) when varying the query distance �

10
-2

10
-1

10
0

10
1

10
2

10
3

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Σ10

Q
u

e
ry

 t
im

e
 (

m
s
)

Σk

Dijkstra
LSD

PCSP

(a) NY

10
-2

10
-1

10
0

10
1

10
2

10
3

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Σ10

Q
u

e
ry

 t
im

e
 (

m
s
)

Σk

Dijkstra
LSD

PCSP

(b) BAY

10
-1

10
0

10
1

10
2

10
3

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Σ10

Q
u

e
ry

 t
im

e
 (

m
s
)

Σk

Dijkstra
LSD

PCSP

(c) COL

10
-1

10
0

10
1

10
2

10
3

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Σ10

Q
u

e
ry

 t
im

e
 (

m
s
)

Σk

Dijkstra
LSD

PCSP

(d) FLA

Figure 7: Query processing time (ms) when varying the number of allowed labels |Σý |

10
-2

10
-1

10
0

10
1

10
2

10
3

1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 t
im

e
 (

m
s
)

|Q|

Dijkstra
PCSP

(a) NY

10
-2

10
-1

10
0

10
1

10
2

10
3

1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 t
im

e
 (

m
s
)

|Q|

Dijkstra
PCSP

(b) BAY

10
-1

10
0

10
1

10
2

10
3

10
4

1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 t
im

e
 (

m
s
)

|Q|

Dijkstra
PCSP

(c) COL

10
-1

10
0

10
1

10
2

10
3

10
4

1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 t
im

e
 (

m
s
)

|Q|

Dijkstra
PCSP

(d) FLA

Figure 8: Query processing time (ms) when varying the number of states |& |

10
-2

10
-1

10
0

10
1

10
2

10
3

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Q
u

e
ry

 t
im

e
 (

m
s
)

D
i

Dijkstra
PCSP

(a) Highway usage

10
-2

10
-1

10
0

10
1

10
2

10
3

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Q
u

e
ry

 t
im

e
 (

m
s
)

D
i

Dijkstra
PCSP

(b) Regional transfer

Figure 9: Complex languages on NY

settings since we all use �10. For PCSP, the number of hoplinks

mainly a�ects its query time. Similarly, it is the same since we all

use �10. PCSP still runs fast within 100 microseconds.

Exp-4: Query e�ciency on complex languages. Following

existing work [5], we also evaluated the performance for some com-

plex languages. Let the label set ΣA = {A1,A2,A3,A4,A5} and

de�ne ΣB , ΣC , and ΣD similarly. We consider two languages [5]: 1)

highway usage, (∪ė∈ΣC∪ΣD0)
∗ (∪ė∈ΣA∪ΣB0)

+ (∪ė∈ΣC∪ΣD0)
∗ (since

it only allows us to use highways and primary roads in the mid-

dle) and 2) regional transfer, (∪ė∈ΣB∪ΣC∪ΣD0)
∗ (since highways

of type A are forbidden). The results on query sets of increasing

 40

 45

 50

 55

 60

 65

 70

 75

 80

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Σ10

|H
o

p
lin

k
s
|

Σk

PCSP−w/o Pruning
PCSP−α=0.8

PCSP−α=0.85
PCSP−α=0.9

(a) Varying |Σġ |

 40

 45

 50

 55

 60

 65

 70

 75

 80

1 2 3 4 5 6 7 8 9 10

|H
o

p
lin

k
s
|

|Q|

PCSP−w/o Pruning
PCSP−α=0.8

PCSP−α=0.85
PCSP−α=0.9

(b) Varying |č |

Figure 10: Ablation study on NY

query distances are reported in Figure 9. We have similar �ndings

to previous ones. Dijkstra’s query time increases since the distance

increases due to larger search space, whereas PCSP is still e�cient

with stable and small query processing times.

Exp-5: Ablation study of separator pruning. We studied the

e�ect of our proposed separator pruning technique by considering

four variants, called “PCSP-w/o Pruning”, “PCSP-U=0.8”, “PCSP-

U=0.85”, “PCSP-U=0.9”, where the �rst one does not utilize the

pruning technique, and the later three preprocess Top- separators

by varying U in {0.8, 0.85, 0.9} in Algorithm 4. The average number

of used hoplinks per query for �10 is shown in Figure 10. Note

3091

Table 3: Index construction cost

Data Alg. Ĉ , ā Index Time Pruning Time Index Size

NY
LSD

148, 330
37s - 34.2 MB

PCSP 87s 13s 2.3 GB

BAY
LSD

100, 238
14s - 27.8 MB

PCSP 70s 8s 2.0 GB

COL
LSD

221, 400
24s - 40.2 MB

PCSP 173s 27s 4.8 GB

FLA
LSD

149, 399
34s - 109.0 MB

PCSP 410s 30s 10.3 GB

EST
LSD

222, 1113
259s - 327.2 MB

PCSP 1,917s 438s 76.8 GB

WST
LSD

257, 1094
344s - 547.0 MB

PCSP 3,552s 571s 130.5 GB

that as Ă increases, ć increases since we need to preprocess more

separators with ć largest Ċ (Ą) to cover a ratio Ă of the random

queries in Algorithm 4.

We can �nd that the number of hoplinks for PCSP-w/o Pruning

is always around 65 because we use the same default query set

Ā10. In Figure 10a, for Σ5, the number of hoplinks is reduced by

15 and 20 when we consider Ă = 0.8 and Ă = 0.85, respectively.

The reason is that more preprocessed separators would make more

queries available for pruning, hence a reduction in the number of

used hoplinks. However, using Ă = 0.9 further does not reduce

the number of hoplinks compared with using Ă = 0.85. Their lines

overlap with each other. This is because the 1000 queries in Ā10 are

basically all covered by the 1,000,000 random queries. In Figure 10b,

where we vary |č |, we can obtain similar �ndings. In practice, using

Ă = 0.9 to preprocess top-ć separators would cover most queries,

and using a larger Ă would increase preprocessing costs but gain

little improvement over query e�ciency.

6.3 Index Cost

Index construction cost.We summarized the index construc-

tion costs of PCSP and LSD for the default language in Table 3. Note

that Dijkstra builds no index. We also evaluated index construc-

tion costs on larger networks of Eastern USA (“EST” for short with

3,598,623 vertices and 8,778,114 edges) andWestern USA (“WST” for

short with 6,262,104 vertices and 15,248,146 edges) from DIMACS.

The third and fourth columns show the treewidth Ĉ and treeheight

ā of the tree decomposition, respectively. They are the same for LSD

and PCSP for all data since we use the same tree decomposition. For

PCSP, we separately report the indexing (Algorithm 2) and pruning

(Algorithm 4) time costs in the �fth and sixth columns, respectively.

The index sizes are given in the last column.

For high query e�ciency, PCSP consumes much space, but it

achieves orders of magnitude improvement over the query e�-

ciency, and it can handle more complex languages. Moreover, it

is common that the index cost is large for shortest path problems

with complex constraints [32, 33, 41]. The indexing cost can be

readily acceptable for modern machines with powerful computa-

tional capability and large memory space. Furthermore, the source

and destination of each query are usually located within the same

city and not far from each other in most scenarios.

 300

 320

 340

 360

 380

 400

 420

 440

1 5 10 15 25
 2000

 2050

 2100

 2150

 2200

 2250

 2300

 2350

 2400

T
im

e
 c

o
s
t

(s
)

In
d

e
x
 s

iz
e

 (
M

B
)

|Q|

Indexing Time
Index Size

(a) Indexing cost (Alg. 2)

 0

 50

 100

 150

 200

 250

 300

0.75 0.8 0.85 0.9 0.95
 0

 20

 40

 60

 80

 100

 120

 140

T
im

e
 c

o
s
t

(s
)

P
ru

n
e

d
 s

e
p

a
ra

to
r

s
iz

e
 (

M
B

)

α

Pruning Time
Pruned Separator Size

(b) Pruning cost (Alg. 4)

Figure 11: PCSP’s index cost on NY

Figure 12: Case study on NY

Exp-6: Indexing cost when varying the number of states.

Since the number of states |č | is an important factor in both the

time and space complexities, we explored its e�ect on the indexing

cost (Algorithm 2) by using the linear regular languages introduced

before in Figure 11a with ć = 10. Note that the indexing time and

index size follow the left and right y-axes, respectively. It can be

seen that both the indexing time and size become larger as |č |

increases. Their results are consistent with complexities. When |č |

reaches 10, the index time and size do not increase because the

top-10 frequent labels cover nearly 99% of labels, as stated before.

Since all labels are used sequentially in the linear regular languages,

the remaining 1% would make little di�erence in the index cost.

Exp-7: Pruning cost when varying the number of pruned

separators. We reported the pruning cost (Algorithm 4) when

varying the ratio Ă ∈ (0.75, 1) in Figure 11b with |č | = 10. Note

that the pruning time and pruned separator size follow the left

and right y-axes, respectively. As Ă increase, we need to process

more separators (the top-ć separators with ć largest frequencies)

to ensure that the sum of their frequencies should be larger than the

ratio Ă . It can be deducted from the complexities that the pruning

time and pruned separator size increase as ć increases. Besides, we

�nd that the pruned separator size is much smaller than the index

size in Figure 11a since we only need to store a Boolean �ag for

each hoplink in each pruned separator.

Exp-8: Case study. Figure 12 demonstrates a case study of LCSP

queries in New York. We use blue and red lines to represent edges

with labels in ΣA ∪ ΣB (for primary highways) and ΣC ∪ ΣD

(for local roads), respectively. The top �gure shows the shortest

path returned by LSD when all labels are allowed, whereas the

bottom one presents the LCSP (with the same ĩ and Ī) returned by

PCSP under the regular language constraint of highway usage, i.e.,

3092

 400

 410

 420

 430

 440

 450

Σ12 Σ14 Σ16 Σ18 Σ20

 2300

 2320

 2340

 2360

 2380

 2400

T
im

e
 c

o
s
t

(s
)

In
d

e
x
 s

iz
e

 (
M

B
)

Σk

Indexing Time
Index Size

(a) Indexing cost (Alg. 2)

 160

 180

 200

 220

 240

 260

Σ12 Σ14 Σ16 Σ18 Σ20

 80

 90

 100

 110

 120

 130

T
im

e
 c

o
s
t

(s
)

P
ru

n
e

d
 s

e
p

a
ra

to
r

s
iz

e
 (

M
B

)

Σk

Pruning Time
Pruned Separator Size

(b) Pruning cost (Alg. 4)

Figure 13: PCSP’s index cost for more labels on NY

(∪ė∈ΣC∪ΣDė)
∗ (∪ė∈ΣA∪ΣBė)

+ (∪ė∈ΣC∪ΣDė)
∗, as introduced before.

We can observe that the path returned by LSD uses an inconvenient

shortcut between two parts of highways, which is unrealistic since

highways can charge drivers a toll twice. The LCSP returned by

PCSP can overcome this weakness by specifying a regular language

to express the routing requirement of using highways consistently.

Speci�cally, we do not allow local roads among highways since we

remove the labels of ΣC ∪ ΣD in the middle part (∪ė∈ΣA∪ΣBė)
+.

Exp-9: Index cost when varying the number of labels. Since

we evaluated the index cost for the top-10 frequent labels Σ10 pre-

viously by default, we also studied the e�ect of more labels by

varying ġ in {12, 14, 16, 18, 20} in Ĉ = (∪ė∈Σġė)
∗ in Figure 13. Note

that Σ20 = Σ uses all labels. It can be observed that both the in-

dexing cost (Algorithm 2) and pruning cost (Algorithm 4) are not

a�ected by the number of labels. This is mainly because all the

factors in the time and space complexities of Algorithms 2 and 4

(Theorems 4.9 and 4.14, respectively) all remain the same.

7 RELATED WORK

7.1 Shortest Path

Without additional constraints, the classical shortest path prob-

lem has been extensively studied since Dijkstra’s algorithm [18].

Early index-free solutions included bidirectional search [14] and

A* search [23], which mainly reduce the search space in Dijkstra’s

framework (by starting two simultaneous searches from the source

and destination and utilizing goal-directed priority weights, respec-

tively). However, they run slowly in large road networks because

they need to update many distances from scratch. Subsequent re-

search focused on designing indexes for higher e�ciency, such as

ALT [21], Arc Flags [25], Transit Nodes [8], and Reach [22]. State-

of-the-art indexes could be divided into two categories: 1) pruning

Dijkstra’s search space by abstracting detailed paths in di�erent

hierarchies [12, 17, 20, 36, 39, 42] and 2) looking up a small number

of relevant paths preprocessed in hash tables [4, 13, 28–30, 35, 44–

47]. Those of the former category incur less index cost (in terms

of time and space) but have longer query processing times than

those of the latter. Among those of the latter one based on table

lookups, [35] proposed H2H to �rst use the tree decomposition in

road networks due to its small treewidth, which allows us to focus

on a small separator set of hoplinks, as introduced in Section 4.1.

Although we also adopted the tree decomposition to �nd this small

separator to improve query e�ciency, H2H is signi�cantly di�er-

ent from our PCSP. In the unconstrained shortest path problem, it

is clear that the index should store only one single shortest path

between each vertex Ĭ ∈ Ē and each hoplink in the separator. For

LCSP, especially for the more complicated regular languages, it is

unclear what kinds of paths could be preprocessed e�ciently in the

index and further used to answer queries quickly by table lookups.

Our proposed PCSP clearly de�nes such paths and gives a query

procedure that utilizes them properly.

7.2 Label-Constrained Shortest Path

Given a regular language, the problem of �nding label-constrained

paths in graph databases were �rst proposed by [34]. The hardness

of di�erent problem variants were analyzed in [7]. It also proposed

the �rst polynomial LCSP algorithm for regular languages, which

mainly runs Dijkstra’s search on a composite graph where each

vertex is now a vertex-state pair, and each edge exists only when

there are connections on both the network and NFA. An imple-

mentation of this algorithm was later evaluated for linear regular

languages [6]. It was also shown that the composite graph does not

have to be built explicitly [40]. Note that they adopted NFA for its

simple implementation, we used a minimized DFA that usually has

fewer states [26]. Later, many successful techniques for shortest

path queries were shown to be useful for LCSP. Their extensions

for LCSP were based on bidirectional and A* search [5], Transit

Nodes [15], Contraction Hierarchies [16, 37], ALT [27]. There were

also some approximate LCSP solutions [11, 31] and work for dy-

namic index maintenance [19, 24, 37]. They were beaten by later in-

dexes in terms of query e�ciency. [24] proposed the Edge-Disjoint

Partitioning (EDP) index for Kleene languages, which links paths

from some partitions of the network. The state-of-the-art index

LSD [43] outperforms EDP by orders of magnitude. It mainly uses

the tree decomposition to reduce the search space. It recursively

updates the distances from ĩ (or Ī) to vertices in the tree nodes along

the simple tree path between ĩ (or Ī) to the LCA node. Note that

though LSD is also based on the tree decomposition, our PCSP is

entirely di�erent since we directly looks up the hash tables for the

shortest distances to provide fast query processing.. LSD’s query

time complexity is O(āĈĀ), where Ā is the number of shortest

distances maintained in each node, whereas ours is O(|č |Ĉ) with

|č | f Ā . Our proposed PCSP could run faster than LSD by orders

of magnitude and also support the more general regular languages.

8 CONCLUSION

In this work, we present PCSP, a practical index that answers LCSP

queries e�ciently in road networks with label constraints expressed

by regular languages. PCSP mainly preprocesses two types of short-

est paths whose labels can be accepted by the DFA from an initial

state to an intermediate state and from an intermediate state to a

�nal state. In this way, we can process each query by concatenating

two PCSPs. We also propose a pruning technique that can prune

the set of related hoplinks further. Extensive experiments on real

networks show that PCSP answers each query within 100 microsec-

onds. For future work, we may explore how to e�ciently maintain

the index to dynamically update edge labels and distances.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their constructive

comments on this paper. This work is supported by WEB24EG01-H.

3093

REFERENCES
[1] 2010. 9th DIMACS Implementation Challenge. http://www.diag.uniroma1.it/

challenge9/download.shtml.
[2] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. 1974. The Design and

Analysis of Computer Algorithms. Addison-Wesley.
[3] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. 1986. Compilers: Principles,

Techniques, and Tools. Addison-Wesley.
[4] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata. 2014.

Fast Shortest-path Distance Queries on Road Networks by Pruned Highway
Labeling. In ALENEX. 147–154.

[5] Christopher L. Barrett, Keith R. Bisset, Martin Holzer, Goran Konjevod, Madhav V.
Marathe, and Dorothea Wagner. 2008. Engineering Label-Constrained Shortest-
Path Algorithms. In AAIM. 27–37.

[6] Christopher L. Barrett, Keith R. Bisset, Riko Jacob, Goran Konjevod, and Mad-
hav V. Marathe. 2002. Classical and Contemporary Shortest Path Problems in
Road Networks: Implementation and Experimental Analysis of the TRANSIMS
Router. In ESA. 126–138.

[7] Christopher L. Barrett, Riko Jacob, and Madhav V. Marathe. 2000. Formal-
Language-Constrained Path Problems. SIAM J. Comput. 30, 3 (2000), 809–837.

[8] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. 2007. Fast
routing in road networks with transit nodes. Science 316, 5824 (2007), 566–566.

[9] Michael A. Bender and Martin Farach-Colton. 2000. The LCA Problem Revisited.
In LATIN. 88–94.

[10] Hans L. Bodlaender and Arie M. C. A. Koster. 2010. Treewidth computations I.
Upper bounds. Inf. Comput. 208, 3 (2010), 259–275.

[11] Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Antti Ukkonen. 2014.
Distance oracles in edge-labeled graphs. In EDBT. 547–558.

[12] Zi Chen, Bo Feng, Long Yuan, Xuemin Lin, and LipingWang. 2023. Fully Dynamic
Contraction Hierarchies with Label Restrictions on Road Networks. Data Sci.
Eng. 8, 3 (2023), 263–278.

[13] Zitong Chen, Ada Wai-Chee Fu, Minhao Jiang, Eric Lo, and Pengfei Zhang.
2021. P2H: E�cient Distance Querying on Road Networks by Projected Vertex
Separators. In SIGMOD. 313–325.

[14] George Dantzig. 1963. Linear programming and extensions. Princeton university
press.

[15] Daniel Delling, Thomas Pajor, and Dorothea Wagner. 2009. Accelerating Multi-
modal Route Planning by Access-Nodes. In ESA. 587–598.

[16] Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. 2012. User-Constrained
Multi-Modal Route Planning. In ALENEX. 118–129.

[17] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. 2014. Customizable Contrac-
tion Hierarchies. In SEA. 271–282.

[18] Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs.
Numer. Math. 1 (1959), 269–271.

[19] Bo Feng, Zi Chen, Long Yuan, Xuemin Lin, and Liping Wang. 2023. Contraction
Hierarchies with Label Restrictions Maintenance in Dynamic Road Networks. In
DASFAA. 269–285.

[20] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. 2012.
Exact Routing in Large Road Networks Using Contraction Hierarchies. Transp.
Sci. 46, 3 (2012), 388–404.

[21] Andrew V. Goldberg and Chris Harrelson. 2005. Computing the shortest path: A
search meets graph theory. In SODA. 156–165.

[22] Ronald J. Gutman. 2004. Reach-Based Routing: A New Approach to Shortest
Path Algorithms Optimized for Road Networks. In ALENEX/ANALC. 100–111.

[23] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern.
4, 2 (1968), 100–107.

[24] Mohamed S. Hassan, Walid G. Aref, and Ahmed M. Aly. 2016. Graph Indexing
for Shortest-Path Finding over Dynamic Sub-Graphs. In SIGMOD. 1183–1197.

[25] Moritz Hilger, Ekkehard Köhler, Rolf H Möhring, and Heiko Schilling. 2009.
Fast point-to-point shortest path computations with arc-�ags. The Shortest Path
Problem: Ninth DIMACS Implementation Challenge 74 (2009), 41–72.

[26] John Hopcroft. 1971. An n log n algorithm for minimizing states in a �nite
automaton. In Theory of Machines and Computations. 189–196.

[27] Dominik Kirchler, Leo Liberti, Thomas Pajor, and Roberto Wol�er Calvo. 2011.
UniALT for regular language contrained shortest paths on a multi-modal trans-
portation network. In ATMOS. 64–75.

[28] Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2019.
Scaling Distance Labeling on Small-World Networks. In SIGMOD. 64–75.

[29] Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2020.
Scaling Up Distance Labeling on Graphs with Core-Periphery Properties. In
SIGMOD. 1367–1381.

[30] Ye Li, Leong Hou U, Man Lung Yiu, and Ngai Meng Kou. 2017. An Experimental
Study on Hub Labeling based Shortest Path Algorithms. PVLDB 11, 4 (2017),
445–457.

[31] Ankita Likhyani and Srikanta J. Bedathur. 2013. Label constrained shortest path
estimation. In CIKM. 1177–1180.

[32] Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, Pingfu Chao, and Xiaofang Zhou.
2021. E�cient Constrained Shortest Path Query Answering with Forest Hop
Labeling. In ICDE. 1763–1774.

[33] Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2022. FHL-
Cube: Multi-Constraint Shortest Path Querying with Flexible Combination of
Constraints. PVLDB 15, 11 (2022), 3112–3125.

[34] Alberto O. Mendelzon and Peter T. Wood. 1989. Finding Regular Simple Paths in
Graph Databases. In VLDB. 185–193.

[35] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. 2018.
When Hierarchy Meets 2-Hop-Labeling: E�cient Shortest Distance Queries on
Road Networks. In SIGMOD. 709–724.

[36] Dian Ouyang, Long Yuan, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.
2020. E�cient Shortest Path Index Maintenance on Dynamic Road Networks
with Theoretical Guarantees. PVLDB 13, 5 (2020), 602–615.

[37] Michael N. Rice and Vassilis J. Tsotras. 2010. Graph Indexing of Road Networks
for Shortest Path Queries with Label Restrictions. PVLDB 4, 2 (2010), 69–80.

[38] Neil Robertson and Paul D. Seymour. 1984. Graph minors. III. Planar tree-width.
J. Comb. Theory, Ser. B 36, 1 (1984), 49–64.

[39] Peter Sanders and Dominik Schultes. 2012. Engineering highway hierarchies.
ACM J. Exp. Algorithmics 17, 1 (2012).

[40] Hanif D. Sherali, Chawalit Jeenanunta, and Antoine G. Hobeika. 2006. The
approach-dependent, time-dependent, label-constrained shortest path problem.
Networks 48, 2 (2006), 57–67.

[41] Libin Wang and Raymond Chi-Wing Wong. 2023. QHL: A Fast Algorithm for
Exact Constrained Shortest Path Search on Road Networks. Proc. ACM Manag.
Data 1, 2 (2023), 155:1–155:25.

[42] Victor Junqiu Wei, Raymond Chi-Wing Wong, and Cheng Long. 2020.
Architecture-Intact Oracle for Fastest Path and Time Queries on Dynamic Spatial
Networks. In SIGMOD. 1841–1856.

[43] Junhua Zhang, Long Yuan, Wentao Li, Lu Qin, and Ying Zhang. 2021. E�cient
Label-Constrained Shortest Path Queries on Road Networks: A Tree Decomposi-
tion Approach. PVLDB 15, 3 (2021), 686–698.

[44] Mengxuan Zhang, Lei Li, Wen Hua, Rui Mao, Pingfu Chao, and Xiaofang Zhou.
2021. Dynamic Hub Labeling for Road Networks. In ICDE. 336–347.

[45] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2021. E�cient 2-Hop
Labeling Maintenance in Dynamic Small-World Networks. In ICDE. 133–144.

[46] Yikai Zhang and Je�rey Xu Yu. 2022. Relative Subboundedness of Contraction
Hierarchy and Hierarchical 2-Hop Index in Dynamic Road Networks. In SIGMOD.
1992–2005.

[47] Bolong Zheng, Yong Ma, Jingyi Wan, Yongyong Gao, Kai Huang, Xiaofang Zhou,
and Christian S. Jensen. 2023. Reinforcement Learning based Tree Decomposition
for Distance Querying in Road Networks. In ICDE. 1678–1690.

3094

http://www.diag.uniroma1.it/challenge9/download.shtml
http://www.diag.uniroma1.it/challenge9/download.shtml

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 Deterministic Finite Automatons (DFA)

	3 Overview
	4 Index Construction
	4.1 Tree Decomposition
	4.2 Partially Constrained Shortest Path
	4.3 Pruned Separator

	5 Query Processing
	6 Experiments
	6.1 Experimental Setup
	6.2 Query Efficiency
	6.3 Index Cost

	7 Related Work
	7.1 Shortest Path
	7.2 Label-Constrained Shortest Path

	8 Conclusion
	Acknowledgments
	References

