
Efficient Algorithms for Density Decomposition on Large Static
and Dynamic Graphs

Yalong Zhang

Beijing Institute of Technology

Beijing, China

yalong-zhang@qq.com

Rong-Hua Li

Beijing Institute of Technology

Beijing, China

lironghuabit@126.com

Qi Zhang

Beijing Institute of Technology

Beijing, China

qizhangcs@bit.edu.cn

Hongchao Qin

Beijing Institute of Technology

Beijing, China

qhc.neu@gmail.com

Guoren Wang

Beijing Institute of Technology

Beijing, China

wanggrbit@126.com

ABSTRACT
Locally-densest subgraph (LDS) decomposition is a fundamental

decomposition in graph analysis that finds numerous applications

in various domains, including community detection, fraud detec-

tion, graph querying, and graph visualization. However, the LDS

decomposition is computationally challenging for both static and

dynamic graphs. Furthermore, the LDS decomposition often pro-

duces an excessive number of dense subgraph layers, leading to the

unnecessary partition of tightly-connected subgraphs. To address

these limitations, an alternative concept called density decomposi-

tion was proposed, which can generate a more reasonable number

of dense subgraph layers. However, the state-of-the-art algorithm

for density decomposition requires 𝑂 (𝑚2) time (𝑚 is the number

of edges of the graph), which is very costly for large graphs. In this

paper, we conduct an in-depth investigation of density decompo-

sition and propose efficient algorithms for computing it on both

static and dynamic graphs. First, we establish a novel relationship

between density decomposition and LDS decomposition. Second,

based on these relationships, we propose novel algorithms to com-

pute the density decomposition on static graphs with carefully

designed network flow and divide-and-conquer techniques. Our

proposed static algorithms significantly reduce the time complexity

to 𝑂 (𝑚3/2
log 𝑝) (𝑝 is often a very small constant in real-world

graphs). Third, for dynamic graphs, we develop three dynamic algo-

rithms with efficient𝑂 (𝑚) time complexity. Extensive experiments

on several large real-world graphs demonstrate the high efficiency,

scalability, and effectiveness of the proposed algorithms.

PVLDB Reference Format:
Yalong Zhang, Rong-Hua Li, Qi Zhang, Hongchao Qin, and Guoren Wang.

Efficient Algorithms for Density Decomposition on Large Static and

Dynamic Graphs. PVLDB, 17(11): 2933 - 2945, 2024.

doi:10.14778/3681954.3681974

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Flydragonet/Density_Decomposition_Computation.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3681974

1 INTRODUCTION
Real-world graphs are typically overall sparse but contain small

dense subgraphs. Discovering these dense subgraphs has a wide

range of applications, including community detection [1, 16, 26,

34, 45, 59], fraud detection [5], graph querying [18, 33], and graph

visualization [2, 60]. Variousmodels have been introduced to charac-

terize dense subgraphs, such as the clique [24], 𝑘-core [3, 36, 40, 46],

𝑘-truss [19, 32], locally densest subgraph [37, 43, 54], 𝑘-edge con-

nected subgraph [12, 13], 𝑘-plex [21, 50], 𝑘-defective clique [20],

𝑘-club [41], and so on.

Among them, 𝑘-core perhaps stands as the most popular dense

graph model due to its concise definition and linear time complex-

ity. However, the 𝑘-core decomposition, defined solely based on

degrees, falls short of effectively capturing the density structure of

a graph, where density is measured as the ratio of the number of

edges to the number of vertices. In addition, graph decomposition

should reasonably partition the graph into communities based on

density. However, it has been demonstrated that 𝑘-core decompo-

sition does not fulfill this requirement. For example, as shown in

Fig. 1a, the graph comprises two densely-connected communities.

However, community #1 and community #2 are partitioned by 𝐶4

and 𝐶3, respectively, which constitutes an unreasonable partition-

ing approach. Besides, the top layer of core decomposition, 𝐶4,

contains 10 edges and 5 vertices, yielding a density of 10/5. Never-
theless, the subgraph exhibiting the highest density in this graph is

the whole community #1 with a density of 19/8. Clearly, the core
decomposition is not density-based, and thus may not accurately

capture the dense communities.

To address this limitation, Tatti [54] introduced a concept of

locally-densest subgraph (LDS) decomposition, dividing the graph

into a set of LDSes with hierarchical features, i.e., a smaller sub-

graph must be contained in a larger subgraph, thereby forming a

decomposition. It is density-based and ensures that the top layer

is exactly the densest subgraph in the entire graph. However, LDS

decomposition has three notable drawbacks: (1) The worst-case

time complexity for computing it is as high as𝑂 (𝑛2𝑚), where 𝑛 and

𝑚 denote the number of vertices and edges, which is costly for large

graphs; (2) The number of decomposed LDSes may be excessive and

can only be bounded by𝑂 (𝑛), typically leading to unnecessary par-

tition of densely-connected communities. For example, in Fig. 1b,

𝐵1 separates the tightly connected subgraph {𝑣9, . . . , 𝑣16}, which
is not necessary; (3) It is very challenging to exactly maintain the

LDSes on dynamic graphs due to the strictness of its definition.

2933

https://doi.org/10.14778/3681954.3681974
https://github.com/Flydragonet/Density_Decomposition_Computation
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681974
https://www.acm.org/publications/policies/artifact-review-and-badging-current

1
2

3

4
5

6

7

8
10

11

12 13

14

15

169

Community #1 Community #2

Core decomposition: 𝐶4 = {1,… , 5}, 𝐶3 ∖ 𝐶4 = {6,… , 12}, 𝐶2 ∖ 𝐶3 = {13,… , 16}

(a) Core decomposition.

1
2

3

4
5

6

7

8
10

11

12 13

14

15

169

Community #1 Community #2

Density decomposition: 𝑅3 = {1,… , 8}, 𝑅2 ∖ 𝑅3 = {9,… , 16}

LDS decomposition: 𝐵2 = {1,… , 8}, 𝐵1 ∖ 𝐵2 = {9,… , 12}, 𝐵0 ∖ 𝐵1 = {13,… , 16}

(b) Density decomposition with its egalitarian orientation and LDS

decomposition.

Figure 1: Example graph 𝐺 = (𝑉 , 𝐸) and its decompositions,
where density decomposition exhibits the best performance.

On the other hand, Borradaile et al. [11] introduced an alterna-

tive density-based decomposition, known as density decomposition,
which partitions the vertices based on their indegree and connec-

tivity in a so-called egalitarian orientation [10]. In [11], Borradaile

et al. proposed an 𝑂 (𝑚2) time algorithm to compute the density

decomposition, which is clearly costly for large graphs. Moreover,

Borradaile et al. did not establish a clear relationship between the

density decomposition and other dense subgraph models.

Motivated by this, we for the first time conduct a thorough

investigation of density decomposition, providing insights and a

comprehensive understanding of its properties and applications.

Specifically, we first establish a novel and interesting connection

between density decomposition and LDS decomposition, which

enables us to use the existing highly-optimized LDS decomposi-

tion algorithm to compute the density decomposition [37]. Based

on these connections, we propose novel algorithms with network

flow techniques to efficiently compute the density decomposition.

Subsequently, we also develop novel algorithms with linear time

complexity to efficiently maintain the density decomposition on

dynamic graphs. Finally, we conduct extensive experiments to eval-

uate our algorithms using several large real-life graphs, and the

results demonstrate the efficiency, scalability, and effectiveness of

the proposed algorithms. In summary, the main contributions of

this paper are as follows.

New theoretical results on density decomposition.We show

that each layer of the density decomposition is exactly an LDS,

making it part of the LDS decomposition. This crucial relationship

reveals the fundamental similarity between these two decompo-

sitions. On the other hand, their key distinction lies in that den-

sity decomposition, through a round-up relationship, can naturally

group LDSes with similar densities. This grouping significantly

reduces the number of subgraphs, addressing the issue of unneces-

sary layers in the LDS decomposition. In particular, we show that

the number of non-trivial layers generated by the density decom-

position is equal to the pseudoarboricity of a graph, denoted as 𝑝 ,

typically a small number. In addition, we also reveal an interesting

approximation relationship between density decomposition and

𝑘-core decomposition, indicating that core decomposition can be

considered as a 2-approximation of the density decomposition.

Novel algorithms for computing density decomposition. We

first propose a novel algorithm, called Flow, to compute the den-

sity decomposition, based on a carefully-designed network flow

technique. Compared to the state-of-the-art 𝑂 (𝑚2)-time algorithm,

Flow achieves a superior time complexity of𝑂 (𝑝 ·𝑚3/2). To further
improve the efficiency, we propose a powerful divide-and-conquer

technique and develop a new network flow-based algorithm, called

Flow++. We show that such a new algorithm further reduces the

time complexity to 𝑂 (𝑚3/2
log 𝑝).

Novel algorithms for maintaining density decomposition.
We for the first time study the problem of maintaining the density

decomposition on dynamic graphs. We discover a density decom-

position update theorem, revealing that the insertion or deletion of

an edge requires analyzing changes in just one layer of the density

decomposition. Based on this, we develop an insertion algorithm

Insert to handle edge insertions with a worst-case time complexity

of 𝑂 (𝑚). For edge deletion, we develop the Delete algorithm along

with its improved version, Delete++, which incorporates several

carefully designed pruning strategies. Both of these algorithms have

𝑂 (𝑚) time complexity, thus they are very efficient for handling

large dynamic graphs.

Extensive experiments. We conduct comprehensive experiments

to evaluate the proposed algorithms using 8 real-world datasets.

The results are summarized as follows: (1) Both the Flow and Flow++
algorithms are substantially faster than the state-of-the-art algo-

rithm by at least two orders of magnitude for density composi-

tion. Moreover, even when compared to the highly-optimized LDS

decomposition algorithm [37], our Flow++ can still achieve a re-

markable speed improvement of one order of magnitude; (2) For

density decomposition maintenance, both our insertion and dele-

tion algorithms outperform the baselines by at least 5 orders of

magnitude. We also conduct various case studies to demonstrate

the effectiveness of density decomposition. The findings reveal that,

unlike density-based methods, core decomposition often fails to

identify densely-connected communities, leading to unsatisfactory

performance in practical applications. LDS decomposition, with

its excessive layers, tends to forcibly separate densely-connected

communities and divide sparse areas unnecessarily. In contrast,

density decomposition accurately captures the density structure of

graphs, thereby effectively locating dense communities.

2 PRELIMINARIES
Consider an undirected graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 are the

vertex set and edge set respectively. Let 𝑛 = |𝑉 | and 𝑚 = |𝐸 | be
the number of vertices and edges in 𝐺 . An orientation of 𝐺 can be

obtained by assigning a direction to every edge in 𝐸, resulting in a

directed graph ®𝐺 = (𝑉 , ®𝐸). For example, the directed graph in Fig. 1b

is an orientation of the undirected graph in Fig. 1a. To eliminate

confusion, we use angle brackets ⟨𝑢, 𝑣⟩ to represent a directed edge
in ®𝐺 , while round brackets (𝑢, 𝑣) denote an undirected edge in 𝐺 .

For a directed (resp., undirected) graph 𝐺 and a vertex 𝑢, we use

𝑑𝑢 (𝐺) (𝑑𝑢 for brevity) to denote the indegree (resp., degree) of 𝑢.

A path in a directed graph ®𝐺 = (𝑉 , ®𝐸) is a sequence of vertices

𝑠 = 𝑣0, 𝑣1, . . . , 𝑣𝑙−1, 𝑡 = 𝑣𝑙 , where ⟨𝑣𝑖−1, 𝑣𝑖 ⟩ ∈ ®𝐸, for 𝑖 = 1, . . . , 𝑙 . We

denote such a path as 𝑠 ⇝ 𝑡 , and the length of 𝑠 ⇝ 𝑡 is 𝑙 . If there

2934

exists a path 𝑠 ⇝ 𝑡 , we say that 𝑠 can reach 𝑡 . Besides, if an edge

⟨𝑢, 𝑣⟩ is reversed, then it becomes ⟨𝑣,𝑢⟩. When a path is reversed,
all edges in the path undergo a reversal. Before introducing the

density decomposition, we first give the definitions of reversible
path and egalitarian orientation as follows.

Definition 1. (Reversible path) Given a graph𝐺 and its orien-
tation ®𝐺 , for a path 𝑠 ⇝ 𝑡 in ®𝐺 , if 𝑑𝑡 (®𝐺) − 𝑑𝑠 (®𝐺) ≥ 2, we call that
the path 𝑠 ⇝ 𝑡 is a reversible path.

Definition 2. (Egalitarian orientation) Given a graph 𝐺 and
its orientation ®𝐺 , if there is no reversible path in ®𝐺 , then ®𝐺 is an
egalitarian orientation.

Intuitively, an egalitarian orientation distributes the indegree of

vertices in the most equitable manner, i.e., minimizing the indegree

difference between vertices as much as possible. Note that if reverse

a reversible path 𝑠 ⇝ 𝑡 , 𝑑𝑠 increases by 1, 𝑑𝑡 decreases by 1, and the

indegree of other vertices does not change, making the indegree

difference between 𝑠 and 𝑡 reduced by 2. When no reversible path

exists, the indegree difference can not be reduced anymore. Based

on the egalitarian orientation, we give the definition of density

decomposition originally proposed by Borradailie et al. [11].

Definition 3. (Density decomposition) [11] Given an undi-
rected graph 𝐺 = (𝑉 , 𝐸) and its arbitrary egalitarian orientation
®𝐺 = (𝑉 , ®𝐸), the density decomposition of 𝐺 is a set of subgraphs,
denoted by R = {𝑅𝑘 }, where for any non-negative integer 𝑘 , 𝑅𝑘 ≜
{𝑢 ∈ 𝑉 |𝑑𝑢 (®𝐺) ≥ 𝑘 𝑜𝑟 𝑢 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑎 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑤𝑖𝑡ℎ 𝑑𝑣 (®𝐺) ≥ 𝑘}.

To provide an intuition for Definition 3, we introduce the Theo-

rem 1. This theorem specifies that any subgraph 𝑆 ⊆ 𝑅𝑘 possesses

a higher edge count, rendering it denser, while any subgraph 𝑇

outside of 𝑅𝑘 contains fewer edges, making it sparser. This intuitive

analysis demonstrates that the density decomposition, defined by

indegree and reachability, is inherently density-based. Due to space

limitations, we have included the full proof in the full version of

the paper, which can be found at https://github.com/Flydragonet/

Density_Decomposition_Computation.

Theorem 1. Given a layer 𝑅𝑘 of density decomposition, it satisfies:
(i) For any 𝑆 ⊆ 𝑅𝑘 , the removal of 𝑆 from 𝑅𝑘 results in a deletion of
at least (𝑘 − 1) · |𝑆 | edges; (ii) For any 𝑇 ⊆ 𝑉 \ 𝑅𝑘 , the inclusion of 𝑇
into 𝑅𝑘 leads to an increase of at most (𝑘 − 1) · |𝑇 | edges.

Proof Sketch. The proof uses the notations of 𝐸× and 𝐸Δ, with

definitions provided in Section 3.We aim to establish that |𝐸Δ (𝑆, 𝑅𝑘\
𝑆) | > (𝑘 − 1) · |𝑆 | and (𝑘 − 1) · |𝑇 | ≥ |𝐸Δ (𝑇, 𝑅𝑘) |. Suppose ®𝐺 is

an egalitarian orientation of 𝐺 . By Lemma 1, in ®𝐺 , any edge in

𝐸× (𝑅𝑘 ,𝑉 \ 𝑅𝑘) must point towards 𝑉 \ 𝑅𝑘 . Therefore, |𝐸Δ (𝑆, 𝑅𝑘 \
𝑆) | ≥ ∑

𝑢∈𝑆 𝑑𝑢 (®𝐺) ≥ (𝑘 − 1) · |𝑆 | and (𝑘 − 1) · |𝑇 | ≥
∑
𝑢∈𝑇 𝑑𝑢 (®𝐺) ≥

|𝐸Δ (𝑇, 𝑅𝑘) |. It is critical to note that the first two inequalities cannot
hold simultaneously; otherwise, all vertices in 𝑆 would have an

indegree of 𝑘 − 1, thereby cannot reach vertices with an indegree of

at least𝑘 , contradicting the fact that 𝑆 ⊆ 𝑅𝑘 . Hence, |𝐸Δ (𝑆, 𝑅𝑘 \𝑆) | >
(𝑘 − 1) · |𝑆 | and (𝑘 − 1) · |𝑇 | ≥ |𝐸Δ (𝑇, 𝑅𝑘) |. □

Based on Definition 3, we define integral dense number as follows.

Definition 4. (Integral dense number, IDN) For a vertex
𝑢 ∈ 𝑅𝑘 \ 𝑅𝑘+1, the IDN of 𝑢 is defined as 𝑟𝑢 = 𝑘 .

Table 1: Frequently used notations.
Notation Definition

𝑑𝑢 (𝐺) , 𝑑𝑢 (®𝐺) the degree of 𝑢 in𝐺 , the indegree of 𝑢 in ®𝐺
𝑠 ⇝ 𝑡 a path from 𝑠 to 𝑡
𝑟𝑢 , 𝑟𝑢 fractional dense number (FDN) of𝑢 , integral dense number (IDN) of𝑢

𝑝 (𝐺) or 𝑝 themaximum integer𝑘 such that𝑅𝑘 ≠ ∅, equaling to pseudoarboricity
𝜌 (𝑋) the density of 𝑋 : 𝜌 (𝑋) = |𝐸 (𝑋) |/|𝑋 |

𝐸× (𝑋,𝑌) the cross edges between𝑋 and𝑌 : if𝑋∩𝑌 = ∅,𝐸× (𝑋,𝑌) = { (𝑥, 𝑦) ∈
𝐸 |𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 }, otherwise 𝐸× (𝑋,𝑌) = 𝐸× (𝑋,𝑌 \𝑋)

𝐸Δ (𝑋,𝑌) the additional edges from 𝑋 with respect to 𝑌 : if 𝑋 ∩ 𝑌 = ∅,
𝐸Δ (𝑋,𝑌) = 𝐸 (𝑋)∪𝐸× (𝑋,𝑌) , otherwise 𝐸Δ (𝑋,𝑌) = 𝐸Δ (𝑋,𝑌 \𝑋)

𝜌 (𝑋,𝑌) the outer density of 𝑋 with respect to 𝑌 : if 𝑋 ∩ 𝑌 = ∅, 𝜌 (𝑋,𝑌) =
|𝐸Δ (𝑋,𝑌) |/|𝑋 | , otherwise 𝜌 (𝑋,𝑌) = 𝜌 (𝑋,𝑌 \𝑋)

Example 1. Taking the egalitarian orientation shown in Fig. 1b as
an example, only 𝑣2 and 𝑣5 have the indegree of 3. Thus, 𝑅3 contains
𝑣2, 𝑣5, and the vertices that can reach them, i.e., 𝑅3 = {𝑣1, . . . , 𝑣8}.
For vertices 𝑣1, . . . , 𝑣15, each has an indegree of at least 2, and 𝑣16
can reach them, thus 𝑅2 contains all vertices. Besides, 𝑅1 and 𝑅0 also
contain all vertices, and for any integer 𝑘 > 3, 𝑅𝑘 = ∅. For Theorem 1,
we consider any subgraph 𝑆 of 𝑅3, such as 𝑆 = {6, 7, 8}. Removing 𝑆
from 𝑅3 results in a loss of 9 edges from 𝐸 (𝑅3), constituting up to half
of the total edge number |𝐸 (𝑅3) |. This indicates that 𝑅3 is relatively
dense and compact, as each of its subgraphs contains a substantial
number of edges. Conversely, we consider any subgraph 𝑇 outside
of 𝑅3, for instance 𝑇 = {9, 10, 11}. Incorporating 𝑇 into 𝑅3 would
only increase the edge count in 𝐸 (𝑅3) by 5. This modest increment
illustrates the relative sparsity of𝑇 and justifies its exclusion from 𝑅3.

The density decomposition also possesses the following fun-

damental properties: (1) Given a graph, density decomposition is

unique, i.e., a graph has exactly one density decomposition [11];

(2) It exhibits a hierarchical structure, i.e., for two non-negative

integers 𝑖 > 𝑗 , 𝑅𝑖 is a subset of 𝑅 𝑗 [11]. Furthermore, Borradaile et

al. [11] also established the following lemma, proving some funda-

mental properties of the egalitarian orientation.

Lemma 1. [11] Given an undirected graph 𝐺 = (𝑉 , 𝐸) and its
arbitrary egalitarian orientation ®𝐺 = (𝑉 , ®𝐸), if 𝑢 ∈ 𝑅𝑘 \ 𝑅𝑘+1, then
𝑑𝑢 (®𝐺) ∈ {𝑘, 𝑘 − 1} = {𝑟𝑢 , 𝑟𝑢 − 1}. Additionally, if (𝑢, 𝑣) ∈ 𝐸 and
𝑟𝑢 < 𝑟 𝑣 , then in ®𝐺 , (𝑢, 𝑣) must be oriented as ⟨𝑣,𝑢⟩ instead of ⟨𝑢, 𝑣⟩.

For the number of layers of density decomposition, let 𝑝 be the

largest integer such that 𝑅𝑝 is non-empty. According to [6, 56], we

can derive that 𝑝 equals the pseudoarboricity of𝐺 , whose definition

is in [42]. As indicated in [7], the pseudoarboricity of real-world

graphs is often very small. Therefore, the number of layers of the

density decomposition, from 𝑅0 = 𝑉 to 𝑅𝑝+1 = ∅, is 𝑝 + 2, and the

number of non-trivial layers, from 𝑅1 to 𝑅𝑝 , is 𝑝 .

With these preliminaries, we formulate our problems as follows.

Problem definition. Given an undirected graph 𝐺 , our goal is to

efficiently compute the density decomposition of𝐺 , i.e., computing

the IDNs for all vertex in 𝐺 . For dynamic graphs with edge inser-

tions or deletions, we aim to maintain the density decomposition,

i.e., maintain the IDNs for all vertices.

3 NEW THEORETICAL INSIGHTS
In this section, we first establish an interesting connection between

density decomposition and locally-densest subgraph (LDS) decom-

position, allowing us to leverage existing highly-optimized LDS

decomposition algorithms, such as [37] and [30], for computing

density decomposition. Then, we will show a close connection

between density decomposition and core decomposition.

2935

https://github.com/Flydragonet/Density_Decomposition_Computation
https://github.com/Flydragonet/Density_Decomposition_Computation

3.1 Connection with LDS Decomposition
Let 𝑋 ⊆ 𝑉 be a non-empty subset of the vertex set. Define the

induced edges of𝑋 as 𝐸 (𝑋) = {(𝑥,𝑦) ∈ 𝐸 |𝑥,𝑦 ∈ 𝑋 }, and the induced
subgraph of𝑋 in𝐺 is (𝑋, 𝐸 (𝑋)). The density of𝑋 is characterized by

𝜌 (𝑋) = |𝐸 (𝑋) |/|𝑋 |. The subset 𝑋 ⊆ 𝑉 that maximizes the density

𝜌 (𝑋) is recognized as the densest subgraph of 𝐺 .

For two vertex subsets 𝑋 and 𝑌 with 𝑋 ∩ 𝑌 = ∅, we define

the cross edges between 𝑋 and 𝑌 as 𝐸× (𝑋,𝑌) = {(𝑥,𝑦) ∈ 𝐸 |𝑥 ∈
𝑋,𝑦 ∈ 𝑌 }, and the additional edges from 𝑋 with respect to 𝑌 as

𝐸Δ (𝑋,𝑌) = 𝐸 (𝑋) ∪ 𝐸× (𝑋,𝑌), representing the increment in edges

upon incorporating 𝑋 into 𝑌 . Based on this concept, we define the

outer density and LDS [54] as follows.

Definition 5. (Outer density) If𝑋 ∩𝑌 = ∅, the outer density of
a non-empty vertex set𝑋 with respect to set 𝑌 is defined as 𝜌 (𝑋,𝑌) ≜
|𝐸Δ (𝑋,𝑌) |/|𝑋 |. If 𝑋 ∩ 𝑌 ≠ ∅, the focus is on the subset of 𝑋 not
included in 𝑌 , i.e., 𝑋 \ 𝑌 . In this case, we define 𝐸× (𝑋,𝑌) ≜ 𝐸× (𝑋 \
𝑌,𝑌), 𝐸Δ (𝑋,𝑌) ≜ 𝐸Δ (𝑋 \ 𝑌,𝑌), and 𝜌 (𝑋,𝑌) ≜ 𝜌 (𝑋 \ 𝑌,𝑌).

Definition 6. (Locally-densest subgraph, LDS) Given an
undirected graph 𝐺 and a vertex set𝑊 ⊆ 𝑉 ,𝑊 is an LDS if there is
no 𝑋 ⊆𝑊 and 𝑌 , 𝑌 ∩𝑊 = ∅, such that 𝜌 (𝑋,𝑊 \ 𝑋) ≤ 𝜌 (𝑌,𝑊).

To provide a more intuitive understanding, we rephrase the

definition of LDS as follows:𝑊 is locally-densest if and only if

𝑊 = ∅, or𝑊 = 𝑉 , ormin𝑋 ⊆𝑊 𝜌 (𝑋,𝑊 \𝑋) > max𝑌∩𝑊 =∅ 𝜌 (𝑌,𝑊).
In other words, the minimum-density subgraph𝑋 within𝑊 still has

a higher outer density compared to the maximum-density subgraph

𝑌 outside𝑊 . This demonstrates that𝑊 is “locally”-densest. Tatti

[54] proved that all LDSes in a graph exhibit a hierarchical property,

i.e., for any two LDSes 𝑋 and 𝑌 , either 𝑋 ⊆ 𝑌 or 𝑌 ⊆ 𝑋 . Therefore,

LDSes can form a nested chain, which is the LDS decomposition.

Definition 7. (LDS decomposition) [54] Given an undirected
graph𝐺 = (𝑉 , 𝐸), denote all of its non-empty LDSes by {𝐵0, . . . , 𝐵𝑘 },
such that 𝐵𝑘 ⊊ 𝐵𝑘−1 ⊊ 𝐵𝑘−2 ⊊ · · · ⊊ 𝐵0. As ∅ is also an LDS,
the LDS decomposition is defined as a set of LDSes, represented as
B = {𝐵𝑘+1 = ∅, 𝐵𝑘 , . . . , 𝐵0}.

By the LDS decomposition, like IDN, we can obtain a density

value for each vertex, referred to as the fractional dense number.

Definition 8. (Fractional dense number, FDN) For a vertex
𝑢 ∈ 𝐵𝑖 \ 𝐵𝑖+1, the FDN of 𝑢 is defined as 𝑟𝑢 = 𝜌 (𝐵𝑖 , 𝐵𝑖+1).

Based on these definitions, Tatti [54] further proved several

useful properties of the LDS decomposition as the following lemma.

Lemma 2. [54] For a graph 𝐺 and its LDS decomposition B, the
following properties hold: (1) the smallest non-empty and largest
LDSes, namely 𝐵𝑘 and 𝐵0, are the densest subgraph and 𝑉 , respec-
tively; (2) 𝐵𝑖 exhibits strictly increasing density as 𝑖 increases, i.e.,
for two vertices 𝑢 ∈ 𝐵 𝑗 \ 𝐵 𝑗+1 and 𝑣 ∈ 𝐵𝑖 \ 𝐵𝑖+1 with 𝑗 > 𝑖 ,
𝑟𝑢 = 𝜌 (𝐵 𝑗 , 𝐵 𝑗+1) > 𝜌 (𝐵𝑖 , 𝐵𝑖+1) = 𝑟𝑣 holds.

Density decomposition and LDS decomposition are studied sep-

arately within two different research communities [11, 23, 54]. It

is unclear whether there exists a direct connection between den-

sity decomposition and LDS decomposition. In this work, we fill

this gap and establish, for the first time, a very close relationship

between density decomposition and LDS decomposition, as shown

in Theorem 2 and Theorem 3. The two theorems reveal that: (1)

every layer of density decomposition is an LDS; (2) each IDN is the

round-up value of the FDN.

Lemma 3. Given a layer 𝑅𝑘 , for any two non-empty sets 𝑆 ⊆ 𝑅𝑘
and 𝑇 ⊆ 𝑉 \ 𝑅𝑘 , we have 𝜌 (𝑆, 𝑅𝑘 \ 𝑆) > 𝑘 − 1 ≥ 𝜌 (𝑇, 𝑅𝑘).

Proof. By Theorem 1, for any 𝑆 ⊆ 𝑅𝑘 and any 𝑇 disjoint from

𝑅𝑘 , we have 𝐸Δ (𝑆, 𝑅𝑘 \𝑆) > (𝑘−1) · |𝑆 | and 𝐸Δ (𝑇, 𝑅𝑘) ≤ (𝑘−1) · |𝑇 |,
thus 𝜌 (𝑆, 𝑅𝑘 \ 𝑆) > 𝑘 − 1 ≥ 𝜌 (𝑇, 𝑅𝑘). □

Theorem 2. Given an undirected graph 𝐺 and its density decom-
position R = {𝑅𝑘 }, for all 𝑘 = 0, 1, . . ., 𝑅𝑘 is an LDS.

Proof. By Lemma 3, the theorem can be directly proven. □

Theorem 3. Given a graph and a vertex 𝑣 , 𝑟 𝑣 = ⌈𝑟𝑣⌉ holds.

Proof Sketch. For an arbitrary vertex 𝑣 ∈ 𝑉 , suppose 𝑣 ∈ 𝑅𝑖 \
𝑅𝑖+1 (i.e., 𝑟 𝑣 = 𝑖) and 𝑣 ∈ 𝐵 𝑗 \𝐵 𝑗+1 (i.e., 𝑟𝑣 = 𝜌 (𝐵 𝑗 , 𝐵 𝑗+1)). Let LDSes
𝐵𝑢+1 = 𝑅𝑖+1 and 𝐵𝑙 = 𝑅𝑖 . In the proof of Lemma 3, considering

respsectively 𝑖 = 𝑘 , 𝑆 = 𝐵𝑙 \ 𝐵𝑙+1 and 𝑖 = 𝑘 − 1, 𝑇 = 𝐵𝑢 \ 𝐵𝑢+1,
we get 𝑖 ≥ 𝜌 (𝐵𝑢 , 𝐵𝑢+1) ≥ 𝜌 (𝐵 𝑗 , 𝐵 𝑗+1) ≥ 𝜌 (𝐵𝑙 , 𝐵𝑙+1) > 𝑖 − 1. Thus
𝑟 𝑣 = 𝑖 = ⌈𝜌 (𝐵 𝑗 , 𝐵 𝑗+1)⌉ = ⌈𝑟𝑣⌉. □

Note that the number of LDSes can be extensive and only be

bounded by𝑂 (𝑛) [54]. In contrast, the density decomposition groups

LDSes by a round-up relationship, with the number of non-trivial

layers equaling the pseudoarboricity 𝑝 , typically much smaller than

𝑛. This characteristic ensures that the density decomposition is not

only computationally efficient but also retains a significant amount

of information about the density structure of the graph.

Discussion: Existing algorithms for LDS decomposition.Based
on Theorem 2 and Theorem 3, existing algorithms for computing

LDS decomposition [23, 30, 54] can be applied to compute density

decomposition by rounding up FDN to obtain IDN. Furthermore,

building on these two theorems, we can also propose novel algo-

rithms tailored for density decomposition. These novel algorithms

are more efficient than the methods for computing LDS decomposi-

tion, as confirmed in our experiments.

3.2 Connection with Core Decomposition
Here, we reveal the relationship between the density decomposition

and the core decomposition. The definitions of 𝑘-core and core
decomposition are given as follows.

Definition 9. (𝑘-core and core decomposition) Given an
undirected graph 𝐺 and an integer 𝑘 , the 𝑘-core of 𝐺 , denoted by 𝐶𝑘 ,
is the maximal subgraph in which every vertex has a degree of at
least 𝑘 . The core decomposition of 𝐺 is a set of subgraphs, denoted by
C = {𝐶𝑘 }, containing all 𝑘-cores of 𝐺 .

As mentioned in Section 1, core decomposition may not always

accurately reflect the density structure of a graph. However, we find

that it can serve as a 2-approximation of density decomposition,

according to the following theorems.

Theorem 4. Given an undirected graph 𝐺 = (𝑉 , 𝐸), for 𝑘 =

0, 1, . . . , 𝑝 , 𝜌 (𝐶𝑘 ,𝐶𝑘+1) ≥ 𝜌 (𝑅𝑘 , 𝑅𝑘+1)/2.

Proof. Let ®𝐺 be an arbitrary egalitarian orientation of 𝐺 . De-

note 𝐶𝑘 \ 𝐶𝑘+1 as 𝐶 and 𝑅𝑘 \ 𝑅𝑘+1 as 𝑅. We have 𝜌 (𝐶𝑘 ,𝐶𝑘+1) =
|𝐸Δ (𝐶𝑘 ,𝐶𝑘+1) |

|𝐶 | ≥
∑

𝑢∈𝐶 𝑑𝑢 (𝐶𝑘)
2 |𝐶 | ≥ 𝑘

2
≥

∑
𝑢∈𝑅 𝑑𝑢 (®𝐺)

2 |𝑅 | =
𝜌 (𝑅𝑘 ,𝑅𝑘+1)

2
. □

Theorem 5. (Sandwich Theorem) Given an undirected graph
𝐺 , for any non-negative integer 𝑘 , we have𝐶

2𝑘 ⊆ 𝑅𝑘 ⊆ 𝐶𝑘 ⊆ 𝑅⌈𝑘/2⌉ .

2936

Proof Sketch. Let ®𝐺 be an egalitarian orientation of 𝐺 . To

prove 𝑅𝑘 ⊆ 𝐶𝑘 , for any vertex𝑢 ∈ 𝑅𝑘 , we either have 𝑑𝑢 (®𝐺) ≥ 𝑘 , or

𝑑𝑢 (®𝐺) = 𝑘 − 1 and having an out-edge. So, in 𝑅𝑘 , every vertex has

a degree of at least 𝑘 , and thus in 𝐶𝑘 . To prove 𝐶𝑘 ⊆ 𝑅⌈𝑘/2⌉ , when
𝐶𝑘 ≠ ∅, let 𝑢 be an arbitrary vertex in 𝐶𝑘 , below we show that

𝑢 ∈ 𝑅⌈𝑘/2⌉ . Let 𝑆 ≜ {𝑣 |𝑣 ∈ 𝐶𝑘 and 𝑢 can reach 𝑣 in ®𝐺}. We have∑
𝑣∈𝑆 𝑑𝑣 (®𝐺) ≥ |𝐸× (𝑆,𝐶𝑘 \ 𝑆) | + |𝐸 (𝑆) | ≥

∑
𝑣∈𝑆 𝑑𝑣 (𝐶𝑘)/2 ≥ 𝑘 |𝑆 |/2.

Thus, at least one vertex 𝑡 ∈ 𝑆 has indegree of at least ⌈𝑘/2⌉ in ®𝐺 .
By definition, 𝑢 can reach 𝑡 and thus 𝑢 ∈ 𝑅⌈𝑘/2⌉ .

Since 𝐶𝑘 ⊆ 𝑅⌈𝑘/2⌉ ⇒ 𝐶
2𝑘 ⊆ 𝑅𝑘 , 𝐶2𝑘 ⊆ 𝑅𝑘 also holds. □

Theorem 6. Given an undirected graph 𝐺 , for any non-negative
integer 𝑘 such that 𝑅𝑘 ≠ ∅, 𝜌 (𝐶𝑘) < 𝜌 (𝑅𝑘) holds, unless 𝐶𝑘 = 𝑅𝑘 .

Proof. When 𝐶𝑘 ≠ 𝑅𝑘 , since 𝑅𝑘 ⊆ 𝐶𝑘 , we define 𝑇 = 𝐶𝑘 \ 𝑅𝑘 .
Then by Lemma 3, where let 𝑆 = 𝑅𝑘 , we have 𝜌 (𝐶𝑘) = 𝜌 (𝑅𝑘 ∪𝑇) =
|𝐸 (𝑅𝑘) |+|𝐸Δ (𝑇,𝑅𝑘) |

|𝑅𝑘 |+|𝑇 | <
𝜌 (𝑅𝑘) · |𝑅𝑘 |+𝜌 (𝑅𝑘) · |𝑇 |

|𝑅𝑘 |+|𝑇 | = 𝜌 (𝑅𝑘). □

Discussions. In contrast to core decomposition, density decom-

position exhibits several advantages: (i) While 𝑘-cores are defined

based on the degree, 𝑅𝑘 fundamentally resembles LDS, as both are

defined based on density, thus more accurately reflecting the den-

sity structure of graphs; (ii) Theoretically, as stated in Theorem 6,

𝑅𝑘 is typically denser than 𝐶𝑘 ; (iii) Practically, density decomposi-

tion proves more effective at identifying dense communities within

graphs compared to core decomposition, as evidenced by multiple

case studies in our experiments.

4 ALGORITHMS FOR STATIC GRAPHS
Before delving into static algorithms, we present Theorem 7, provid-

ing a method for obtaining a single layer of density decomposition.

Theorem 7. Given an orientation ®𝐺 and a non-negative integer
𝑘 , let 𝐿 = {𝑢 |𝑑𝑢 (®𝐺) < 𝑘 − 1} and 𝐻 = {𝑢 |𝑑𝑢 (®𝐺) > 𝑘 − 1}. If
there is no path starting from 𝐿 and ending at 𝐻 , then 𝑅𝑘 = 𝐻 ∪
{𝑢 |𝑢can reach a vertex in 𝐻 }.

Based on Theorem 7, a layer 𝑅𝑘 can be obtained by reversing

all reversible paths from 𝑆 to 𝑇 , followed by a single execution

of the BFS (Breadth-First Search) algorithm to identify 𝑅𝑘 = 𝐻 ∪
{𝑢 |𝑢 can reach a vertex in 𝐻 }. The key to this method hinges on

effectively reversing these paths from 𝑆 to 𝑇 . We first introduce

an𝑂 (𝑚2)-time complexity existing algorithm, Path [10, 11], which

reverses these paths individually using multiple BFS operations.

Then, to reduce the time complexity, we propose a novel and more

efficient algorithm Flow, which utilizes the flow network technique

to reverse these paths all at once. Compared to Path, Flow improves

the time complexity from𝑂 (𝑚2) to𝑂 (𝑚3/2 ·𝑝). Building upon Flow,
we develop the Flow++ algorithm, applying a divide-and-conquer

strategy, further reducing the time complexity to 𝑂 (𝑚3/2 · log𝑝).

4.1 The Existing Path Algorithm
Borradaile [10, 11] proposed an algorithm for computing egalitar-

ian orientation. Building upon this and our Theorem 7, we slightly

modify it to develop an algorithm for computing density decom-

position, denoted as Path, as shown in Algorithm 1. The Path al-

gorithm sequentially computes each layer, starting from 𝑅0 = 𝑉

and continuing until 𝑅𝑘 = ∅. The method for computing each layer

follows Theorem 7, where Path performs a single BFS to reverse

Algorithm 1: Path(𝐺)
Input: An undirected graph𝐺 .

Output: Density decomposition R = {𝑅𝑘 }.
1 Arbitrarily orient the edges in𝐺 to obtain ®𝐺 ;

2 foreach 𝑘 = 0, 1, 2, . . . do
3 while True do
4 Try to find a reversible path 𝑠 ⇝ 𝑡 using BFS algorithm, where

𝑑𝑠 (®𝐺) < 𝑘 − 1 < 𝑑𝑡 (®𝐺) ;
5 if such path 𝑠 ⇝ 𝑡 is found then reverse the path 𝑠 ⇝ 𝑡 ;

6 else break the ‘while’ loop;

7 𝐻 ← {𝑢 ∈ ®𝐺 |𝑑𝑢 (®𝐺) > 𝑘 − 1};
8 𝑅𝑘 ← 𝐻 ∪ {𝑢 |𝑢 can reach a vertex in 𝐻 };
9 if 𝑅𝑘 = ∅ then break the ‘foreach’ loop;

10 return R = {𝑅𝑘 };

Algorithm 2: GetLayer(®𝐺,𝑘)
Input: An orientation ®𝐺 = (𝑉 , ®𝐸) and an integer 𝑘 .

Output: The updated ®𝐺 and the layer 𝑅𝑘 of the density decomposition.

1 𝑉 ′ ← 𝑉 ∪ {𝑠, 𝑡 }, where 𝑠 is source and 𝑡 is sink;
2 𝑑 ← 𝑘 − 1;

3 foreach ⟨𝑢, 𝑣⟩ ∈ ®𝐸 do
4 Add arc ⟨𝑢, 𝑣⟩ to𝐴 and let 𝑐 (𝑢, 𝑣) ← 1;

5 foreach 𝑢,𝑑𝑢 (®𝐺) < 𝑑 do
6 Add arc ⟨𝑠,𝑢 ⟩ to𝐴 and let 𝑐 (𝑠,𝑢) ← 𝑑 − 𝑑𝑢 (®𝐺) ;
7 foreach 𝑢,𝑑𝑢 (®𝐺) > 𝑑 do
8 Add arc ⟨𝑢, 𝑡 ⟩ to𝐴 and let 𝑐 (𝑢, 𝑡) ← 𝑑𝑢 (®𝐺) − 𝑑 ;
9 Compute the maximum flow value 𝑓𝑚𝑎𝑥 of (𝑉 ′, 𝐴, 𝑐) ;

10 foreach ⟨𝑢, 𝑣⟩ ∈ ®𝐸 do // Copy the residual network to ®𝐺
11 if ⟨𝑢, 𝑣⟩ ∈ 𝐴 is saturated then reverse the edge ⟨𝑢, 𝑣⟩ ∈ ®𝐸;
12 𝑅𝑘 ← {𝑢 ∈ 𝑉 |𝑑𝑢 (®𝐺) ≥ 𝑑 or 𝑢 can reach a vertex 𝑣 with 𝑑𝑣 (®𝐺) ≥ 𝑑 };
13 return (®𝐺,𝑅𝑘) ;

one reversible path at a time, with each BFS consuming 𝑂 (𝑚) time

(Lines 4-6). However, there may be a large number of reversible

paths, making the time complexity of Path be as high as 𝑂 (𝑚2)
[10]. Clearly, the high computational demand of the Path algorithm

poses a significant challenge when handling large graphs.

4.2 A Re-orientation Network Flow Algorithm
As discussed above, the inefficiency of Path stems from reversing

reversible paths one by one. A more effective approach involves

employing the network flow technique to reverse multiple paths

simultaneously. Therefore, we develop a novel algorithm based on

the re-orientation network [6]. This method enables the simulta-

neous reversal of all reversible paths from 𝐿 to 𝐻 as specified in

Theorem 7, significantly reducing the time cost.

Note that the re-orientation network flow technique was orig-

inally developed to minimize the indegree in an orientation [6],

which differs essentially from density decomposition. To the best

of our knowledge, we are the first to use the re-orientation net-

work to compute density decomposition. Below, we introduce the

re-orientation network.

Definition 10. (Re-orientation network) [6] Given an ori-
entation ®𝐺 = (𝑉 , ®𝐸) and an integer 𝑑 , the re-orientation network
is a weighted network with an additional source vertex 𝑠 and sink
vertex 𝑡 where the weight of each edge denotes the capacity of the
edge. Specifically, the re-orientation network with parameter 𝑑 is
defined as (𝑉 ∪ {𝑠, 𝑡}, 𝐴, 𝑐) where (1) ⟨𝑢, 𝑣⟩ ∈ 𝐴, 𝑐 (𝑢, 𝑣) = 1, if

2937

Algorithm 3: Flow(𝐺)
Input: An undirected graph𝐺 .

Output: Density decomposition R = {𝑅𝑘 }.
1 Invoke a 2-approximation algorithm to obtain an approximate orientation ®𝐺 ;

2 foreach 𝑘 = 0, 1, 2, . . . do
3 (®𝐺,𝑅𝑘) ← GetLayer(®𝐺,𝑘) ;
4 if 𝑅𝑘 = ∅ then break;
5 ®𝐺 ← the induced subgraph of 𝑅𝑘 in ®𝐺 ; // pruning strategy

6 return R = {𝑅𝑘 };

⟨𝑢, 𝑣⟩ ∈ 𝐸; (2) ⟨𝑠,𝑢⟩ ∈ 𝐴, 𝑐 (𝑠,𝑢) = 𝑑 − 𝑑𝑢 (®𝐺), if 𝑑𝑢 (®𝐺) < 𝑑 ; and
(3) ⟨𝑢, 𝑡⟩ ∈ 𝐴, 𝑐 (𝑢, 𝑡) = 𝑑𝑢 (®𝐺) − 𝑑 , if 𝑑𝑢 (®𝐺) > 𝑑 .

By Definition 10, the re-orientation network uses a parameter 𝑑

to separate vertices based on their indegree. To compute a layer 𝑅𝑘 ,

we set𝑑 = 𝑘−1. Consequently, the source 𝑠 connects to vertices with
an indegree less than 𝑘 − 1 (i.e., the set 𝐿 in Theorem 7), while the

sink 𝑡 links to vertices with an indegree greater than𝑘−1 (i.e., the set
𝐻 in Theorem 7). Upon completion of the maximum flow algorithm,

no augmentation paths remain in the residual network, indicating

no paths from 𝑠 to 𝑡 , namely 𝐿 to 𝐻 . Therefore, all reversible paths

in Theorem 7 are reversed and the layer 𝑅𝑘 can be easily obtained.

Based on the above rationale, we devise the re-orientation network

flow algorithm GetLayer, as shown in Algorithm 2, which admits

an integer 𝑘 and outputs 𝑅𝑘 . Below, we give its correctness proof.

Theorem 8. Algorithm GetLayer correctly outputs 𝑅𝑘 .

Proof Sketch. By the above discussion, there is no path 𝑠 ⇝ 𝑡

such that 𝑑𝑠 (®𝐺) < 𝑘 −1 and 𝑑𝑡 (®𝐺) > 𝑘 −1. As a result, by Lemma 7,

the output 𝑅𝑘 is correct. □

The time complexity of Algorithm 2 depends on computing the

maximum flow in the re-orientation network. It was shown that

the re-orientation network maximum flow algorithm can be imple-

mented with time complexity of 𝑂 (𝑚3/2) and space complexity of

𝑂 (𝑚) [7], and thus Algorithm 2 has the same complexity.

4.3 The Proposed Flow Algorithm
As shown in Theorem 8, each invocation of theGetLayer algorithm
yields a single layer 𝑅𝑘 . Therefore, we can substitute Lines 3-8 of

Path with GetLayer to compute each 𝑅𝑘 . Based on this, we propose

the Flow algorithm, as depicted in Algorithm 3.

Algorithm Flow first invokes an existing 2-approximation algo-

rithm to obtain a 2-approximation orientation in linear-time [25]

(Line 1). Note that with such a 2-approximation initial orientation,

the maximum flow computation can be faster than that with ar-

bitrary initial orientation, because this approach is expected to

reduce the number of augmentation paths in the maximum flow

computation as indicated in [7]. Then, the Flow algorithm itera-

tively performs GetLayer from the bottom layer 𝑅0 to yield each

layer one by one (Lines 2-5). Furthermore, a pruning strategy is

that, once 𝑅𝑘 is computed, the algorithm can directly assign ®𝐺 as

the induced subgraph of 𝑅𝑘 in ®𝐺 by discarding the vertices in𝑉 \𝑅𝑘
(Line 5). Since the indegree of vertices in 𝑉 \ 𝑅𝑘 is no larger than

𝑘 − 1, they cannot reach vertices in 𝑅𝑘 . In the following ‘foreach’

loop, the vertices in 𝑉 \ 𝑅𝑘 are all connected to the source 𝑠 , but

the flow cannot enter 𝑅𝑘 from 𝑉 \ 𝑅𝑘 . Thus, Flow only needs to

compute 𝑅𝑘+1 within 𝑅𝑘 in the subsequent computation, which

can significantly improve the efficiency. When 𝑘 equals 𝑝 + 1, 𝑅𝑘

Algorithm 4: Flow++(𝐺)
Input: An undirected graph𝐺 .

Output: The egalitarian orientation ®𝐺 and density decomposition {𝑅𝑘 }.
1 Invoke a 2-approximation algorithm to obtain an approximate orientation ®𝐺

and a 2-approximation of pseudoarboricity 𝑝 ;

2 𝑅𝑝+1 ← ∅; 𝑅0 ← 𝑉 ;

3 Divide(𝑅𝑝+1, 𝑅0) ;
4 return (®𝐺, {𝑅𝑘 }) ;
5 Function Divide(𝑅𝑢 , 𝑅𝑙)
6 if 𝑢 − 𝑙 ≤ 1 or 𝑅𝑢 = 𝑅𝑙 then return;
7 𝑘𝑢 ← 𝑢,𝑘𝑙 ← 𝑙 ;

8 while 𝑘𝑢 > 𝑘𝑙 do
9 𝑘 ← ⌊(𝑘𝑢 + 𝑘𝑙 + 1)/2⌋;

10 (®𝐺,𝑅𝑘) ← GetLayer++(®𝐺,𝑘, 𝑅𝑢 , 𝑅𝑙) ;
11 if |𝐸Δ (𝑅𝑙 , 𝑅𝑘) | < |𝐸Δ (𝑅𝑙 , 𝑅𝑢) |/2 then 𝑘𝑙 ← 𝑘 ;

12 else 𝑘𝑢 ← 𝑘 − 1;

13 𝑘 ← 𝑘𝑙 ;

14 Divide(𝑅𝑘 , 𝑅𝑙) ;
15 (®𝐺,𝑅𝑘+1) ← GetLayer++(®𝐺,𝑘 + 1, 𝑅𝑢 , 𝑅𝑙) ;
16 Divide(𝑅𝑢 , 𝑅𝑘+1) ;

becomes an empty set, indicating that all layers of the density de-

composition are obtained, thus the Flow algorithm terminates. The

correctness of Flow can be guaranteed by Theorem 8.

For the complexity of Flow, since Flow invokes GetLayer 𝑝 + 2
times, it can be easily derived that the time complexity and space

complexity of Flow are respectively 𝑂 (𝑝 ·𝑚3/2) and 𝑂 (𝑚). Note
that since 𝑝 ≤

√
𝑚 [17], the time complexity 𝑂 (𝑝 ·𝑚3/2) is lower

than the 𝑂 (𝑚2) time complexity of Path. Furthermore, 𝑝 is often

small in real-world graphs [7], thus the practical performance of

Flow is typically much better than its worst-case time complexity.

4.4 The Proposed Flow++ Algorithm
In this subsection, we propose an improved algorithm Flow++. By
using a novel divide-and-conquer technique, Flow++ improves the

time complexity of Flow from 𝑂 (𝑝 ·𝑚3/2) to 𝑂 (log𝑝 ·𝑚3/2). The
key idea of Flow++ is that it partitions the graph into almost equal

parts at each recursion and performs maximum flow computation

recursively in each part. Recall that in Flow, we compute 𝑅𝑘 within

𝑅𝑘−1 instead of the whole graph𝐺 due to the hierarchical structure

of density decomposition. Similar to this strategy, an improved

strategy is to compute 𝑅𝑘 between 𝑅𝑢 and 𝑅𝑙 , where 𝑢 > 𝑘 > 𝑙 ,

which can intuitively further reduce the data scale. To construct

such 𝑅𝑢 and 𝑅𝑙 , a divide-and-conquer manner can be employed to

recursively compute all layers of density decomposition. Specifi-

cally, the recursive function, denoted as Divide(𝑅𝑢 , 𝑅𝑙), is designed
to find all 𝑅𝑘 for 𝑢 > 𝑘 > 𝑙 . It first selects a parameter 𝑘 where

𝑢 > 𝑘 > 𝑙 and divides the graph into two parts: 𝑅𝑙 \𝑅𝑘 and 𝑅𝑘+1\𝑅𝑢 .
Then, Divide(𝑅𝑘 , 𝑅𝑙) and Divide(𝑅𝑢 , 𝑅𝑘+1) are separately invoked

for deeper recursions.

Equipped with such a divide-and-conquer approach, the im-

proved algorithm Flow++ is proposed to compute the density de-

composition, which is outlined in Algorithm 4. Specifically, Algo-

rithm 4 starts by invoking an approximate algorithm to calculate

a 2-approximate pseudoarboricity 𝑝 ≥ 𝑝 (Line 1). Then, we can

obtain two trivial layers: 𝑅𝑝+1 = ∅ and 𝑅0 = 𝑉 (Line 2). The recur-

sion begins with these two initial layers by calling Divide(𝑅𝑝+1, 𝑅0)
(Line 3). During this invocation, a parameter 𝑘 is selected to di-

vide the graph (Lines 7-13). We use a binary search (Lines 7-13) to

find the maximum 𝑘 satisfying |𝐸Δ (𝑅𝑙 , 𝑅𝑘) | < |𝐸Δ (𝑅𝑙 , 𝑅𝑢) |/2. Thus,

2938

Divide(𝑅𝑅16,𝑅𝑅0)
⇓ Binary search

𝑘𝑘 = 7
𝐸𝐸 = 1,736,145

𝐸𝐸Δ 𝑅𝑅8,𝑅𝑅16 = 776,080

𝐸𝐸Δ 𝑅𝑅0,𝑅𝑅7 = 788,400

Divide(𝑅𝑅7,𝑅𝑅0)
⇓ Binary search

𝑘𝑘 = 4

Divide(𝑅𝑅16,𝑅𝑅8)
⇓ Binary search

𝑘𝑘 = 10

𝐸𝐸Δ 𝑅𝑅0,𝑅𝑅4 = 303,144

Divide(𝑅𝑅4,𝑅𝑅0)

𝐸𝐸Δ 𝑅𝑅5,𝑅𝑅7 = 332,156

Divide(𝑅𝑅7,𝑅𝑅5)

𝐸𝐸Δ 𝑅𝑅8,𝑅𝑅10 = 318,197

Divide(𝑅𝑅10,𝑅𝑅8)

𝐸𝐸Δ 𝑅𝑅11,𝑅𝑅16 = 312,362

Divide(𝑅𝑅16,𝑅𝑅11)

···

···

···

···

Figure 2: Illustration of the Flow++ algorithm on the Citeseer
dataset (|𝑉 | = 384, 054, |𝐸 | = 1, 736, 145).

for 𝑘 + 1, we have |𝐸Δ (𝑅𝑙 , 𝑅𝑘+1) | ≥ |𝐸Δ (𝑅𝑙 , 𝑅𝑢) |/2, suggesting that

|𝐸Δ (𝑅𝑘+1, 𝑅𝑢) | = |𝐸Δ (𝑅𝑙 , 𝑅𝑢) | − |𝐸Δ (𝑅𝑙 , 𝑅𝑘+1) | < |𝐸Δ (𝑅𝑙 , 𝑅𝑢) |/2.
Therefore, both the edges 𝐸Δ (𝑅𝑙 , 𝑅𝑘) and the edges 𝐸Δ (𝑅𝑘+1, 𝑅𝑢)
are less than half of the edges 𝐸Δ (𝑅𝑙 , 𝑅𝑢). This ensures the num-

ber of edges being divided by 2 in each depth of recursion. When

𝑢−𝑙 ≤ 1 or 𝑅𝑢 = 𝑅𝑙 , there are no further subdivided layers between

𝑅𝑢 and 𝑅𝑙 , thus Divide can return directly. The correctness of the

Flow++ algorithm can be easily derived by induction because in

each recursion we can identify a 𝑅𝑘 and no layer will be missed

by the divide-and-conquer procedure. Thanks to our divide-and-

conquer technique, the graph size is halved with each recursion.

As a result, the computation costs exponentially decrease for the

higher-level layers. This is why our Flow++ algorithm can achieve

a lower time complexity compared to the Flow algorithm. Below,

we use an example to illustrate how Flow++ works.

Example 2. Assuming that the Flow++ algorithm processes the
Citeseer dataset (|𝑉 | = 384, 054, |𝐸 | = 1, 736, 145), it initially com-
putes the 2-approximation pseudoarboricity 𝑝 = 16 and then invokes
the Divide procedure for recursive computation. As shown in Fig. 2, in
the first recursion round, i.e., Divide(𝑅16, 𝑅0), the algorithm employs
binary search to determine 𝑘 = 7 and subsequently divides the graph
𝑅0 \ 𝑅16 into two parts: 𝑅8 \ 𝑅16 and 𝑅0 \ 𝑅7. Both |𝐸Δ (𝑅0, 𝑅7) | and
|𝐸Δ (𝑅8, 𝑅16) | are less than |𝐸 |2 =

|𝐸Δ (𝑅0,𝑅16) |
2

, resulting in the parti-
tion of the graph into two smaller subgraphs. Subsequently, deeper
recursion is independently conducted on the two smaller subgraphs,
significantly reducing the graph scale |𝐸Δ (𝑅𝑙 , 𝑅𝑢) | which is halved
in each recursion round. Therefore, the scale of the graph remains
comparable to the original only at shallow recursion depths. As the
recursion depth increases, the scale of the graph diminishes exponen-
tially, thereby significantly improving efficiency.

The remaining challenge in the above divide-and-conquer al-

gorithm lies in implementing the computation within 𝑅𝑙 \ 𝑅𝑢 . We

find that we can slightly modify the re-orientation network flow

algorithm to achieve this goal, obtaining the improved version

GetLayer++ of GetLayer. The GetLayer++ algorithm inputs an in-

teger 𝑘 and two layers 𝑅𝑢 , 𝑅𝑙 , satisfying 𝑢 ≥ 𝑘 ≥ 𝑙 . It outputs the

updated ®𝐺 and 𝑅𝑘 with a time complexity of𝑂 (|𝐸Δ (𝑅𝑙 , 𝑅𝑢) |3/2). To
implement it, we need to consider not only the subgraph induced

by 𝑅𝑙 \ 𝑅𝑢 in ®𝐺 but also the cross edges 𝐸× (𝑅𝑙 , 𝑅𝑢). In GetLayer++,
arcs from the source and sink to vertices in only 𝑅𝑙 \ 𝑅𝑢 are con-

nected (the other vertices are pruned). However, for computing

the indegree of the vertices in 𝑅𝑙 \ 𝑅𝑢 , the edges in 𝐸× (𝑅𝑙 , 𝑅𝑢) are
also considered. The reasons why GetLayer++ can ensure the cor-

rectness are as follows. Because 𝑅𝑙 and 𝑅𝑢 are either previously

computed by the re-orientation network or are the trivial subgraphs

∅ or 𝑉 . According to the properties of the re-orientation network,

the edges in 𝐸× (𝑉 \𝑅𝑢 , 𝑅𝑢) all point towards𝑉 \𝑅𝑢 , and the edges
in 𝐸× (𝑉 \𝑅𝑙 , 𝑅𝑙) all point towards𝑉 \𝑅𝑙 . This indicates that at this
point when the GetLayer++ algorithm is called again for further

computation, there will be no flow from 𝑉 \ 𝑅𝑢 to 𝑅𝑢 , and no flow

from 𝑉 \ 𝑅𝑙 to 𝑅𝑙 . As a result, we can safely ignore 𝑉 \ 𝑅𝑙 and
𝑅𝑢 , which do not have any flow passing through them, and only

connect the vertices in 𝑅𝑙 \ 𝑅𝑢 to the source and sink.

Clearly, with this divide-and-conquer implementation, the size

of the network can be bounded by 𝐸Δ (𝑅𝑙 , 𝑅𝑢) in each recursion.

Thus, by [7], the time complexity of GetLayer++(®𝐺,𝑘, 𝑅𝑢 , 𝑅𝑙) is
𝑂 (|𝐸Δ (𝑅𝑙 , 𝑅𝑢) |3/2). Based on this, we can derive the total time and

space complexity of Flow++ as follows.

Theorem 9. The time complexity of Algorithm 4 is𝑂 (𝑚3/2 ·log𝑝),
and the space complexity is 𝑂 (𝑝 · 𝑛).

Proof Sketch. The time complexity of Divide(𝑅𝑙 , 𝑅𝑢) consists
of two parts: the complexity of binary search and the complexity of

the deeper recursion Divide(𝑅𝑘 , 𝑅𝑙) and Divide(𝑅𝑢 , 𝑅𝑘+1). For bi-
nary search, it invokesGetLayer++𝑂 (log 𝑝) times, so the time com-

plexity of the binary search in Divide(𝑅𝑢 , 𝑅𝑙) is𝑂 (|𝐸Δ (𝑅𝑙 , 𝑅𝑢) |3/2 ·
log 𝑝). For the deeper recursion, the selection of 𝑘 guarantees that

both |𝐸Δ (𝑅𝑙 , 𝑅𝑘) | and |𝐸Δ (𝑅𝑘+1, 𝑅𝑢) | are less than |𝐸Δ (𝑅𝑙 , 𝑅𝑢) |/2,
ensuring that the data scale is divided by 2 in each recursive layer.

According to themaster theorem for divide-and-conquer algorithms

[4], the time complexity of deeper recursion inDivide(𝑅𝑢 , 𝑅𝑙) is less
than that of the binary search. Hence, the time complexity of Flow++
is the time complexity of the binary search in Divide(𝑅𝑝+1, 𝑅0),
which is 𝑂 (𝑚3/2 · log𝑝). For the space complexity, storing the

space of 𝑅𝑢 and 𝑅𝑙 for each recursion depth takes 𝑂 (𝑝 · 𝑛) ⊇ 𝑂 (𝑚)
space [42]. So the space complexity of Flow++ is 𝑂 (𝑝 · 𝑛). □

Note that since 𝑝 is small in real-world graphs, log 𝑝 is a very

small constant. For example, for most real-world graphs where

𝑝 ≤ 1024, we have log
2
𝑝 ≤ 10. Consequently, the complexity of

our algorithm is near to 𝑂 (𝑚3/2), making it highly efficient for

processing real-world graphs.

5 DYNAMIC MAINTENANCE ALGORITHMS
When the graph is updated by an edge insertion or deletion, a

straightforward algorithm to maintain the density decomposition

is to invoke the Flow++ algorithm to re-compute the density de-

composition from scratch. Clearly, such an approach is costly. To

improve the efficiency, in this section, we develop several novel

algorithms to maintain the density decomposition when the graph

is updated by an edge insertion or deletion. To avoid confusion, we

assume that the notations, including IDN 𝑟 , indegree 𝑑 , and 𝑅𝑘 , all

denote their values before edge updated unless otherwise specified.

5.1 Density Decomposition Update Theorem
In this subsection, we establish a density decomposition update the-

orem, based on which we can devise the maintenance algorithms.

Theorem 10. (Density decomposition update theorem)When
inserting (resp. deleting) an edge (𝑢, 𝑣) in the undirected graph 𝐺 ,
assuming 𝑟 𝑣 ≤ 𝑟𝑢 , only the IDNs of vertices whose IDN equals 𝑟 𝑣 ,
i.e., vertices in 𝑅𝑟 𝑣 \ 𝑅𝑟 𝑣+1, may change, and it can only increase by 1
(resp. decrease by 1).

2939

Algorithm 5: Insert(®𝐺, 𝑟, (𝑢, 𝑣))
Input: The egalitarian orientation ®𝐺 , the IDNs of all vertices 𝑟 , and the edge

(𝑢, 𝑣) to be inserted.

Output: The updated egalitarian orientation ®𝐺 and IDNs 𝑟 .

1 Suppose 𝑟 𝑣 ≤ 𝑟𝑢 , otherwise swap the input edge (𝑢, 𝑣) ;
2 if 𝑑𝑣 = 𝑟 𝑣 − 1 then ®𝐺 ← ®𝐺 ∪ ⟨𝑢, 𝑣⟩;
3 else //𝑑𝑣 = 𝑟 𝑣

4 ®𝐺 ← ®𝐺 ∪ ⟨𝑢, 𝑣⟩;
5 if there is a reversible path 𝑠 ⇝ 𝑣, where 𝑑𝑠 = 𝑟 𝑣 − 1 then
6 Reverse the path;

7 else
8 foreach 𝑤 ∈ {𝑤 |𝑟𝑤 = 𝑟 𝑣 and 𝑤 can reach 𝑣} do 𝑟𝑤 ← 𝑟𝑤 + 1;
9 𝑟 𝑣 ← 𝑟 𝑣 + 1;

10 return (®𝐺, 𝑟) ;

Theorem 10 indicates that maintaining density decomposition

is highly localized. That is, we only need to consider the vertices

within 𝑅𝑟 𝑣 \ 𝑅𝑟 𝑣+1. Besides, given that the density decomposition

is defined based on an egalitarian orientation, the key to updating

the density decomposition lies in maintaining the egalitarian ori-

entation, building upon which we develop several efficient density

decomposition maintenance algorithms in the following.

5.2 The Proposed Insertion Algorithm
Based on Theorem 10, we propose an insertion algorithm, called

Insert, to handle the case of edge insertion. The detailed implemen-

tation of our algorithm is shown in Algorithm 5. The main idea

of Insert is as follows. By Theorem 10, Insert needs to consider

three different cases: (1) 𝑑𝑣 = 𝑟 𝑣 − 1 (Line 2); (2) 𝑑𝑣 = 𝑟 𝑣 and there

exists 𝑠 ⇝ 𝑣 (Lines 3-6); (3) 𝑑𝑣 = 𝑟 𝑣 and there is no 𝑠 ⇝ 𝑣 (Lines

3-4 and Lines 7-9). In case (1), the Insert algorithm directly inserts

⟨𝑢, 𝑣⟩. Following this operation, ®𝐺 is still an egalitarian orientation,

and the IDNs do not need to be updated. In case (2), Insert also
inserts ⟨𝑢, 𝑣⟩, but a reversible path 𝑠 ⇝ 𝑣 is created, making ®𝐺
non-egalitarian. Consequently, Insert reverses this path, restoring
®𝐺 to an egalitarian state. At this point, the IDNs also do not change.

Note that for case (2), we can perform once BFS from the vertex

𝑣 , traversing in the opposite direction of the edges, to find the re-

versible path 𝑠 ⇝ 𝑣 (Lines 5-6). In case (3), where no reversible

path is found, ®𝐺 remains an egalitarian orientation, but the IDNs of

some vertices need to be increased by 1 according to Theorem 10.

Similarly, in this case, invoking once BFS from 𝑣 can identify the set

{𝑤 |𝑟𝑤 = 𝑟 𝑣 and𝑤 can reach 𝑣} (Line 8). Below, we prove that Insert
correctly maintains the density decomposition (i.e., maintains the

IDNs), and analyze its complexity.

Theorem 11. Algorithm 5 Insert correctly maintains an egalitar-
ian orientation and all IDNs for all vertices.

Theorem 12. The worst-case time complexity of Algorithm 5 is
𝑂 (∑𝑢∈𝑅𝑟𝑣 \𝑅𝑟𝑣+1 𝑑𝑢 (𝐺)).

As shown in Theorem 12, the time complexity of Algorithm 5

is clearly bounded by 𝑂 (𝑚). Furthermore, its complexity only de-

pends on a typically small subgraph 𝑅𝑟 𝑣 \𝑅𝑟 𝑣+1, indicating that the
algorithm is highly local.

5.3 The Proposed Deletion Algorithm
In this subsection, we proposed the Delete algorithm to maintain

the density decomposition for handling edge deletion, as outlined

Algorithm 6: Delete(®𝐺, 𝑟, (𝑢, 𝑣))
Input: The egalitarian orientation ®𝐺 , the IDNs of all vertices 𝑟 , and the edge

(𝑢, 𝑣) need to be deleted.

Output: The updated egalitarian orientation ®𝐺 and IDNs 𝑟 .

1 Suppose (𝑢, 𝑣) is oriented as ⟨𝑢, 𝑣⟩, otherwise swap the input edge (𝑢, 𝑣) ;
2 if 𝑑𝑣 = 𝑟 𝑣 − 1 then
3 There must be a reversible path 𝑣⇝ 𝑡 , where 𝑑𝑡 = 𝑟 𝑣 ;

4 Reverse the path;

5 ®𝐺 ← ®𝐺 − ⟨𝑢, 𝑣⟩;
6 Let 𝑟 0 ← 𝑟 𝑣 ;

7 Let 𝑆 ← {𝑤 |𝑟𝑤 = 𝑟 0 , and 𝑑𝑤 = 𝑟 0 or 𝑤 can each an 𝑟 0-indegree vertex};
8 forall 𝑤 where 𝑟𝑤 = 𝑟 0 and 𝑤 ∉ 𝑆 do
9 𝑟𝑤 ← 𝑟 0 − 1;

10 return (®𝐺, 𝑟) ;

in Algorithm 6. Suppose that the deleted edge (𝑢, 𝑣) is oriented as

⟨𝑢, 𝑣⟩ (Line 1). According to Lemma 1, the inequality 𝑟 𝑣 ≤ 𝑟𝑢 holds,

similar to the Insert algorithm. The Delete algorithm addresses two

cases for maintaining the egalitarian orientation: (1) 𝑑𝑣 = 𝑟 𝑣 (not

satisfying the ‘if’ condition of Line 2); (2) 𝑑𝑣 = 𝑟 𝑣 − 1 (satisfying
the ‘if’ condition). In case (1), Delete directly deletes ⟨𝑢, 𝑣⟩ (Line 5),
and ®𝐺 is still an egalitarian orientation. In case (2), by the definition

of density decomposition, a reversible path 𝑣 ⇝ 𝑡 must exist (Line

3). This ensures that Delete does not encounter the scenario of

being unable to find a reversible path, as opposed to Insert. After
reversing 𝑣 ⇝ 𝑡 , case (2) transforms into case (1). Then, ⟨𝑢, 𝑣⟩ can
be deleted and ®𝐺 is restored to the egalitarian orientation.

With the egalitarian orientation, the Delete algorithm starts

maintaining the IDNs of vertices. Unfortunately, unlike Insert,
which can update IDNs directly, there is no direct method to update

IDNs in the deletion case. Therefore, Delete needs to perform Lines

6-9 to update IDNs. Since 𝑟 𝑣 may change, to avoid ambiguity, we

use 𝑟0 to denote the value of 𝑟 𝑣 before updating (Line 6). By the

definition of density decomposition, Delete employs a single BFS

algorithm to determine the set of vertices 𝑆 that do not require

IDNs updates (Line 7). It then decreases the IDNs of vertices that

were originally equal to 𝑟0 but are not in the set 𝑆 (Lines 8-9). Fi-

nally, the Delete algorithm terminates, outputting the egalitarian

orientation and the IDNs of all vertices. The following theorem

shows the correctness of Algorithm 6.

Theorem 13. Algorithm 6 correctly updates the egalitarian orien-
tation and the IDNs of all vertices.

Theorem 14. The worst-case time complexity of Algorithm 6 is
𝑂 (∑𝑢∈𝑅𝑟𝑣 \𝑅𝑟𝑣+1 𝑑𝑢 (𝐺)).

Similar to the Insert algorithm, the Delete algorithm is also local,

and the worst-case time complexity is clearly bounded by 𝑂 (𝑚).

5.4 An Improved Deletion Algorithm
Despite exhibiting the same time complexity, in our experiments,

the Delete algorithm runs around three orders of magnitude slower

than Insert. The main issue is, to update the IDNs of vertices, Insert
performs BFS only within {𝑤 |𝑟𝑤 = 𝑟 𝑣 and𝑤 can reach 𝑣} ⊆ 𝑅𝑟 𝑣 \
𝑅𝑟 𝑣+1, whereasDelete necessitates considering the entire𝑅𝑟 𝑣 \𝑅𝑟 𝑣+1.
In this subsection, we devise an improved algorithm, calledDelete++
(Algorithm 7), to further enhance the efficiency.

The rationale and intuition behind Delete++ are as follows. If

the IDN of a vertex 𝑤 decreases due to the deletion of ⟨𝑢, 𝑣⟩, by
Definition 3,𝑤 must have been capable of reaching 𝑣 prior to the

2940

Algorithm 7: Delete++(®𝐺, 𝑟, (𝑢, 𝑣))
Input: The egalitarian orientation ®𝐺 , the IDNs of all vertices 𝑟 , and the edge

(𝑢, 𝑣) to be deleted.

Output: The updated egalitarian orientation ®𝐺 and IDNs 𝑟 .

1 Perform Lines 1-4 of Delete;
2 Let 𝑃 ← {𝑤 |𝑤 can reach 𝑣} ∩ (𝑅𝑟𝑣 \ 𝑅𝑟𝑣+1) ;
3 ®𝐺 ← ®𝐺 − ⟨𝑢, 𝑣⟩;
4 foreach 𝑠 ∈ 𝑃 and 𝑑𝑠 = 𝑟 𝑣 − 1 do
5 if the SCC containing 𝑠 has not been computed then
6 Let 𝑆 ← {𝑠 } ∪ {𝑤 |𝑠 can reach 𝑤} ∩ (𝑅𝑟𝑣 \ 𝑅𝑟𝑣+1) ;
7 Compute all SCCs in the set 𝑆 , while recording whether they can

reach a 𝑟 𝑣 -indegree vertex;

8 if the SCC containing 𝑠 cannot reach a vertex with 𝑟 𝑣 indegree then
9 𝑟𝑠 ← 𝑟𝑠 − 1;

10 return (®𝐺, 𝑟) ;

deletion. Otherwise,𝑤 would have possessed the ability to reach

another vertex with an 𝑟 𝑣-indegree distinct from 𝑣 before the dele-

tion, thereby preventing its IDN from decreasing. Therefore, we

can calculate the set 𝑃 ⊆ 𝑅𝑟 𝑣 \ 𝑅𝑟 𝑣+1, which includes the vertices

capable of reaching 𝑣 (Line 2). The vertices where the IDNs may

be reduced are specifically within the set 𝑃 , allowing us to narrow

down the scope for updating the IDNs to 𝑃 rather than 𝑅𝑟 𝑣 \ 𝑅𝑟 𝑣+1.
Subsequently, we turn our focus to updating the IDNs of the

vertices in 𝑃 . Recall that the Delete algorithm identifies all vertices

capable of reaching the vertices with 𝑟 𝑣-indegree, and then reduces

the IDNs of vertices rather than these vertices. Such an approach,

however, cannot be directly applied to update the IDNs within 𝑃 .

This is because, if a vertex in 𝑃 cannot reach 𝑟 𝑣-indegree vertices

within 𝑃 , it does not necessarily imply that its IDN needs to be

decreased since it might still have the possibility of reaching 𝑟 𝑣-

indegree vertices outside of 𝑃 .

A basic idea is performing a BFS individually on each vertex in

𝑃 to determine its reachability to vertices with an indegree of 𝑟 𝑣 .

But it is impractical due to massive redundant re-computations.

The key to solving this problem lies in reducing the number of BFS

operations instead of “individually” searching for each vertex. To

achieve this, we leverage a classic concept of Strongly Connected

Component [53] (SCC). Once whether a vertex 𝑠 can reach 𝑟 𝑣-

indegree vertices is confirmed, vertices within the same SCC as 𝑠

also share the same reachability, eliminating the need to invoke the

BFS algorithm on these vertices again.

In the following, we show the correctness of the Delete++ al-

gorithm. Since Line 1 and Line 3 of Delete++ is the same as the

method for maintaining egalitarian orientation in Delete, Delete++
can correctly update egalitarian orientation. Next, we demonstrate

that Delete++ can correctly update the IDNs of vertices.

Theorem 15. Algorithm 7 correctly updates the IDNs of vertices.

We employ the linear-time Tarjan algorithm [53] to compute

SCCs, and thus the complexity of Delete++ is equivalent to that

of Delete. However, in contrast to Delete, which accounts for the

entire set 𝑅𝑟 𝑣 \𝑅𝑟 𝑣+1, Delete++ focuses solely on the neighborhood

𝑃 of vertex 𝑣 . Consequently, the actual running time of Delete++
proves notably faster than that of Delete in our experiments.

6 EXPERIMENTS
Different algorithms. For static graphs, we compare our pro-

posed algorithms Flow (Algorithm 3) and Flow++ (Algorithm 4)

Table 2: Datasets statistics
Name Type 𝑛 𝑚

DBLP co-authorship network 317,081 1,049,866

Citeseer citation network 384,414 1,736,145

Yahoo lexical network 653,261 2,931,698

Skitter internet 1,694,617 11,094,209

Weibo social network 58,655,850 261,321,033

UKlink web graph 18,483,187 261,787,258

Twitter social network 20,826,113 294,585,816

Wiki web graph 13,593,033 334,591,525

10
0

10
1

10
2

10
3

10
4

DBLP
Citeseer

Yahoo
Skitter

R
u

n
ti

m
e

(s
ec

)

Path

Fista

FW

Flow

Flow++

(a) Runtime (medium graphs)

10
2

10
3

10
4

UNK

W
eibo

UKlink

Twitter

W
iki

R
u

n
ti

m
e

(s
ec

)

M M MT T T T

Path

Fista

FW

Flow

Flow++

(b) Runtime (large graphs)

10
-2

10
-1

10
0

10
1

DBLP
Citeseer

Yahoo
Skitter

M
em

o
ry

 (
G

B
)

Path

Fista

FW

Flow

Flow++

(c) Memory cost (medium graphs)

10
0

10
1

10
2

UNK

W
eibo

UKlink

Twitter

W
iki

M
em

o
ry

 (
G

B
)

M M MT T T T

Path

Fista

FW

Flow

Flow++

(d) Memory cost (large graphs)

Figure 3: Results of density decomposition on static graphs.

with three baselines: Path (Algorithm 1) [11], FW [23], and Fista
[30]. Here, Flow, Flow++, and Path are implemented by us. FW [23]

and Fista [30] are the state-of-the-art algorithms for LDS decompo-

sition. By our results established in Section 3, these algorithms can

also be used to compute the density decomposition, thus we also

include them as baselines. For dynamic graphs, we implement three

proposed algorithms Insert (Algorithm 5), Delete (Algorithm 6),

and Delete++ (Algorithm 7). Since there is no algorithm that can

maintain density decomposition, we use the Flow++ algorithm for

re-computing the density decomposition as a baseline.

All algorithms are implemented using C++ and compiled with

the GCC compiler, employing the O3 optimization. All experiments

are conducted on a PC operating a Linux system, equipped with a

2.2GHz AMD 3990X 64-Core CPU and 128GB memory.

Datasets. We use 4 medium graphs and 4 large graphs in our

experiments which are downloaded from the Network Repository

[44] and the Koblenz Network Collection (http://konect.cc/). The

detailed information is provided in Table 2.

6.1 Performance Studies
Exp-1: Runtime of various density decomposition algorithms.
Fig. 3a and Fig. 3b depict the results of different algorithms for com-

puting the density decomposition. In Fig. 3b, there are two cases

designated as ‘UNK’ (unknown) for runtime: (1) the algorithm’s

runtime exceeds our time constraint of 50,000 seconds, labeled

as ‘T’; (2) the algorithm’s memory usage exceeds 128GB, labeled

as ‘M’. From Fig. 3a and Fig. 3b, Path unsurprisingly exhibits the

longest execution time, and even fails to complete the computation

within the time constraint on all large graphs. In contrast, our pro-

posed algorithms, Flow and Flow++, not only successfully compute

the density decomposition for all datasets but are also at least 1

2941

Table 3: Number of layers of different decompositions
“DD” denotes density decomposition.

“LDS” represents locally-densest subgraph decomposition.

Datasets DD LDS Datasets DD LDS

DBLP 59 1,088 Weibo 168 5,609

Citeseer 16 1,435 UKlink 474 40,875

Yahoo 26 1,376 Twitter 840 11,949

Skitter 92 3,493 Wiki 602 23,203

and 2 orders of magnitude faster than Path respectively, exhibit-

ing significant superiority. In addition, Flow++ shows remarkable

enhancements, particularly on large graphs, where efficiency is

improved by about an order of magnitude compared to Flow. These
results confirm our theoretical analysis in Section 3.

When comparing the two LDS decomposition algorithms, we

find that FW outperforms Fista over all datasets. The reason could

be that Fista was originally designed as an approximate LDS de-

composition algorithm, relying on a peeling technique [30], and it

may not be well-suited for exact LDS decomposition. Compared to

the LDS decomposition algorithms, our best algorithm Flow++ is

consistently faster on all datasets, and can still achieve one order

of magnitude speedup on large datasets. For instance, on Weibo,
the runtime of Flow++ and FW are 190.42 seconds and 2,575.96

seconds respectively, representing a 13x acceleration. This result

further demonstrates the high efficiency of our Flow++ algorithm.

Exp-2: Memory overheads of different algorithms. The mem-

ory usages of different algorithms are shown in Fig. 3c and Fig. 3d.

Both the Path and Flow algorithms have lowermemory costs, which

are consistent with the theoretical analysis of the space complex-

ity as 𝑂 (𝑚). The algorithms Flow++, FW, and Fista all involve a

recursive procedure, which requires auxiliary space usage. Among

them, Flow++ needs to store each layer 𝑅𝑘 , and since the number

of layers is small as shown in Table 3, the memory cost of Flow++
remains modest. On all datasets, Flow++ requires no more than

15GB of memory. In the case of FW and Fista, their memory costs

depend to a large extent on the effectiveness of the approximation

algorithms that they employ. The approximation algorithm in FW
is more effective, thus it often consumes less memory than Fista.
Nevertheless, on UKlink, FW algorithm uses significantly higher

memory compared to Flow and Flow++, indicating lower robust-

ness in terms of memory cost for the FW algorithm. These results

confirm that the memory usage of our algorithms is acceptable

with efficient computational performance.

Exp-3: Number of layers of different decompositions. The
number of layers of density decomposition and LDS decomposition

are presented in Table 3. For density decomposition, the number

of layers is equal to the pseudoarboricity plus 2, which is typically

small in real-world graphs [35]. However, the LDS decomposition

yields a considerably larger number of layers, reaching 40,875 layers

onUKlink. This multitude of layers often leads to high computation

time. Moreover, such a fine partition of layers may inevitably lead

to unnecessary separation of tightly connected subgraphs, thus

reducing the performance of identifying dense subgraphs for real

applications. These results confirm our analysis in Sections 1 and 3.

Exp-4: Runtime of the various maintenance algorithms.We

randomly delete and insert 10,000 edges from each graph dataset to

evaluate different maintenance algorithms. The total time required

to process these 10,000 deleted or inserted edges is shown in Fig. 4.

For the baseline algorithm, since both insertion and deletion re-

quire invoking Flow++ to recompute, the runtime for deletion and

insertion is the same, thus we only plot one bar in Fig. 4. As can be

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

DBLP
Citeseer

Yahoo
Skitter

R
u

n
ti

m
e

(s
ec

)

Flow++

Delete

Delete++

Insert

(a) Medium graphs

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

W
eibo

UKlink

Twitter

W
iki

R
u

n
ti

m
e

(s
ec

)

Flow++

Delete

Delete++

Insert

(b) Large graphs

Figure 4: Runtime of various maintenance algorithms

 0

 500

 1000

 1500

 2000

 2500

 3000

20% 40% 60% 80% 100%

R
u

n
ti

m
e

(s
ec

)

Flow++

FW

(a) vary |𝑉 |

 0

 500

 1000

 1500

 2000

 2500

 3000

20% 40% 60% 80% 100%

R
u

n
ti

m
e

(s
ec

)

Flow++

FW

(b) vary |𝐸 |

Figure 5: Scalability test of static algorithms on Wiki.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

R
u

n
ti

m
e

(s
ec

)

Delete

Delete++

Insert

(a) vary |𝑉 |

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

R
u

n
ti

m
e

(s
ec

)

Delete

Delete++

Insert

(b) vary |𝐸 |

Figure 6: Scalability test of dynamic algorithms on Wiki.

seen, both Delete and Delete++ are around 3-5 orders of magnitude

faster than the baseline algorithm (Flow++), respectively. Further-
more, Delete++ significantly outperforms Delete on all datasets as

expected. For example, on UKlink, Delete consumes 943.62 seconds

to maintain the density decomposition, while Delete++ only takes

10.98 seconds, achieving an 85x acceleration. These results confirm

our analysis in Section 5. For edge insertion, Insert is substantially
faster than Flow++, improving by about 5-7 orders of magnitude.

When applied to large graphs such asWiki with hundreds of mil-

lions of edges, handling the insertion of 10,000 edges only requires

0.4 seconds. These results further demonstrate the high efficiency

of our algorithm. Additionally, it is worth noting that the runtime

of our insertion algorithm is often orders of magnitude faster than

that of the deletion algorithms. This significant efficiency stems

from the fact that (as analyzed in Section 5) updating the IDNs

during insertion is much easier compared to the deletion case.

Exp-5: Scalability test. In this experiment, we evaluate the scala-

bility of static and dynamic algorithms. For static algorithms, we

generate 8 subgraphs for each dataset by randomly sampling the

vertex set 𝑉 and edge set 𝐸, and then perform Flow++ and FW on

these subgraphs. Results from our largest dataset, Wiki, are pre-
sented in Fig. 5, and similar patterns are observed across other

datasets. As expected, the runtime of FW increases sharply with

the data scale, in contrast to the more gradual increase observed

with Flow++. Moreover, Flow++ outperforms FW at all data scales,

consistent with previous observations. These findings demonstrate

the high scalability of the Flow++ algorithm.

For dynamic algorithms, we compare the running time of Delete,
Delete++, and Insert in randomly processing 10,000 edges, with the

results presented in Fig. 6. In contrast to static algorithms, where

2942

■ 6

■ 5

■ 4

■ 3

■ 2

■ 1

(a) IDN (density decomposition)

■ 5.88

■ 5.00

■ 4.00

■ 3.33

■ 3.00

■ 2.00

■ 1.00

(b) FDN (LDS decomposition)

■ 10

■ 9

■ 8

■ 6

■ 5

■ 4

■ 3

■ 2

■ 1

(c) Core number (core decomposition)

Figure 7: Dense subgraph decompositions of Harry Potter character relationship network HPC.

runtime significantly escalates with graph size, the runtime of dy-

namic algorithms exhibits notable insensitivity to graph size. This

insensitivity arises because the complexity of our proposed dynamic

algorithms is 𝑂 (∑𝑢∈𝑅𝑟𝑣 \𝑅𝑟𝑣+1 𝑑𝑢 (𝐺)) (details in Section 5), which

is independent of graph size, theoretically ensuring the scalability

of our algorithms. Moreover, Delete++ consistently outperforms

Delete by approximately an order of magnitude across all graph

sizes, and Insert maintains high efficiency with a running time of

less than one second for all graph sizes. These results demonstrate

the high scalability of our proposed maintenance algorithms.

6.2 Case Studies
Harry Potter characters relationship network. Here we con-
duct a case study on the Harry Potter characters network

1
, denoted

by HPC. We evaluate the effectiveness of three graph decomposi-

tions, including density decomposition, LDS decomposition, and

core decomposition. The IDNs, FDNs, and core numbers of all

characters in HPC are illustrated in Fig. 9, with vertex sizes corre-

sponding to their degrees. From Fig. 7a and Fig. 7b, we can see that

the density decomposition and LDS decomposition on HPC exhibit

a high similarity, with the only distinction being that in the LDS

decomposition, Quirinus Quirrell, one of the four characters with

an IDN of 4, is separated from the other three characters. This re-

sult indicates that the density decomposition can well approximate

the LDS decomposition. Moreover, in this case study, there seems

no need to excessively differentiate the characters in fine detail.

Whether a character with FDN of 4.00 or 3.33 can both be consid-

ered as similar important secondary characters. This result suggests

that a moderately coarse-grained partition achieved by density de-

composition often suffices, eliminating the need for an excessively

fine-grained partition. Additionally, decomposing the graph into

finer layers generally requires more computational time. On HPC,
invoking Flow++ for density decomposition takes 0.048ms, while

performing FW to compute LDS decomposition consumes 0.918ms.

In summary, density decomposition can achieve similar results as

the LDS decomposition, while significantly reducing computational

time and the number of redundant dense subgraph layers.

When comparing the density decomposition (Fig. 7a) and the

core decomposition (Fig. 7c), a noticeable disparity emerges. The

most notable difference is that the top layer of density decompo-

sition is divided into four layers in the core decomposition. The

main character, Harry Potter, is not included in the top layer (i.e.,

10-core), which also exhibits a clearly lower density in compari-

son to the other two density-aware decomposition methods. These

results confirm our analysis in Sections 1 and 3.

1
Data source: https://github.com/efekarakus/potter-network, from which we extract a

subgraph containing only main characters and main relationships for clarity.

Graph and Digraph Glossary network. Below, we conduct a
case study on the Graph and Digraph Glossary network

2
, denoted

as GDG. This network summarizes a range of graph theory terms

used in a course about Euler circuits and coloring problems. Each

term within the network is depicted as a node, with edges illus-

trating the definition relationships among these terms. The density

decomposition, LDS decomposition, and core decomposition on

GDG are illustrated in Fig. 8. As shown in Fig. 8a, the density

decomposition of GDG organizes the network into three strata

corresponding to high, medium, and low densities. The top layer,

𝑅3, incorporates frequently used terms such as ‘Graph’ and ‘Ver-

tex’, along with course-specific terms like ‘𝑘-colorable’, suggesting

that 𝑅3 comprises the fundamental terminology for the course. In

Fig. 8b, the LDS decomposition, based on the density decomposi-

tion, further partitionsGDG. This decomposition notably segments

the low-density area from Fig. 8a into several sub-sections with

FDN values of 1.50, 1.00, 0.67, and 0.50. However, this granular

subdivision may be deemed superfluous, as the terms in these parts

could be considered equally non-essential. Concerning core decom-

position presented in Fig. 8c, it retains the tri-layer structure of

the density decomposition but differentiates itself by incorporating

some medium-density nodes from 𝑅2 \𝑅3 into the top layer𝐶3. This

inclusion results in some relatively non-essential terms like ‘Clo-

sure’ being unreasonably considered as essential terms. Moreover,

the density of 𝑅3, 𝜌 (𝑅3) = 2.40, surpasses that of 𝐶3, 𝜌 (𝐶3) = 2.21.

For the medium-density vertices added to𝐶3, i.e.,𝐶3 \𝑅3, the outer
density 𝜌 (𝐶3 \ 𝑅3, 𝑅3) is only 2, indicating that the core decomposi-

tion may inappropriately elevate the status of lower-density terms

to essential, leading to an unreasonable division.

DBLP collaboration subgraph. We also perform a case study on

the DB dataset (with 37,177 vertices and 131,715 edges), which is a

subgraph of the DBLP co-authorship network that only contains

database researchers and their co-authorships. We depict DB’s
four subgraphs 𝐶35 ⊆ 𝑅18 ⊆ 𝐶18 and 𝑅19 as shown in Fig. 9a.

The full version of the figure, with the author represented by

each vertex, is available at https://github.com/Flydragonet/Density_

Decomposition_Computation.

As shown by our proposed Sandwich Theorem (Theorem 5),𝐶35,

𝑅18, and 𝐶18 show a hierarchical structure, with their numbers of

vertices and edges being |𝐶35 | = 72, |𝐸 (𝐶35) | = 1, 260, |𝑅18 | = 131,

|𝐸 (𝑅18) | = 2, 339, |𝐶18 | = 529, and |𝐸 (𝐶18) | = 7, 398. Compared to

the original graph with |𝑉 | = 37, 177 ≫ |𝐶18 | vertices, 𝑅18 is tightly
sandwiched between 𝐶35 and 𝐶18. Furthermore, we illustrate the

subgraph 𝑅19 with the dashed line in Fig. 9a. It can be observed

that 𝑅18 and 𝑅19 are adjacent layers, but 𝐶35 ⊆ 𝑅18 and 𝐶35 ⊈ 𝑅19,

indicating the tightness of 𝐶𝑖 ⊆ 𝑅⌈𝑖/2⌉ in the Sandwich Theorem.

2
Data source: http://vlado.fmf.uni-lj.si/pub/networks/data/DIC/TG/glossTG.htm.

2943

https://github.com/efekarakus/potter-network
https://github.com/Flydragonet/Density_Decomposition_Computation
https://github.com/Flydragonet/Density_Decomposition_Computation
http://vlado.fmf.uni-lj.si/pub/networks/data/DIC/TG/glossTG.htm

■ 3

■ 2

■ 1

(a) IDN (density decomposition)

■ 2.42

■ 2.33

■ 2.00

■ 1.50

■ 1.00

■ 0.67

■ 0.50

(b) FDN (LDS decomposition)

■ 3

■ 2

■ 1

(c) Core number (core decomposition)

Figure 8: Dense subgraph decompositions of Graph and Digraph Glossary network GDG.

(a)𝐶18 , 𝑅18 ,𝐶35 and 𝑅19

 13.58
 13.50
 13.28

(b) 𝑅14

Figure 9: Dense subgraphs of decompositions of DB network.

Moreover, within DB,𝐶35 and 𝑅19 serve as the top non-empty layer

for core decomposition and density decomposition, respectively. It

can be seen that 𝐶35 fails to separate two loosely-connected com-

munities, whereas 𝑅19 contains a densely-connected community.

Their respective densities are 𝜌 (𝐶35) = 17.5 < 𝜌 (𝑅19) = 18.3, and

𝑅19 is the densest subgraph. This again highlights the weakness of

the core decomposition in capturing dense structures, particularly

when contrasted with the density-aware decomposition.

To further confirm the unnecessary fine separation generated by

LDS decomposition, we present the subgraph 𝑅14 of DB in Fig. 9b,

using a single large vertex to represent 𝑅15 for clarity. In density

decomposition, vertices in 𝑅14 \𝑅15 are grouped into the same layer,

while LDS decomposition divides them into three different layers

with FDNs of 13.58, 13.50, and 13.28, respectively. These three layers

have nearly the same outer density and form a densely connected

community, suggesting that they should not be partitioned into

three distinct layers. Furthermore, the four vertices with FDNs of

13.50 are connected with each other by only four edges, indicating a

loose connection. It is evident that there is no need to separate these

four vertices into an individual layer. All these observations suggest

that LDS decomposition may overly separate the dense subgraph

layers, while density decomposition, which places 𝑅14 \ 𝑅15 in the

same layer, is more reasonable.

7 RELATED WORK
Densest subgraph discovery. Our work is close to the problem

of finding the densest subgraph in a graph. A well-known algo-

rithm for computing the densest subgraph is based on invoking

a parameterized Goldberg flow network 𝑂 (log𝑛) times [29]. To

improve the efficiency, Danisch et al. proposed a convex program-

ming approach to identify the densest subgraph which is considered

as the state-of-the-art [23]. Several approximate algorithms have

also been devised to compute the densest subgraph, such as the

linear-time 2-approximation algorithm [14]𝑂 (𝑚+𝑛) and the (1+𝜖)-
approximation iterative algorithm [9, 15], with near-linear time for

each iteration. Recently, the techniques for finding the densest sub-

graph were also extended to the higher-order case [31, 52, 55, 58]

as well as the directed graph case [38, 39].

Cohesive subgraph decomposition. Except for the density de-

composition, there also exist several other cohesive subgraph de-

compositions aiming to decompose a graph into a set of nested

cohesive subgraphs. Notable examples include the 𝑘-core decom-

position [3, 36, 46], 𝑘-truss decomposition [19, 32, 57], nucleus

decomposition [47–49, 51], 𝑘-edge connected subgraph decomposi-

tion [12, 13], locally densest subgraph (LDS) decomposition [43, 54],

distance-generalized core decomposition [8, 22], and colorful ℎ-star

𝑘-core decomposition [27, 28]. The core decomposition [3, 36, 46]

and their variants [8, 22, 27, 28] is a degree-aware decomposition

which iteratively decomposes the graph based on the degrees of the

vertices. The truss decomposition is a triangle-aware decomposition

that is based on the number of triangles in which an edge partici-

pates [19, 32, 57]. The nucleus decomposition can be considered as

a higher-order core or truss decomposition, based on the number

of cliques in which a smaller clique participates [47–49, 51]. The

𝑘-edge connected subgraph decomposition is a connectivity-aware

decomposition that decomposes the graph into a set of highly con-

nected subgraphs [12, 13]. The LDS decomposition, however, is a

density-aware decomposition that can fully capture the density of

the decomposed subgraphs [43, 54]. .

8 CONCLUSION
In this paper, we conduct an in-depth investigation of density de-

composition on both static and dynamic graphs. First, we establish

an inclusion relationship between density decomposition and LDS

decomposition, as well as the core decomposition. For the compu-

tation of density decomposition, we develop the Flow++ algorithm

using carefully-designed network flow and divide-and-conquer

techniques, achieving a notable reduction in time complexity to

𝑂 (𝑚3/2
log𝑝). To handle dynamic graphs, we prove a density de-

composition update theorem, which shows that the maintenance

of density decomposition is highly localized. Building upon this

result, we develop the insertion and deletion algorithms, i.e., Insert,
Delete, and Delete++, all with linear time complexity. Extensive

experiments on 8 real-world datasets demonstrate the efficiency,

scalability, and effectiveness of our solutions.

ACKNOWLEDGMENTS
This work was partially supported by (i) the National Key Research

and Development Program of China 2021YFB3301301,(ii) NSFC-

Grants U2241211and 62072034. Rong-Hua Li is the corresponding

author of this paper.

2944

REFERENCES
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-based Community Search: a Truss-

equivalence Based Indexing Approach. In Proc. VLDB Endow., Vol. 10. 1298–1309.
[2] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-

nani. 2005. Large scale networks fingerprinting and visualization using the

k-core decomposition. In NIPS. 41–50.
[3] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores

Decomposition of Networks. CoRR cs.DS/0310049 (2003).

[4] Jon Louis Bentley, Dorothea Haken, and James B. Saxe. 1980. A general method

for solving divide-and-conquer recurrences. SIGACT News 12, 3 (1980), 36–44.
[5] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and

Christos Faloutsos. 2013. CopyCatch: stopping group attacks by spotting lockstep

behavior in social networks. InWWW. 119–130.

[6] Ivona Bezáková. 2000. Compact representations of graphs and adjacency testing.
Master’s thesis. Comenius University.

[7] Markus Blumenstock. 2016. Fast Algorithms for Pseudoarboricity. In ALENEX.
113–126.

[8] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized

Core Decomposition. In SIGMOD. 1006–1023.
[9] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos E.

Tsourakakis, Di Wang, and Junxing Wang. 2020. Flowless: Extracting Dens-

est Subgraphs Without Flow Computations. InWWW. 573–583.

[10] Glencora Borradaile, Jennifer Iglesias, Theresa Migler, Antonio Ochoa, Gordon

Wilfong, and Lisa Zhang. 2017. Egalitarian Graph Orientations. Journal of Graph
Algorithms and Applications 21, 4 (2017), 687–708.

[11] Glencora Borradaile, Theresa Migler, and Gordon T. Wilfong. 2019. Density

decompositions of networks. J. Graph Algorithms Appl. 23, 4 (2019), 625–651.
[12] Lijun Chang and Zhiyi Wang. 2022. A Near-Optimal Approach to Edge

Connectivity-Based Hierarchical Graph Decomposition. In Proc. VLDB Endow.,
Vol. 15. 1146–1158.

[13] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang.

2013. Efficiently computing k-edge connected components via graph decomposi-

tion. In SIGMOD. 205–216.
[14] Moses Charikar. 2000. Greedy approximation algorithms for finding dense

components in a graph. In APPROX (Lecture Notes in Computer Science, Vol. 1913).
84–95.

[15] Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. 2022. Densest Subgraph:

Supermodularity, Iterative Peeling, and Flow. In SODA. SIAM, 1531–1555.

[16] Jie Chen and Yousef Saad. 2012. Dense Subgraph Extraction with Application to

Community Detection. IEEE Trans. Knowl. Data Eng. 24, 7 (2012), 1216–1230.
[17] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing

Algorithms. SIAM J. Comput. 14, 1 (1985), 210–223.
[18] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and Distance Queries via 2-Hop Labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.
[19] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.

National security agency technical report 16, 3.1 (2008), 1–29.
[20] Qiangqiang Dai, Rong-Hua Li, Meihao Liao, and Guoren Wang. 2023. Maximal

Defective Clique Enumeration. Proc. ACM Manag. Data 1, 1 (2023), 77:1–77:26.
[21] Qiangqiang Dai, Rong-Hua Li, Hongchao Qin, Meihao Liao, and Guoren Wang.

2022. Scaling Up Maximal k-plex Enumeration. In CIKM. 345–354.

[22] Qiangqiang Dai, Rong-Hua Li, Lu Qin, Guoren Wang, Weihua Yang, Zhiwei

Zhang, and Ye Yuan. 2021. Scaling Up Distance-generalized Core Decomposition.

In CIKM. 312–321.

[23] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2017. Large Scale

Density-friendly Graph Decomposition via Convex Programming. In WWW.

233–242.

[24] Luce R. Duncan and Perry Albert D. 1949. A method of matrix analysis of group

structure. Psychometrika 14, 2 (1949), 95–116.
[25] David Eppstein. 1994. Arboricity and Bipartite Subgraph Listing Algorithms. Inf.

Process. Lett. 51, 4 (1994), 207–211.
[26] Eugene Fratkin, Brian T. Naughton, Douglas L. Brutlag, and Serafim Batzoglou.

2006. MotifCut: regulatory motifs finding with maximum density subgraphs.

In Proceedings 14th International Conference on Intelligent Systems for Molecular
Biology. 156–157.

[27] Sen Gao, Rong-Hua Li, Hongchao Qin, Hongzhi Chen, Ye Yuan, and Guoren

Wang. 2022. Colorful h-star Core Decomposition. In ICDE. 2588–2601.
[28] Sen Gao, Hongchao Qin, Rong-Hua Li, and Bingsheng He. 2023. Parallel Colorful

h-star Core Maintenance in Dynamic Graphs. In Proc. VLDB Endow., Vol. 16.
2538–2550.

[29] Andrew V Goldberg. 1984. Finding a maximum density subgraph. Technical
Report. University of California Berkeley, Berkeley, CA, USA.

[30] Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. 2022. Faster and scalable

algorithms for densest subgraph and decomposition. NeurIPS 35 (2022), 26966–
26979.

[31] Yizhang He, KaiWang,Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2023. Scaling

Up k-Clique Densest Subgraph Detection. Proc. ACM Manag. Data 1, 1 (2023),
69:1–69:26.

[32] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In SIGMOD. 1311–1322.
[33] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3-HOP: a high-

compression indexing scheme for reachability query. In SIGMOD. 813–826.
[34] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins.

1999. Trawling the Web for Emerging Cyber-Communities. Comput. Networks
31, 11-16 (1999), 1481–1493.

[35] Rong-Hua Li, Qiushuo Song, Xiaokui Xiao, Lu Qin, Guoren Wang, Jeffrey Xu Yu,

and Rui Mao. 2022. I/O-Efficient Algorithms for Degeneracy Computation on

Massive Networks. IEEE Trans. Knowl. Data Eng. 34, 7 (2022), 3335–3348.
[36] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in

Large Dynamic Graphs. IEEE Trans. Knowl. Data Eng. 26, 10 (2014), 2453–2465.
[37] Chenhao Ma, Reynold Cheng, Laks V. S. Lakshmanan, and Xiaolin Han. 2022.

Finding Locally Densest Subgraphs: A Convex Programming Approach. In Proc.
VLDB Endow., Vol. 15. 2719–2732.

[38] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, and Xiaolin

Han. 2022. A Convex-Programming Approach for Efficient Directed Densest

Subgraph Discovery. In SIGMOD. 845–859.
[39] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie

Zhang, and Xuemin Lin. 2021. On Directed Densest Subgraph Discovery. ACM
Trans. Database Syst. 46, 4 (2021), 13:1–13:45.

[40] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and clustering

and Graph Coloring Algorithms. J. ACM 30, 3 (1983), 417–427.

[41] Robert J Mokken et al. 1979. Cliques, clubs and clans. Quality & Quantity 13, 2

(1979), 161–173.

[42] Jean-Claude Picard and Maurice Queyranne. 1982. A network flow solution to

some nonlinear 0-1 programming problems, with applications to graph theory.

Networks 12, 2 (1982), 141–159.
[43] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally Densest

Subgraph Discovery. In KDD. 965–974.
[44] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with

Interactive Graph Analytics and Visualization. In AAAI. 4292–4293.
[45] Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang.

2010. Dense Subgraphs with Restrictions and Applications to Gene Annotation

Graphs. In RECOMB (Lecture Notes in Computer Science, Vol. 6044), Bonnie Berger
(Ed.). Springer, 456–472.

[46] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and

Ümit V. Çatalyürek. 2013. Streaming Algorithms for k-core Decomposition. In

Proc. VLDB Endow., Vol. 6. 433–444.
[47] Ahmet Erdem Sariyüce and Ali Pinar. 2016. Fast Hierarchy Construction for

Dense Subgraphs. In Proc. VLDB Endow., Vol. 10. 97–108.
[48] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local Algorithms for

Hierarchical Dense Subgraph Discovery. In Proc. VLDB Endow., Vol. 12. 43–56.
[49] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2015.

Finding the Hierarchy of Dense Subgraphs using Nucleus Decompositions. In

WWW. 927–937.

[50] Stephen B Seidman and Brian L Foster. 1978. A graph-theoretic generalization

of the clique concept. Journal of Mathematical sociology 6, 1 (1978), 139–154.

[51] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2021. Theoretically and Prac-

tically Efficient Parallel Nucleus Decomposition. In Proc. VLDB Endow., Vol. 15.
583–596.

[52] Bintao Sun, Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2020.

KClist++: A Simple Algorithm for Finding k-Clique Densest Subgraphs in Large

Graphs. In Proc. VLDB Endow., Vol. 13. 1628–1640.
[53] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.

SIAM J. Comput. 1, 2 (1972), 146–160.
[54] Nikolaj Tatti. 2019. Density-Friendly Graph Decomposition. ACM Trans. Knowl.

Discov. Data 13, 5 (2019), 54:1–54:29.
[55] Charalampos E. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In

WWW. 1122–1132.

[56] Venkat Venkateswaran. 2004. Minimizing maximum indegree. Discret. Appl.
Math. 143, 1-3 (2004), 374–378.

[57] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks. In

Proc. VLDB Endow., Vol. 5. 812–823.
[58] Yichen Xu, Chenhao Ma, Yixiang Fang, and Zhifeng Bao. 2023. Efficient and

Effective Algorithms for Generalized Densest Subgraph Discovery. Proc. ACM
Manag. Data 1, 2 (2023), 169:1–169:27.

[59] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017. When En-

gagement Meets Similarity: Efficient (k, r)-Core Computation on Social Networks.

In Proc. VLDB Endow., Vol. 10. 998–1009.
[60] Feng Zhao and Anthony K. H. Tung. 2012. Large Scale Cohesive Subgraphs

Discovery for Social Network Visual Analysis. In Proc. VLDB Endow., Vol. 6.
85–96.

2945

	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES
	3 New Theoretical Insights
	3.1 Connection with LDS Decomposition
	3.2 Connection with Core Decomposition

	4 Algorithms for static graphs
	4.1 The Existing Path Algorithm
	4.2 A Re-orientation Network Flow Algorithm
	4.3 The Proposed Flow Algorithm
	4.4 The Proposed Flow++ Algorithm

	5 Dynamic maintenance algorithms
	5.1 Density Decomposition Update Theorem
	5.2 The Proposed Insertion Algorithm
	5.3 The Proposed Deletion Algorithm
	5.4 An Improved Deletion Algorithm

	6 Experiments
	6.1 Performance Studies
	6.2 Case Studies

	7 RELATED WORK
	8 CONCLUSION
	Acknowledgments
	References

