
Ensemble Clustering based on Meta-Learning and
Hyperparameter Optimization

Dennis Treder-Tschechlov

University of Stuttgart

Stuttgart, Germany

Dennis.Tschechlov@ipvs.uni-stuttgart.de

Manuel Fritz

University of Stuttgart

Stuttgart, Germany

Manuel.Fritz@ipvs.uni-stuttgart.de

Holger Schwarz

University of Stuttgart

Stuttgart, Germany

Holger.Schwarz@ipvs.uni-stuttgart.de

Bernhard Mitschang

University of Stuttgart

Stuttgart, Germany

Bernhard.Mitschang@ipvs.uni-stuttgart.de

ABSTRACT
Efficient clustering algorithms, such as 𝑘-Means, are often used in

practice because they scale well for large datasets. However, they

are only able to detect simple data characteristics. Ensemble clus-

tering can overcome this limitation by combining multiple results

of efficient algorithms. However, analysts face several challenges

when applying ensemble clustering, i. e., analysts struggle to (a) ef-

ficiently generate an ensemble and (b) combine the ensemble using

a suitable consensus function with a corresponding hyperparame-

ter setting. In this paper, we propose EffEns, an efficient ensemble

clustering approach to address these challenges. Our approach re-

lies on meta-learning to learn about dataset characteristics and

the correlation between generated base clusterings and the perfor-

mance of consensus functions. We apply the learned knowledge

to generate appropriate ensembles and select a suitable consensus

function to combine their results. Further, we use a state-of-the-art

optimization technique to tune the hyperparameters of the selected

consensus function. Our comprehensive evaluation on synthetic

and real-world datasets demonstrates that EffEns significantly out-

performs state-of-the-art approaches w.r.t. accuracy and runtime.

PVLDB Reference Format:
Dennis Treder-Tschechlov, Manuel Fritz, Holger Schwarz, and Bernhard

Mitschang. Ensemble Clustering based on Meta-Learning and

Hyperparameter Optimization. PVLDB, 17(11): 2880 - 2892, 2024.

doi:10.14778/3681954.3681970

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/tschechlovdev/EffEns.

1 INTRODUCTION
Efficient clustering algorithms, e. g., 𝑘-center algorithms such as

𝑘-Means, are often used in practice because they scale well for

large datasets [40, 66]. However, they are only able to detect simple

data characteristics and are not able to detect complex ones (e. g.,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3681970

circle-like clusters as shown in Figure 1). In contrast, complex clus-

tering algorithms, e. g., density-based algorithms, are able to detect

complex characteristics, but they are not feasible for large datasets

due to high runtime complexities [30, 36]. To detect complex data

characteristics efficiently, we aim for an ensemble clustering [57]

approach by combining multiple results of efficient algorithms.

Ensemble clustering consists of two steps (cf. Figure 1): (1) Ensem-

ble generation, where a large set of base clusterings E is generated

from the given dataset D, and (2) consensus clustering, where a

consensus function is used to combine the base clusterings of the

ensemble E into a more accurate final clustering result.

However, ensemble clustering methods are often not established

in practice as only experts know how to apply and benefit from

them. Therefore, popular machine learning libraries such as scikit-

learn [51] do not provide any ensemble clustering methods. Thus,

especially novice analysts do not know how to generate an ensem-

ble and how to select a suitable consensus function to achieve an

accurate final clustering result, e. g., to detect complex data charac-

teristics such as circle-like clusters. The reason is that analysts face

several challenges when applying ensemble clustering.

To obtain an accurate final clustering result, ensemble generation

should produce diverse and accurate base clusterings [10, 40, 57, 64].

To achieve diversity, different clustering configurations, i. e., cluster-

ing algorithms and hyperparameter settings, have to be executed

on D. Yet, it is not clear how to select configurations from the

configuration space, i. e., the search space of all possible clustering

configurations, to obtain diverse and accurate clustering results.

Exploring the whole configuration space is infeasible. Thus, it is not

clear how to generate base clusterings efficiently (cf. challenge

C1 in Figure 1).

From generated base clusterings, literature typically selects a

more rigorous subset – the ensemble E – based on specific criteria

that reflect a trade-off between diversity and accuracy [1, 8, 23,

32, 48, 67]. However, these approaches require the size of the en-

semble𝑚 as input, i. e., the number of base clusterings in E. Yet,
larger ensemble sizes do not guarantee a higher accuracy; on the

contrary, larger ensemble sizes often decrease the accuracy of the

final clustering result [23, 38]. Therefore, the size of the ensemble

is dependent on the characteristics of the data and it is unclear how

to select the size of the ensemble (cf. C2 in Figure 1) in advance.

Regarding the consensus step, literature comprises many differ-

ent consensus functions (e. g., [5, 10, 18, 31, 37, 38, 50, 57–59, 64]).

2880

https://doi.org/10.14778/3681954.3681970
https://github.com/tschechlovdev/EffEns
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681970
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(1) Ensemble
Generation

(2) Consensus
Clustering

C1: Efficient
Generation of

Base Clusterings

C2: Selection of
Ensemble Size

C3: Selection of
Consensus
Function

Dataset
(𝒟)

Final
Clustering

Result

…

Ensemble (ℰ) of m
Base Clusterings

C4: Efficient
Hyperparameter

Optimization

Meta-learning Optimizer

Figure 1: Overview of general steps in ensemble clustering
and the challenges (C1 - C4) to achieve accurate results. We
use meta-learning to address the challenges C1 - C3 and an
optimizer to address challenge C4.

Hence, it is not clear how to select a consensus function for a

given D (cf. C3 in Figure 1).

Furthermore, consensus functions have hyperparameters, e. g.,

the number of clusters in the final clustering result, which influence

the consensus clustering result. Therefore, the hyperparameters
have to be optimized efficiently (cf. C4 in Figure 1).

Some of the existing literature on ensemble clustering addresses

challenge C1, but none of them focuses on C2 - C4 (cf. Table 1). Exist-

ing AutoML for clustering systems use hyperparameter optimizers

that can be adapted to optimize hyperparameters of consensus func-

tions (C4). Yet, they are not able to address C1 - C3 (cf. Table 1).

Thus, existing approaches only address either challenge C1 or C4.

In this paper, we propose the efficient ensemble clustering ap-

proach EffEns. EffEns is the first end-to-end ensemble clustering

approach that addresses the challenges C1 - C4 together and is

still able to detect complex data characteristics efficiently. Our ap-

proach uses meta-learning, which is often referred to as “learning

to learn” [13], to address C1 - C3 and adapts existing optimizers to

address C4 (cf. Figure 1). Our contributions include the following:

• We use meta-learning to learn which base clustering results

are required for a clustering ensemble and which consensus

function is suitable w.r.t. the ensemble and the data char-

acteristics. To this end, we learn two classification models

based on data characteristics: First, an ensemble generation

model, which can directly predict the ensemble without

requiring the ensemble size as input, and second, a consen-

sus function model, which predicts a suitable consensus

function. Thus, we can address C1 - C3.

• We adapt an existing hyperparameter optimizer to tune the

hyperparameters of the selected consensus function (C4).

• In our comprehensive evaluation, we show that EffEns out-

performs existing state-of-the-art baselines w.r.t. clustering

accuracy and runtime on synthetic and real-world data.

The remainder of this paper is structured as follows: Section 2

formulates the challenges that we address in this paper. We give

an overview of related works and their limitations in Section 3.

Section 4 presents the intuition of our approach. We describe the

details of the learning phase in Section 5, while we detail on the

application phase in Section 6. In Section 7, we discuss the results

of our evaluation and conclude this paper in Section 8.

2 CHALLENGES AND PROBLEM STATEMENT
Let D = {𝑥1, ..., 𝑥𝑛} ∈ R𝑛×𝑓

be an unseen dataset with 𝑛 instances

and each instance is an 𝑓 -dimensional feature vector. We define a

clustering ensemble as E = {𝑦1, ..., 𝑦𝑚}, while 𝑦𝑖 describes a single
base clustering result. To generate the base clusterings, different

clustering configurations have to be executed. Therefore, we assume

a clustering configuration space CS = A × H that comprises a

set of clustering algorithms A and their hyperparameter values

H . We denote a configuration from the configuration space as

𝑐𝑖 = (𝑎, ℎ) ∈ CS. A base clustering is the result of executing 𝑐𝑖 on

D, i. e., a label-vector𝑦𝑖 ∈ N𝑛
that comprises for each data instance

of D the corresponding cluster label. The performance of a base

clustering is typically assessed with an internal clustering validity

index (𝐶𝑉 𝐼) [33, 34, 44] that measures the internal structure of a

clustering result. A𝐶𝑉 𝐼 is a function𝐶𝑉 𝐼 : R𝑛×𝑓 ×N𝑛 → R. It takes
as inputsD and 𝑦𝑖 , while the output is a real value. We assume that

lower 𝐶𝑉 𝐼 values indicate better clustering results. Otherwise, we

can multiply its values with -1 to obtain a minimization objective.

A consensus function 𝐶𝐹 : N𝑛×𝑚 → N𝑛
is used to combine

the clustering results. That is, the consensus function has as input

a clustering ensemble E of size 𝑚 and combines the result into

a single consensus clustering result. Literature comprises many

different consensus functions that also have additional hyperpa-

rameters. Therefore, we assume a set of consensus functions CF ,
while each 𝑐 𝑓 ∈ CF has its search space of hyperparameter values

H𝑐 𝑓 . Our general goal is to obtain a valuable ensemble clustering

result in 𝑂 (𝑛). Thus, both, the ensemble generation and the con-

sensus step have to be in 𝑂 (𝑛). For the generation, we can only

consider clustering algorithms in CS with a linear runtime, such as

𝑘-center clustering algorithms [4, 40, 46]. Similarly, we only include

consensus functions with a linear runtime in CF . Based on these,

we address the following challenges regarding ensemble generation

and consensus clustering:

C1: Efficient Generation of Base Clusterings. The first chal-
lenge is to generate a set of base clusterings B ⊂ B𝐶𝑆 . Here, B𝐶𝑆
denotes the full set of all possible base clusterings that would be

produced when executing all clustering configurations from the

configuration space CS. Furthermore, B should contain diverse

and accurate base clusterings. However, even when only consider-

ing 𝑘-center algorithms, exploring the whole CS would still be too

time-consuming or even infeasible [27–29, 62]. Thus, we aim for a

generation strategy that does not require exploring the whole CS,
while still generating diverse and accurate clustering results.

C2: Ensemble Selection. From the set of base clustering B, a
subset E∗𝑚 ⊆ B of𝑚 clustering results has to be selected as ensem-

ble that can be used for the consensus step. Literature comprises

several methods to achieve such a subset with decent diversity and

accuracy at the same time. These existing approaches require the

ensemble size𝑚 as input. However, selecting𝑚 is not trivial as it

has a major influence on the consensus step and is dependent on the

data characteristics as well as the consensus function. Therefore,

we aim for an approach to select the ensemble without specifying

𝑚 for a new dataset.

C3: Selection of Consensus Function. We aim to select a

consensus function 𝑐 𝑓 ∈ CF that can achieve accurate clustering

results. As literature comprises different consensus functions and

2881

Table 1: Overview of related work for AutoML and ensemble clustering approaches.

Approaches

Complex Data

Characteristics

C1: Efficient Ensemble

Generation

C2: Selection of

Ensemble Size

C3: Selection of

Consensus Function

C4: Efficient Hyperparameter

Optimization

Ensemble

Clustering

Generation of Base Clusterings [10, 26, 58, 60, 64],

Ensemble Selection [1, 8, 23, 32, 48, 67]

X ✓ X X X

Consensus Functions [6, 10, 12, 37, 38, 50, 57–59, 64] ✓† X X X X

AutoML

Approaches

AutoML4Clust (AML4C) [62] X ✓ X X ✓

AutoClust [53], AutoCluster [45],

CSMartML [20], TPE-AutoClust [21]

✓ X X X ✓

† Depending on concrete consensus function as each is able to detect different data characteristics and they have different runtime complexities.

each is better suited for different data characteristics, the selection

should take the data characteristics of D into account. Further, as

consensus functions combine the ensemble in different ways, the

selection has to be based on the ensemble E∗𝑚 as well.

C4: Efficient Hyperparameter Optimization. The hyperpa-
rameters of consensus functions have a major influence on the final

clustering accuracy. For instance, many consensus functions have

as hyperparameter the final number of clusters [6, 23, 50, 57, 58].

However, the search space of hyperparameter values for a consen-

sus functionH𝑐 𝑓 may be large [27, 28, 62] and thus it is crucial to

select the hyperparameters efficiently.

In our paper, we address the challenges C1 - C4 by focusing on

the following equation:

𝑦∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑐 𝑓 ∈CF, ℎ∈H𝑐𝑓 , E∗𝑚⊂B𝐶𝑆

𝐶𝑉 𝐼 (D, 𝑐 𝑓 (E∗𝑚, ℎ)) (1)

such that ∀𝑦𝑖 ∈ E∗𝑚 : 𝐶𝑉 𝐼 (D, 𝑦∗) ≤ 𝐶𝑉 𝐼 (D, 𝑦𝑖), i. e., the con-
sensus clustering result is more accurate than each individual base

clustering in the ensemble.

3 RELATEDWORK
We identified two relevant groups of related work: (1) existing

approaches to ensemble clustering, which combine multiple con-

figurations to achieve better clustering results, and (2) AutoML

approaches for clustering, which find a single best configuration.

Table 1 summarizes our key findings regarding related work.

(1) Ensemble Clustering: We discuss approaches for generat-

ing base clusterings, ensemble selection, and consensus clustering.

To obtain a large set of base clusterings with diverse cluster-

ing results, existing works execute various clustering configura-

tions [1, 10, 32, 64]. Using clustering algorithms with high compu-

tational complexity, i. e., 𝑂 (𝑛2) or even higher, is not feasible for

large datasets [10, 27, 29, 40, 62]. The most often used method in

literature is to run 𝑘-Means with an exhaustive search [23, 42, 57],

i. e., to execute all values for 𝑘 in a defined search space. This has

the benefit of relying on an efficient clustering algorithm and still

creating diversity in the ensembles as the results vary in their num-

ber of clusters. However, it is not clear in advance how to define

such a search space for 𝑘 . On the one hand, large search spaces may

lead to diverse clustering results, but executing all 𝑘 values in a

large search space is, especially for large datasets, infeasible in prac-

tice [27, 29, 62]. A small search space may lead to too similar results,

so that the consensus is not able to increase the accuracy [57].

From the generated set of base clusterings, literature selects a

subset that exhibits a trade-off between diversity and accuracy. This

is also known as overproduce and select [23, 32, 42, 48], i. e., all 𝑘

values in a pre-defined search space are executed to generate the

base clusterings and a subset of the base clusterings is selected as

the ensemble. Nevertheless, these approaches require the size of the

ensemble, i. e., the number of base clusterings, as an input param-

eter. This ensemble size highly influences the selected ensemble

and thus the final consensus clustering result as well. Furthermore,

existing approaches on the generation of base clustering and en-

semble selection use a manually selected consensus function with

its hyperparameter settings. Thus, they do not address C3 and C4.

Literature comprises many different consensus functions that

combine an ensemble into a final clustering result [5, 10, 18, 31, 37,

38, 50, 57–59, 64]. These consensus functions vary in how they rep-

resent the ensemble, e. g., as label or co-occurence matrix [64], and

how they combine the ensemble, e. g., using voting or clustering the

ensemble representation [10]. The consensus functions also have

hyperparameters, which often include the final number of clusters

to produce in the consensus clustering. The consensus functions

differ in their runtime complexity, i. e., some have a linear runtime

complexity, while others have a quadratic or higher runtime com-

plexity [57, 64]. Furthermore, literature has shown that different

consensus functions are better suited to detect different data char-

acteristics [40, 57, 64]. Nevertheless, literature does not comprise

an approach that is able to select an appropriate consensus function

with different hyperparameter settings for different datasets yet.

(2) AutoML Approaches for Clustering: Approaches of

this category address the combined algorithm selection and

hyperparameter optimization (CASH) problem for clustering anal-

yses but differ in the way they solve it.

Tschechlov et al. introduce AutoML4Clust (AML4C) [62], an

AutoML approach to tackle the CASH problem for clustering that

explores the clustering configuration space CS = A × H . As

AML4C focuses on 𝑘-center algorithms, it can be applied efficiently

to large datasets but is also limited to certain data characteristics.

AutoClust [53], AutoCluster [45], and CSmartML [20] use meta-

learning to reduce the configuration space to a single algorithm and

subsequently optimize its hyperparameters, e. g., using Bayesian

Optimization [56]. They rely on meta-features to find datasets with

similar characteristics and select a single algorithm that performed

best based on similar datasets. However, they may select a complex

clustering algorithm and thus, face long runtimes or the selected

algorithm is not feasible for large datasets. If they select an efficient

algorithm, they can only detect certain data characteristics.

Summary: Summarizing related work (cf. Table 1), existing ap-

proaches that can detect complex data characteristics are only able

2882

Optimizer

A1:
Extract Data

Characteristics

A2:
Predict

Ensemble

A4:
Predict

Consensus
Function

New Dataset
Final

Clustering
Result

A3:
Generate
Ensemble

C2 C3C1

A5:
Hyperparameter

Optimization

C4

Ensemble
Generation

Model (𝐄𝐆𝐌)

Consensus Function
Model (𝐂𝐅𝐌)

𝑘 = 2
𝑘 = 3
…

Result of the Learning Phase

Optimizer

Figure 2: Intuition of the application phase, i. e., howwe apply
ensemble clustering with steps A1 - A5 on a new dataset.

to address either C1 or C4. Ensemble clustering approaches can gen-

erate the ensemble efficiently using efficient clustering algorithms.

However, none of them is able to address C2 - C4. AutoML for clus-

tering approaches have to rely on complex clustering algorithms to

detect complex data characteristics. Thus, they are not feasible for

large datasets. While their hyperparameter optimizers can be used

to select the hyperparameters of consensus functions (C4), they do

not address C1 - C3 as they do not use ensemble clustering at all.

4 EFFENS: EFFICIENT ENSEMBLE
CLUSTERING

In this section, we illustrate the intuition of EffEns. To this end, we

first describe its application phase, i. e., how we apply ensemble

clustering to new unseen datasets (Section 4.1). This application

phase relies on two classification models. In Section 4.2, we describe

how we use the learning phase to learn these models.

4.1 Intuition of the Application Phase
Figure 2 shows the general steps of how we cluster new unseen

datasets. In step A1, we extract the data characteristics of a new

dataset as both generating the ensemble and selecting the consen-

sus function highly depend on these data characteristics. In step A2,

we apply an ensemble generation model (𝐸𝐺𝑀), which is a clas-

sification model that, based on the data characteristics, predicts the

clustering configurations to be used for generating the clustering

ensemble. Thus, we are able to address the challenges C1 and C2

both together as we directly predict the clustering ensemble and do

not have to use an overproduce-and-select approach. Hence, EGM

implicitly selects the ensemble size 𝑚 and in contrast to related

work, we do not require𝑚 as input for unseen datasets. Step A3

generates the clustering ensemble by executing the predicted 𝐸𝐺𝑀

configurations. We rely on 𝑘-Means as a clustering algorithm due

to its efficiency and hyperparameter 𝑘 for diversity. However, our

approach is not limited to specific clustering algorithms, i. e., it is

possible to use different clustering algorithms and their hyperpa-

rameters as well. In step A4, we select a consensus function based

on a consensus function model (𝐶𝐹𝑀). Similar to 𝐸𝐺𝑀 , this

model is trained on data characteristics and predicts a consensus

function for the new dataset. Thus, we are able to address chal-

lenge C3. Step A5 optimizes the hyperparameters of the selected

consensus function. For this, we use efficient hyperparameter

optimization techniques that are commonly used in existing

AutoML systems [25, 45, 53, 62] and therefore address challenge

C4. As result, we obtain a final clustering result.

Nevertheless, the main question remains: how do we obtain the

models 𝐸𝐺𝑀 and 𝐶𝐹𝑀? In the following, we describe the intuition

of our prior learning phase that produces these models.

4.2 Intuition of the Learning Phase
The learning phase of our approach is executed only once before,

resulting in the ensemble generation model (𝐸𝐺𝑀) and the con-

sensus function model (𝐶𝐹𝑀). Figure 3 gives an intuition of how

we obtain our models. First, we assume that we have access to a

dataset repository DR with several datasets that exhibit varying

characteristics. In our evaluation (cf. Section 7), we use synthetically

generated data as this makes it easy to obtain data with varying

characteristics in a controlled manner. Yet, such datasets could

also be taken from existing machine learning repositories such as

OpenML [63] or the UCI Machine Learning Repository [19]. For

these datasets, ground-truth clustering results are available and

thus we can use them in our learning phase. Nevertheless, a few

questions arise on how to acquire the relevant training data and

the relevant classification labels for the two models. In particular,

we have to answer the following questions (cf. Figure 3):

Q1: How tomeasure data characteristics?Our models should

predict the ensemble and the consensus function based on data

characteristics. To measure data characteristics, we extract so-called

meta-features [54]. These Meta-Features (cf. Figure 3) numerically

describe different characteristics of a dataset, e. g., the number of

instances (𝑛) or standard deviation of feature values (𝑠𝑡𝑑).

Q2: How to measure the performance of clustering ensem-
bles and consensus functions? After applying consensus cluster-
ing, we obtain a final clustering result. Yet, the performance of the

consensus step is dependent on the clustering ensemble and thus

we have to measure the performance of both simultaneously. To

this end, we assume a repository Evaluated Ensembles (cf. Figure 3)
that contains different settings of clustering ensembles and consen-

sus functions. As mentioned previously, we know the ground-truth

clustering, i. e., the clustering label for each data instance, in each

already clustered dataset. Hence, we can use an external clustering

validity index to compare the clustering result with ground-truth

clustering [34]. Figure 3 shows the Adjusted Mutual Information

(AMI) [55, 65] being used for that purpose. Based on the AMI, we

can decide for each dataset which setting of clustering ensemble

and consensus function leads to the best final clustering result.

Q3: How to select the consensus function? As we know

which consensus function performs best on a dataset, we can train

a multi-class single-label classification model that predicts for each

dataset a suitable consensus function.We dub this model the consen-

sus function model (CFM). As the consensus function is dependent

on data characteristics, we use meta-features as input data and the

selected consensus function as the target label (cf. Training Data for
CFM in Figure 3). For a new dataset, we have to extract the same

meta-features and can then predict a suitable consensus function.

Q4: How to generate the clustering ensemble? Similar to

CFM, we also use the meta-features as input for our ensemble

generation model (EGM). EGM is a binary multi-label classification

2883

Q2: How to measure performance of
ensemble and consensus function?

Dataset Ensemble
Consensus
Function

AMI

𝒟1 k={2, 25, 30, …} QMI 0.8

𝒟1 k={2, 4, …} ACV 0.9

… … … …

𝒟2 k={3, 50, …} ACV 0.5

𝒟2 k={3, 8, …} MCLA 1.0

… … … …

Evaluated Ensembles (ℰℰ)

Q3: How to select
consensus function?

Consensus Function
Model (𝐂𝐅𝐌)

Ensemble Generation
Model (𝐄𝐆𝐌)

Q4: How to
generate clustering

ensemble?

C2C1

Training Data for CFM

Data-
set

𝒏 𝒇 𝒔𝒕𝒅 …

𝒟1 1,000 2 12.5 …

𝒟2 5,000 2 25.8 …

𝒟3 5,000 50 162.1 …

… … … … …

Meta-Features (ℳℱ)

Q1: How to measure
data characteristics?

𝒏 𝒇 …
Consensus
Function

1,000 50 … ACV

10,000 10 … MCLA

… … … …

𝒏 𝒇 … k=2 k=3 …

1,000 50 … …

10,000 10 … …

… … … … … …

Training Data for EGM

Dataset Repository
𝓓𝓡

Dataset 𝒟1

Dataset 𝒟n

…
Labels y1

Labels yn

C3

Legend:
Example referenced in the text
Training data for CFM
Training data for EGM

Figure 3: Intuition of the learning phase.

model [35] that predicts for each clustering configuration whether

its result should be used in the ensemble or not. For example, EGM

predicts whether the result of 𝑘-Means with 𝑘 = 2, 𝑘 = 3, etc should

be in the clustering ensemble. For that purpose, we transform the

ensemble from Evaluated Ensembles via one-hot encoding and use

the encoded clustering configurations as binary multi-label target

columns (cf. Training Data for EGM in Figure 3).

In Section 5, we discuss how we obtain the training data system-

atically and how we derive the models EGM and CFM.

5 LEARNING PHASE
In this section, we describe the steps of the learning phase in more

detail, in particular, how we obtain training data for our CFM and

EGM models. As we execute the learning phase once, we may also

tolerate a longer runtime than in the application phase. Once we

trained the models, we can apply them to any unseen dataset.

As shown in Figure 3, our learning phase relies on a dataset

repository, which contains multiple datasets. We define it as DR =

{(D1, 𝑦
𝐺𝑇
1
), ..., (D𝑜 , 𝑦

𝐺𝑇
𝑜)}, where each datasetD ∈ DR may have

varying numbers of instances and features. To learn the perfor-

mance of the ensemble w.r.t. the subsequent consensus step, we

require information about ground-truth clustering. Therefore, the

datasets in the dataset repository also contain the ground-truth

clustering, i. e., the clustering label for each data instance. For each

dataset D, we denote its ground-truth clustering labels as 𝑦𝐺𝑇 .

Algorithm 1 shows the five steps L1 - L5 of our learning phase.

In the following, we explain the details of each of these steps.

5.1 Extract Meta-Features
In this step L1 (line 2 in Algorithm 1), we learn the character-

istics of different datasets such that we can compute the simi-

larity of datasets based on these characteristics. Therefore, we

compute for each dataset meta-features {𝑚𝑓1, ...,𝑚𝑓𝑟 } that cap-
ture these characteristics and store the results in the setMF =

{(D,𝑚𝑓1 (𝐷), ...,𝑚𝑓𝑟 (D)) |D ∈ DR} (line 10). Each meta-feature

𝑚𝑓𝑖 describes a function𝑚𝑓𝑖 : DR → R, i. e., it assigns to a dataset
D ∈ DR a real value. The meta-features can be general meta-

features such as the number of instances or features [54], statistical

ones as the mean or standard deviation [24], based on information

theory [54], or even more complex ones such as landmarking [45],

where a clustering algorithm is applied to the dataset and the re-

sults are used as meta-features. The choice of the meta-feature set

is crucial for a precise representation of data characteristics.

In a previous work [61], we evaluated different meta-feature sets,

including meta-feature sets from existing AutoML for clustering

systems. A combination of statistical and general meta-feature sets

achieved the best results [61]. Therefore, we adopt this set of 40

meta-features that include amongst others the number of instances

𝑛, features 𝑓 , and the standard deviation 𝑠𝑡𝑑 (cf. Figure 3).

5.2 Generate Base Clusterings
In step L2, we generate the base clusterings (lines 12 - 22). For each

datasetD fromDR and each𝑘-value from a given range of𝑘-values

H , we execute 𝑘-Means onD (line 16). The result is a label-vector𝑦

that assigns a clustering label to each data instance from D. In line

17, we calculate the AMI values 𝑎𝑚𝑖 of each clustering result w.r.t.

to the ground-truth 𝑦𝐺𝑇 . We require this information for step L3

to select ensembles with high accuracy. We store the information

(D, 𝑦, 𝑎𝑚𝑖, 𝑘) in the set B, so that we know the clustering result

𝑦𝑖 , the accuracy of each clustering result 𝑎𝑚𝑖 , on which dataset D
we have obtained it, and which clustering configuration 𝑘 we have

used to obtain the result (line 18). The result of this step is the set

of base clusterings B (line 21).

5.3 Evaluate Ensembles
In step L3, we evaluate the performance of different ensemble sub-

sets of the set of base clusterings w.r.t. different consensus functions.

The procedure Evaluate_Ensembles(...) shows the details of this
step. The inputs for this procedure are the dataset repository DR,
the set of base clusterings B, and a set of ensemble sizesM that

defines the different ensemble subset sizes that we evaluate. In our

evaluation, we useM = {5, 10, 15, ..., 50}. Note that we requireM
only in the learning phase, while our EGM model implicitly selects

the ensemble size in the application phase for new unseen datasets.

First, we iterate over the datasets and their ground-truth labels

(D, 𝑦𝐺𝑇) ∈ DR (line 25), the different ensemble sizes𝑚 ∈ M (line

26), and different strategies to select the ensemble subsets (line

27). To this end, we use the two most-prominent approaches from

literature [23, 32, 48]:

2884

Algorithm 1 Algorithm for the learning phase.

Input: DR: Dataset repository, H: Hyperparameter search space for the ensemble

generation,M: Set of possible ensemble size values, CF: Consensus functions
Output: 𝐶𝐹𝑀 : Consensus function model, 𝐸𝐺𝑀 : Ensemble Generation Model.

1: procedure Learning_Phase(DR, H,M, CF)
2: MF ←Extract_Meta_Features(DR); ⊲ L1

3: B ← Generate_Base_Clusterings(DR,H); ⊲ L2

4: EE ←Evaluate_Ensembles(DR, B,M, CF); ⊲ L3

5: CF𝑏𝑒𝑠𝑡 , E𝑏𝑒𝑠𝑡 ← Select_Best_CF_And_Ensemble(EE); ⊲ L4

6: 𝐶𝐹𝑀, 𝐸𝐺𝑀 ← Train_CFM_And_EGM(MF, CF𝑏𝑒𝑠𝑡 , E𝑏𝑒𝑠𝑡) ; ⊲ L5

7: return𝐶𝐹𝑀, 𝐸𝐺𝑀 ;

8: end procedure

9: procedure Extract_Meta_Features(DR) ⊲ L1 Details

10: return { (D,𝑚𝑓1 (D), 𝑚𝑓2 (D), ..., 𝑚𝑓𝑟 (D)) |D ∈ DR};
11: end procedure

12: procedure Generate_Base_Clusterings(DR,H) ⊲ L2 Details

13: B ← ∅;
14: for (D, 𝑦𝐺𝑇) ∈ DR do
15: for 𝑘 ∈ H do
16: 𝑦 ← Execute_KMeans(D, 𝑘) ;
17: 𝑎𝑚𝑖 ← AMI(𝑦, 𝑦𝐺𝑇) ;
18: B ← B ∪ (D, 𝑦, 𝑎𝑚𝑖, 𝑘) ;
19: end for
20: end for
21: return B;
22: end procedure

23: procedure Evaluate_Ensembles(DR, B,M, CF) ⊲ L3 Details

24: EE ← ∅
25: for (D, 𝑦𝐺𝑇) ∈ DR do
26: for𝑚 ∈ M do
27: for Ens_Select ∈ {Quality_Select,Cluster_and_Select} do
28: BD ← Get_B_For_D(B,D) ;
29: E𝑚 ← Ens_Select(BD ,𝑚) ;

⊲ Evaluate consensus functions
30: for 𝑐 𝑓 ∈ CF do
31: 𝑘∗ ← Uniqe_Labels(𝑦𝐺𝑇) ;
32: 𝑦 ← 𝑐 𝑓 (E𝑚, 𝑘∗) ;

⊲ Evaluate with ground-truth 𝑦𝐺𝑇

33: 𝑎𝑚𝑖 ← AMI(𝑦, 𝑦𝐺𝑇) ;
34: EE ← EE ∪ { (D, 𝑐 𝑓 , 𝑎𝑚𝑖, E𝑚) };
35: end for
36: end for
37: end for
38: end for
39: return EE;
40: end procedure

41: procedure Select_Best_CF_and_Ensemble(EE) ⊲ L4 Details

42: E𝑏𝑒𝑠𝑡 ← ∅; CF𝑏𝑒𝑠𝑡 ← ∅;
43: for D ∈ DR do
44: E𝐷 , 𝑐 𝑓𝐷 ← select ensemble E𝐷 and cf with best AMI value;

45: E𝑏𝑒𝑠𝑡 ← E𝑏𝑒𝑠𝑡 ∪ { (D, E𝐷) };
46: CF𝑏𝑒𝑠𝑡 ← CF𝑏𝑒𝑠𝑡 ∪ { (D, 𝑐 𝑓𝐷) };
47: end for
48: return E𝑏𝑒𝑠𝑡 , CF𝑏𝑒𝑠𝑡 ;
49: end procedure

50: procedure Train_CF_And_EGM(MF, E𝑏𝑒𝑠𝑡 , CF𝑏𝑒𝑠𝑡) ⊲ L5 Details

51: 𝐶𝐹𝑀 ← Train classification model onMF with labels CF𝑏𝑒𝑠𝑡 ;
52: E𝑏𝑒𝑠𝑡 ← One_Hot_Encoding(E𝑏𝑒𝑠𝑡) ;
53: 𝐸𝐺𝑀 ← Train classification model onMF with labels E𝑏𝑒𝑠𝑡 ;
54: return𝐶𝐹𝑀, 𝐸𝐺𝑀 ;

55: end procedure

(i)Quality_Select, i. e., we select the𝑚 clustering results from

the ensemble with the highest accuracy.

(ii) Cluster_and_Select, i. e., we cluster all base clusterings in

B by their similarity and select from each cluster the base clustering

with the highest accuracy. For more details of this selection strategy,

we refer to the work of Fern and Lin [23].

In line 28, we retrieve the set of base clusterings BD that we

generated for dataset D. Subsequently, we apply the ensemble se-

lection strategy to obtain the selected ensemble E𝑚 with size𝑚

(line 29). In lines 30 - 36, we use the selected ensemble to evaluate

different consensus functions. As we know the ground-truth clus-

tering labels, we also know the actual number of clusters 𝑘∗ of each
dataset (line 31). Then, we execute 𝑐 𝑓 with 𝑘∗ as hyperparparameter

on the selected ensemble E𝑚 to obtain the clustering labels 𝑦 (line

32). To measure the performance of the consensus configuration,

we calculate the AMI value using the consensus clustering labels 𝑦

and the ground-truth labels 𝑦𝐺𝑇 (line 33). In line 34, we store the

information (D, 𝑐 𝑓 , 𝑎𝑚𝑖, E𝑚) in the set EE. Finally, we return the

set of evaluated ensembles EE (line 39).

Figure 3 shows examples of entries in EE. For instance, on
dataset D1 (green color in Figure 3) with 1,000 instances, 2 fea-

tures and a standard deviation of 12.5, we select the clustering

results of 𝑘-Means with 𝑘 = 2, 4, ... from the set of base clustering

B to form our ensemble. Then, we executed the ACV [6] consensus

function to combine the ensemble into a single clustering result

and achieved an AMI score of 90% (the best score for D1 in EE).

5.4 Select Best CF and Ensemble
In step L4, we select the best-performing combination of consensus

function (CF) and ensemble. First, we iterate over each dataset

(line 43). Then, we actually select the best ensemble and the best

consensus function for the datasetD (line 44). As selection criteria,

we use the AMI values, i. e., we select for each dataset the ensemble

and the consensus function with the best AMI values. Then, we

store these best ensembles and the best consensus functions (lines

45 and 46). Finally, we return the set of best ensembles E𝑏𝑒𝑠𝑡 and
best consensus function CF𝑏𝑒𝑠𝑡 (line 48).

To illustrate this step: on dataset D1 (highlighted in green in

Figure 3), combining the ensemble of clustering results from 𝑘-

Means with 𝑘 = 2, 4, ... using the consensus function ACV achieved

the best AMI score of 90%. Thus, one entry in Training Data for
CFM (cf. Figure 3), i. e., CF𝑏𝑒𝑠𝑡 in Algorithm 1, has the meta-feature

values of D1 as features and the consensus function ACV as target

class label. In a similar way, for Training Data for EGM, we have

the meta-feature values of D1 as features and labels that indicate

for each 𝑘-value whether it is in the best ensemble or not. So, in

this example, we have 𝑘 = 2, 𝑘 = 4, etc in the ensemble for D1.

5.5 Train CFM and EGM
In the last step, we use the collected data to train our 𝐶𝐹𝑀 and

𝐸𝐺𝑀 models (line 6). That is, we use for both models the meta-

features as input data. For CFM, we use the selected consensus

functions for the respective dataset as target column to train a

multi-class classification model (line 51). The set of best ensembles

E𝑏𝑒𝑠𝑡 however may contain different 𝑘-values. Therefore, we first

have to transform the ensemble in a way that we can use it as

multi-label classification target. To this end, in line 52, we apply

one-hot-encoding on E𝑏𝑒𝑠𝑡 so that we have one column for each

𝑘-value and the values of the rows are either 1 (𝑘-value is in the

ensemble) or 0 (not in the ensemble). Subsequently, we can train

2885

Algorithm 2 Algorithm for the application phase.

Input: D𝑛𝑒𝑤 : New unseen dataset, 𝑏: Budget,𝐶𝑉 𝐼 : Clustering validity index, H𝑐𝑓 :

Hyperparameter search space,𝐶𝐹𝑀 : Consensus function model trained in our

learning phase, 𝐸𝐺𝑀 : Ensemble generation model trained in our learning phase.

Output: 𝑦∗ : Final clustering result.

1: procedure Application_Phase(D𝑛𝑒𝑤 , 𝑏,𝐶𝑉 𝐼 , H,𝐶𝐹𝑀 , 𝐸𝐺𝑀)

⊲ Initialization
2: 𝑐𝑣𝑖∗ ←∞; 𝑦∗ ← ∅; E ← ∅

⊲A1: Extract Meta-Features
3: MF𝑛𝑒𝑤 ←Extract_Meta_Features(DR)

⊲A2: Predict Clustering Ensemble
4: K ← 𝐸𝐺𝑀.Predict_Ensemble(MF𝑛𝑒𝑤)

⊲A3: Generate Clustering Ensemble
5: for 𝑘 ∈ K do
6: 𝑦 ← KMeans(D𝑛𝑒𝑤 , 𝑘)
7: E ← E ∪ {𝑦}
8: end for

⊲A4: Predict Consensus Function
9: 𝑐 𝑓 ← 𝐶𝐹𝑀.Predict_Consensus_Function(MF𝑛𝑒𝑤)

⊲A5: Optimize Hyperparameters
10: 𝑂 ← Init_Optimizer({𝑐 𝑓 },H𝑐𝑓)
11: for 𝑖 = 1, ..., 𝑏 do
12: 𝑐𝑐𝑖 ← 𝑂.select_configuration()
13: 𝑦𝑖 ← 𝑐𝑐𝑖 (E)
14: 𝑐𝑣𝑖𝑖 ← CVI(D, 𝑦𝑖)
15: if 𝑐𝑣𝑖𝑖 < 𝑐𝑣𝑖∗ then
16: 𝑐𝑣𝑖∗ ← 𝑐𝑣𝑖𝑖
17: 𝑦∗ ← 𝑦𝑖
18: end if
19: 𝑂.Update(𝑐𝑐𝑖 , 𝑐𝑣𝑖𝑖)
20: end for
21: return 𝑦∗

22: end procedure

the 𝐸𝐺𝑀 model (line 53). For any new dataset, we can then use its

meta-features as input to EGM and CFM to predict the consensus

function and the clustering ensemble.

For𝐶𝐹𝑀 , we could use any kind of classificationmodel. However,

as we have only a limited amount of training data (we have as

much training data as the number of datasets in DR), we use a
robust classification model, e. g., Random Forest [14]. For 𝐸𝐺𝑀 , we

have only limited training data as well and also require a model

that supports multi-label classification. Random Forest can also be

applied to multi-label classification problems by using so-called

label power set transformation [11, 35], which transforms the multi-

label problem into a multi-class problem using power sets. Thereby,

we can also learn correlations between the classification labels, e. g.,

𝑘 = 2 is often used in an ensemble, but only in combination with

𝑘 = 50. In line 54, we return both models, which are also the final

results of the overall learning phase.

6 APPLICATION PHASE
In this section, we detail on the steps of the application phase of our

approach. Figure 2 shows its main steps. Similar to existing AutoML

for clustering approaches that also rely on optimization techniques,

our approach has as inputs: (i) D𝑛𝑒𝑤 ⊂ R𝑛
, a new dataset with 𝑓

features that is intended to be clustered, (ii)𝐶𝑉 𝐼 , which is an internal

clustering validity index to evaluate clustering results, (iii) 𝑏, which

is a budget and defines the number of consensus configurations to

execute, and (iv)H𝑐 𝑓 , which is the search space of hyperparameter

values for consensus clustering. Furthermore, we also use the results

of our learning phase, which are the consensus functionmodel𝐶𝐹𝑀

and the ensemble generation model 𝐸𝐺𝑀 .

In the following, we describe the steps of our application phase

in more detail on the basis of Algorithm 2. We start by initializing

the variables 𝑐𝑣𝑖∗, which tracks the best evaluated CVI value, 𝑦∗,
which tracks the best clustering result that obtains the best CVI

value after consensus clustering, and E, which tracks the ensemble

that we use for the consensus step (line 2). We then perform the

following five steps:

(A1) Extract Meta-Features: We measure data characteristics

ofD𝑛𝑒𝑤 by extracting its meta-feature values (line 3). The extracted

meta-feature values serve as inputs for our classification models.

Note that we extract the same set of meta-features as in the learning

phase; otherwise, we cannot apply our learned models.

(A2) Predict Clustering Ensemble:We apply our 𝐸𝐺𝑀 model

to the meta-features of the new dataset to obtain a set of clustering

configurations (line 4). In our work, we focus on 𝑘-Means and the

hyperparameter 𝑘 . Thus, we predict a set of 𝑘-values.

(A3) Generate Clustering Ensemble: In lines 5 - 8, we generate
the clustering ensemble. For each 𝑘 value that we predicted in step

(A2), we execute the 𝑘-Means algorithm with the corresponding 𝑘

value to obtain one clustering result (line 6). In line 7, we add this

clustering result to the ensemble. The result is the ensemble E.
(A4) Predict Consensus Function: We apply our 𝐶𝐹𝑀 model

to the meta-features of the new dataset to predict a suitable con-

sensus function based on the data characteristics (line 9).

(A5) Optimize Hyperparameters: In lines 10 -21, we optimize

the hyperparameters of the selected consensus function. To this

end, we initialize the optimizer 𝑂 with the consensus function 𝑐 𝑓

and the search space of its hyperparameter values H𝑐 𝑓 that we

want to optimize (line 10). We use Bayesian optimization (BO) as

an optimizer as it trades off exploration and exploitation, i. e., we

exploit well-performing configurations on the one side, but also ex-

plore new regions of configurations on the other side. BO is used in

many existing AutoML systems for supervised learning tasks [25],

but also in AutoML systems for clustering analyses [53, 62]. Subse-

quently, we execute 𝑏 loops of the optimization procedure (lines

11 - 18). In each loop, we first select a consensus configuration 𝑐𝑐𝑖 ,

i. e., the values for the hyperparameters of the consensus function,

using the optimizer 𝑂 (line 12). Then, we execute the consensus

configuration on the ensemble E to obtain a single clustering result

𝑦𝑖 (line 13). Further, we evaluate the result with a cluster validity

index𝐶𝑉 𝐼 , e. g., Calinski-Harabasz [15] or Davies Bouldin [17], and

obtain the corresponding value 𝑐𝑣𝑖𝑖 (line 14). In lines 15 - 18, if the

current 𝐶𝑉 𝐼 value 𝑐𝑣𝑖𝑖 is lower than 𝑐𝑣𝑖∗, we change the current
best𝐶𝑉 𝐼 value and also update the current best clustering result 𝑦∗.
Subsequently, we update the optimizer with the consensus configu-

ration 𝑐𝑐𝑖 and its corresponding𝐶𝑉 𝐼 value 𝑐𝑣𝑖𝑖 (line 19). Finally, we

return the best consensus clustering result𝑦∗ that we have obtained
during the 𝑏 optimizer loops (line 21).

7 EVALUATION
In this section, we evaluate our approachwith different experiments.

To this end, we first describe the setup of our experiments (cf.

Section 7.1). Subsequently, we compare our approach against state-

of-the-art baselines on synthetic datasets (cf. Section 7.2). Finally,

we show the feasibility of our approach on real-world benchmark

data for clustering analysis (cf. Section 7.3).

2886

7.1 Setup
Hard- and Software: Our implementation is based on Python 3.9

and is available as an anonymous GitHub repository
1
. We imple-

mented the optimizer using SMAC [39, 43], a sequential model-

based optimizer. A large part of the implementation is based on the

scikit-learn library [51]. We used the PyMFE [2] package to extract

in total all 40 meta-features of the groups general and statistical
2
.

We conducted our experiments on a VM with Ubuntu 20.04, a 2.6

GHz processor, 16 CPUs, and 32 GB RAM.

Synthetic Datasets:We used data generators from scikit-learn
3

to generate 78 synthetic datasets. These include data with four dif-

ferent characteristics: (i) Gaussian datasets, where all clusters have

the same standard deviation, (ii) Varied Gaussian, where the clusters

have varying standard deviations, (iii) Circles, where the clusters fol-

low a circle-like structure, and (iv) Half-Moons, where the clusters

have the structure of Half-Moons. For all of them, we vary the num-

ber of instances 𝑛 ∈ {1,000; 10,000; 50,000}. For Gaussian and for

Varied Gaussian, we vary the number of features 𝑓 ∈ {50; 75; 100}
and clusters 𝑘 ∈ {10; 30; 50}. Regarding Circles and Half-Moons,

the implementation of scikit-learn supports only 𝑓 = 𝑘 = 2, but

therefore we vary the ratio of noise 𝑟 ∈ {0; 0.01; 0.05; 0.1}.
Consensus Functions: As mentioned in Section 2, we focus

on consensus functions with linear runtime complexity. We have

identified which consensus functions meet this requirement and

can be used with a custom ensemble generation method. There-

fore, we use the following five consensus functions: Mixture Mod-

els (MM) [59], Meta-Clustering Algorithm (MCLA) [57], Adaptive

cVote (ACV) [6], Adaptive bVote (ABV) [7], and Quadratic Mutual

Information (QMI) [58]. They all have as hyperparameters the fi-

nal number of clusters in the consensus clustering and we use

{2, ..., 100} as hyperparameter space.

Learning Phase: In our learning phase, we generate different

clustering ensembles. To this end, we focus on the 𝑘-Means algo-

rithm and use {2, ..., 100} as hyperparameter space for the hyperpa-

rameter 𝑘 of 𝑘-Means. We also evaluated other 𝑘-center clustering

algorithms such as GMM [9] for the generation but did not find

any improvements in the consensus clustering. Regarding the en-

semble selection, we evaluate two strategies, Quality_Select and

Cluster_and_Select, as described in Section 5. We exploit for

each strategy the ensemble sizesM = {5, 10, 15, ..., 50}.
Application Phase:We split our 78 synthetic datasets into 54

(70%) training and 24 (30%) test datasets. We ensure that we have

the same distribution of data characteristics in both, training and

test datasets. Thus, we use the knowledge from the 54 training

datasets to train our EGM and CFM models and apply them to

the 24 test datasets. We use Random Forest [14] as it can handle

multiple classes and is robust regarding small training data. More

details can be found in our repository. In the application phase, we

use different cluster validity indices (CVIs) and report the results

for the best CVI. We execute 𝑏 = 70 optimizer loops of Bayesian

optimization. To evaluate the accuracy, we use the adjusted mutual

information (AMI) index, which is adjusted by chance [65]. Note

1
Prototypical implementation: https://github.com/tschechlovdev/EffEns

2
Description of Meta-Features: https://pymfe.readthedocs.io/en/latest/auto_pages/

meta_features_description.html

3
Cf. data generators ’make_blobs’ for (varied) Gaussian, ’make_moons’ and

’make_circles’: https://scikit-learn.org/stable/datasets/sample_generators asdfa

that we have also evaluated the Adjusted Rand Index (ARI) but we

do not present its results as they are largely identical to the results

using AMI. The ARI results can be found in our GitHub repository.

We perform 3 runs of our approach and report average results if

not stated otherwise.

7.2 Comparison on Synthetic Data
In this section, we compare our approach against state-of-the-art

baselines on the synthetically generated datasets.

7.2.1 State-of-the-art Baselines. First, we compare our approach

against state-of-the-art AutoML systems for clustering analyses

that return the results of a single clustering algorithm. These Au-

toML systems also use more complex clustering algorithms such

as density-based [22], hierarchy-based [41], or spectral clustering

algorithms [36, 49]. For the comparison, we use the following six au-

tomated clustering approaches, including four approaches based on

existing AutoML systems, one automatic density-based approach,

and one automated ensemble clustering approach:

AML4C𝑘
[62]: AutoML4Clust (AML4C), which is an AutoML

system for clustering that uses Bayesian Optimization to tackle

the combined search space of clustering algorithms and hyperpa-

rameters. It relies only on 𝑘-center clustering algorithms 𝑘-Means,

Gaussian Mixture Models, and MiniBatch 𝑘-Means.

AML4C𝐴
[61, 62]: Treder-Tschechlov et al. extend AML4C to in-

clude nine available clustering algorithms from scikit-learn, which

include amongst others density-based, hierarchy-based and spectral

clustering algorithms.

AutoClust [53]: AutoClust is an AutoML for clustering system

that first uses meta-learning to select a clustering algorithm for

a new dataset and subsequently, optimizes its hyperparameters

using Bayesian Optimization. For a new dataset, Poulakis et al. first

apply the Meanshift [16] algorithm and then calculate the scores of

multiple cluster validity indices. Based on these meta-features, they

search for the 10 most-similar datasets from the training phase and

select the algorithm that performed best on most of these similar

datasets. We implemented AutoClust ourselves as the authors do

not provide a publicly available implementation.

AS→HPO (inspired by [20, 45, 53, 61]): The evaluation of Treder-

Tschechlov et al. unveils that a combination of statistical and general

meta-features performs best [61]. Thus, we adapt the AutoClust

baseline to use this set of meta-features as another baseline.

OPTICS [3]:We also use an automatic density-based approach as

a baseline, which is known to detect characteristics such as Circles

or Half-Moons that can not be detected by 𝑘-center algorithms.

Since it is a single algorithm, it does not depend on an optimizer

and therefore, does not have such a large search space as AML4C
𝐴
.

We use the implementation from scikit-learn.

AEC: As literature does not comprise an end-to-end automated

ensemble clustering approach (cf. Section 3), we also use a simple,

but novel baseline that we call the automatic ensemble clustering

baseline. For this baseline, we first generate an exhaustive ensemble,

i. e., running 𝑘-Means with 𝑘 = 2, ..., 100 as this is typically done

by literature to generate a clustering ensemble [23, 57, 58, 60]. For

ensemble selection, we use the cluster-and-select (CAS) method as

this is often used in literature and makes a trade-off between accu-

racy and diversity [23, 32, 42, 64]. Subsequently, we use Bayesian

2887

https://github.com/tschechlovdev/EffEns
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html
https://scikit-learn.org/stable/datasets/sample_generators

Figure 4: Averaged clustering accuracy results w.r.t AMI over
all datasets for our approach EffEns and the baselines.

Optimization to optimize (i) the ensemble size, (ii) the consensus

function, and (iii) its hyperparameters simultaneously. That is, the

search space of the optimizer is CF ×M ×HCF .

7.2.2 Clustering Accuracy Comparison. The results regarding ac-
curacy are shown in Figure 4. We make the following observations:

(1) EffEns achieves the highest accuracy results compared to the

state-of-the-art baselines. It requires only around 15 optimizer loops

to achieve these results. The main reason is that EffEns has a small

search space in comparison tomost of the baselines. In our approach,

the optimizer only has to optimize the final number of clusters in the

consensus, while the baselines have multiple clustering algorithms

and/or they have more complex hyperparameters in the search

space. EffEns achieves the highest accuracy, i. e., AMI values, on

20 of the 24 datasets. Taking the highest AMI value as rank 1, then

EffEns has an average rank over all 24 datasets of 1.4. In contrast,

the best baseline has an average rank of 2.6.

(2) The best baseline is AS→HPO. It is able to reduce the search

space and select suitable clustering algorithms depending on data

characteristics. While it has a smaller search space compared to

baselines using all clustering algorithms, it is still able to find accu-

rate results for most datasets within the budget. However, it requires

to execute complex clustering algorithms that have high runtime

complexities. Interestingly, although EffEns only uses 𝑘-Means for

the ensemble generation and consensus functions with linear run-

time, it still achieves more accurate results than AS→HPO.

(3) AML4C
𝐴
and AML4C

𝑘
are the baselines with the worst ac-

curacy results. The reason for AML4C
𝐴
is its large configuration

space, in particular, many of the more complex clustering algo-

rithms run into the timeout on large datasets. As the results for

AS→HPO show, there are single clustering results that are much

better, but AML4C
𝐴
is not able to find them within the budget. As

we show in the next subsection, AML4C
𝑘
is only able to detect

certain (Gaussian) cluster characteristics. OPTICS is able to achieve

more accurate results than AML4C
𝐴
and AML4C

𝑘
as it is a density-

based clustering algorithm. Thus, it can also detect more complex

cluster characteristics than AML4C
𝑘
and does not have such a large

search space as AML4C
𝐴
.

(4) AEC is also able to achieve more accurate results than a more

complex density-based algorithm such as OPTICS. However, AEC is

not able to achieve such accurate results as our approach. The main

reason is that AEC is not able to generate the ensemble effectively

with respect to the consensus functions. That is, AEC relies on

the CAS ensemble selection method, while EffEns generates the

ensemble based on the data characteristics and also considers which

ensemble performs well for a consensus function.

7.2.3 Accuracy Comparison for Different Data Characteristics. Fig-
ure 5 shows the accuracy comparison regarding the different data

characteristics. We observe:

(1) EffEns achieves the highest accuracy w.r.t. AMI on Varied

Gaussian, Gaussian, and Half-Moons, i. e., at least 99% accuracy.

In particular, EffEns can detect the Half-Moons characteristic very

well by only relying on 𝑘-Means for the ensemble generation and

consensus functions with linear runtime complexity. Thereby, it

even outperforms baselines with more complex algorithms on the

Half-Moons data.We found that one reason is that EffEns is more ro-

bust regarding noise. For the highest noise ratio of 10%, we achieve

an accuracy of 65%, while the best baseline only achieves 20%. Thus,

ensembles seem to be very effective for cases with complex charac-

teristics, e. g., Half-Moons data with high noise ratios (cf. Figure 5c)

or with varying Gaussian distributions in the data (cf. Figure 5a).

(2) The most accurate baselines on the different data charac-

teristics are AS→HPO and AEC. Although AS→HPO uses even

more complex clustering algorithms, it achieves more accurate

results than EffEns only on the Circles data. Further, EffEns out-

performs AS→HPO on the Varied Gaussian and Half-Moons data.

AEC achieves similar results to EffEns, except for the Circles data,

where EffEns outperforms AEC because it can generate the ensem-

ble more effectively based on the data characteristics. Further, as

we show in the next subsection, EffEns is much more efficient as

AEC, because it can directly generate the ensemble and does not

require to select the ensemble in each optimizer loop. Thus, EffEns

is more robust regarding different data characteristics than existing

state-of-the-art baselines. It can be more effective than more com-

plex clustering algorithms or an automated ensemble clustering

approach, especially on complex data characteristics. Nevertheless,

the results also show that there is room for improvement, in partic-

ular regarding the Circles data. For these datasets, we have datasets

with high noise ratios in the test set. Complex clustering algorithms

are able to handle such noisy datasets slightly better than ensem-

bles of efficient clustering algorithms. Future work could explore

how diversity can be explicitly used in the ensemble generation to

further improve accuracy in such cases, e. g., using random subsets

of the data [52].

7.2.4 Runtime. We compare the runtime when applying EffEns

and the baselines to new datasets. Figure 6 shows the average

runtimes on all datasets and on the large datasets. We observe:

(1) In Figure 6, EffEns is shown with an average runtime of 334

seconds across all datasets (cf. Figure 6a) and 959 seconds on av-

erage considering only the large datasets (cf. Figure 6b). EffEns

is faster than all of the baselines except for OPTICS, which how-

ever has worse accuracy results (cf. Figure 4). In comparison to

2888

(a) Varied Gaussian

(b) Gaussian

(c) Half-Moons

(d) Circles

Figure 5: Clustering accuracy, i. e., AMI values, for each data characteristic separately. Black values present median values.

(a) All datasets

(b) Large datasets

Figure 6: Average runtime results on (a) all datasets and (b)
only the large datasets (n = 50,000) for executing 70 loops.
Grey vertical lines show the standard deviationw.r.t. runtime.

AS→HPO, the baseline with the highest average accuracy results,

EffEns achieves speedups of more than 6x on large datasets (cf.

Figure 6b). In particular, AS→HPO requires 1.8 hours, while EffEns

requires only 16 minutes. The reason for the higher runtime of

AS→HPO is that it can select a more complex clustering algorithm,

e. g., DBSCAN, with quadratic or higher runtime complexity. This

shows that using ensembles relying on 𝑘-Means and efficient con-

sensus functions is more efficient than using complex clustering

algorithms, while achieving even higher accuracy (cf. Section 7.2).

Compared to AML4C
𝐴
, EffEns has speedups of 13.9x and 8x (cf.

Figure 6a and 6b). Executing only 15 loops already leads to accu-

rate clustering results (cf. Section 7.2.2) with an average runtime

of 68 seconds for all datasets (190 seconds for large datasets), i. e.,

achieving even more speedups.

(2) Compared to AEC, EffEns achieves speedups of 13x and 7.5x

(cf. Figure 6a and 6b). Although AEC also relies on 𝑘-Means for the

ensemble generation and consensus functions with linear runtime,

it has to execute the ensemble selection, i. e., cluster-and-select

(CAS), in each optimizer loop, so that it can optimize the ensem-

ble size. CAS has to compute all pairwise similarities of the base

clusterings and executes a clustering algorithm on it (cf. line 60 in

Algorithm 1), which is the main bottleneck of AEC.

7.2.5 Scalability. In the following, we investigate the scalability of

EffEns in contrast to the baselines. To generate large-scale datasets,

we vary the number of instances from 𝑛 = 1, 000 by a factor of 10

up to 𝑛 = 1, 000, 000. We generated data with Varied Gaussian char-

acteristics, so that we can generate high-dimensional datasets with

𝑓 = 100 features. This allows for more meaningful observations on

Table 2: Scalability results for Varied Gaussian datasets by
varying the number of instances 𝑛. We execute 50 loops and
set a timeout of 6 hours.

Runtime (in s) for ...

Approach 𝑛 = 1, 000 𝑛 = 10, 000 𝑛 = 100, 000 𝑛 = 1, 000, 000

EffEns 6 37 93 971
AML4C

𝐴 3 174 13,402 21,600
†12

AML4C
𝑘

12 39 3,058 21,600
†14

AEC 1,180 2,995 21,600
†38

21,600
†9

AS→HPO 7 622 13,021 21,600
†22

OPTICS 3 77 3,321 194,044

AutoClust 7 909 21,600
†8

21,600
†5

† Shows at which optimizer loop an approach reached the timeout of 6 hours.

the scalability of the approaches. Nevertheless, we observed similar

trends on data with Circles and Half-Moons characteristics. For

approaches that use an optimizer, we execute 50 optimizer loops

and abort earlier if they require more than 6 hours (21,600 seconds).

The results in Table 2 show that the runtime of EffEns increases

linearly for increasing values of 𝑛, thus demonstrating its linear

runtime complexity. In particular, for large datasets (𝑛 ≥ 10, 000)

we achieve significant speedups compared to the baselines. For

the largest dataset, i. e., 𝑛 = 1, 000, 000, we have a runtime of less

than 1,000 seconds (< 17 minutes), while even the fastest baseline

runs into the timeout of 21,600 seconds (360 minutes), i. e., EffEns

achieves a speedup of more than 20x compared to the fastest base-

line. However, the fastest baseline only executes 22 optimizer loops.

Therefore, the speedups would be even more severe if the baselines

executed all 50 loops. In particular, EffEns is the only approach that

executes all 50 optimizer loops for the largest dataset. In contrast

to OPTICS, the baseline with the highest runtime of 194,044 sec-

onds for 𝑛 = 1, 000, 000, EffEns achieves a speedup of more than

194x. Overall, EffEns is more scalable and much faster than baseline

approaches on large datasets.

Note that EffEns has very high accuracy values even for the

large datasets (AMI ≈ 99%), while especially approaches with fewer

optimizer loops, e. g., AEC and AutoClust, have significantly lower

accuracy values for large datasets.

7.2.6 Ablation Study. In this subsection, we verify the effectiveness
of our three main components: The ensemble generation model

2889

Table 3: Results of the ablation study, i. e., accuracy achieved
when activating (✓) / deactivating (X) selected components.

Approach EGM CFM Optimizer AMI (in %)

ALL ✓ ✓ ✓ 88.8
No EGM X ✓ ✓ 61.9

No CFM (ABV) ✓ X ✓ 67.3

No Optimizer ✓ ✓ X 65.0

Baseline:
Best Base Clustering ✓ X X 62.6

(EGM), the consensus function model (CFM), and the optimizer. We

study the effects when not using one of our components, but instead

a common technique for clustering or ensemble clustering. To this

end, we compare the following five ablations of our approach:

(1) ALL: We use all three components of our approach, i. e.,

EGM, CFM, and the optimizer. (2) No EGM:We only apply CFM

and the optimizer. For the generation of the base clusterings, we

do an exhaustive generation, i. e., we execute 𝑘-Means for 𝑘 =

2, 3, ..., 100. For the ensemble selection, we use the quality-based

technique described in Section 5. However, we still have to select

the ensemble size 𝑚 for the selection strategy. Thus, we extend

the consensus search space of the optimizer to also include 𝑚.

(3) No CFM (ABV): We do not use CFM, but only EGM and the

optimizer. Instead of selecting a consensus function, we apply the

same consensus function for each dataset. We report the results for

the ABV consensus function ABV as it achieved the best average

results in our experiments. (4) No Optimizer:We only use CFM

and EGM, i.e., we do not use the optimizer, but instead use the 𝑘

value from the best base clustering result of the generated ensemble.

(5) Best Base Clustering: This constitutes a simple baseline, where

we only apply EGM to generate the ensemble and subsequently,

return the best single clustering result.

The accuracy results of our ablation study on synthetic datasets

are shown in Table 3. We make the following observations:

First, using all three components achieves the best result of

88.8%, which can also be seen in Figure 4. This shows that all of

our components are crucial to obtain valuable ensemble clustering

results. The results also show that leaving out only one of our

components already leads to an accuracy loss of over 20%-points.

Furthermore, we achieve an improvement of 26.2%-points over the

best base clustering result from the generated ensemble.

Second, not using EGM has the worst accuracy of 61.9%. In this

case, we optimize the ensemble size with the optimizer and thus

have a very large search space (𝑚×𝑘) which makes it more difficult

to achieve valuable results in a short time frame. In contrast, our

EGM model predicts the ensemble dependent on the data charac-

teristics and on the selected consensus function for the dataset.

Third, not using CFM only achieves an accuracy of 67.3%, which

is 21.5%-points lower than when all components are used. The main

reason is that the consensus functions can detect one or two of the

data characteristics very well, e. g., Gaussian and varied Gaussian,

but fail to detect other characteristics such as Circles or Half-Moons.

Table 4: Overview of real-world datasets.

Dataset 𝑛 𝑓 𝑘∗

Iris 150 4 3

Ecoli 336 8 8

Dermatology 366 33 6

Wdbc 569 31 2

Banknote 1,372 4 2

Pendigits 10,992 16 10

USPS 11,000 256 10

Letter 20,000 16 26

F-MNIST-{10; ...; 70}k {10k; 20k; ..., 70k} 784 10

*We use the classification labels as cluster labels.

Fourth, not using an optimizer achieves an accuracy of 65% when

selecting the best 𝑘 value from the generated clustering ensemble

to set the final number of clusters in the consensus clustering.

7.3 Results on Real-world Data
In this section, we evaluate our approach on unseen real-world

data, i. e., while trained on synthetic datasets, we apply EffEns to

real-world data that comprise varying distributions compared to

the synthetic datasets. To this end, we use 9 datasets that are often

used in literature as benchmark datasets to test the effectiveness of

novel clustering or ensemble algorithms [36, 38, 47, 53]. They are

taken from the UCI ML Repository [19] or OpenML [63]. Table 4

shows how the 9 datasets vary regarding 𝑛, 𝑓 , and 𝑘 . Note that

these datasets are actually designed for classification tasks and thus,

we can use the class labels as cluster labels to evaluate clustering

accuracy. For the dermatology dataset, we remove the feature age
as it is incomplete. For the Fashion-MNIST dataset (F-MNIST), we
take random subsamples of size 10k, 20k, ..., 70k (original dataset),

while preserving the same distribution of clusters in the data. Thus,

we obtain a total of 15 real-world benchmark datasets.

7.3.1 Learning Phase. In the following, we report the runtime that

themeta-learning approaches require. For the offline learning phase,

we use all 78 synthetic datasets (as described in Section 7.1) for the

meta-learning approaches of EffEns, AutoClust, and AS→HPO .

The learning phase of EffEns using all synthetic datasets took 35

hours (≈ 1.5 days). In contrast, AS→HPO took 62 hours (≈ 2.6 days)
and AutoClust took overall 84 hours (≈ 3.5 days). Thus, our learning
phase is two days faster than AutoClust and one day faster than

AS→HPO. Note that the baseline approaches use an optimizer to

traverse the search space and still have a higher runtime than EffEns

for the learning phase. When using larger datasets in the learning

phase, such as in Section 7.2.5, the overhead for the learning phase

of AutoClust and AS→HPO would be even more severe.

7.3.2 Accuracy Comparison. Table 5 shows the results of EffEns
and the baselines on the real-world datasets. As on synthetic data,

EffEns achieves the most accurate on real-world data. On average,

EffEns achieves 55.4%, which is an improvement of 9.3 (AML4C
𝐴
),

10.4 (AML4C
𝑘
), 14.5 (AEC), 37.5 (AS→ HPO), and 44.1%-points (OP-

TICS). EffEns also has the highest minimum (35.9%) and maximum

2890

Table 5: Results on real-world data in comparison to state-of-
the-art baselines.

Approach

AMI (in %) Runtime (s)

Min. Avg. (±std) Max. Avg. Max.

EffEns 35.9 55.4 (±12.8) 77.1 1,120 4,155
AML4C

𝐴
1.7 46.1 (±18.6) 73.2 10,675 21,600

AML4C
𝑘

18.8 45.0 (±18.3) 73.2 7,173 21,600

AEC 16.6 42.9 (±16.6) 73.2 3,642 7,170

AS→HPO 0.0 19.8 (±26.2) 65.6 9,383 21,600

OPTICS 1.3 11.3 (±12.2) 37.7 1,295 6,520

AutoClust 0.0 12.3 (±21.9) 63.0 5,778 21,600

AMI values (77.1%). In particular, the minimum of 35.9% is 17%-

points higher than for the best baseline (18.8% for AML4C
𝐴
). Thus,

EffEns can achieve significant improvements on datasets where the

baseline approaches achieve low accuracy values. Regarding the

standard deviation, EffEns has the second-lowest one with 12.8%.

OPTICS is the only baseline with a lower standard deviation, but it

also has low minimum and maximum accuracy values (cf. Table 5).

On real-world datasets, 𝑘-center algorithms obtain decently ac-

curate results. Therefore, AML4C
𝐴
and AML4C

𝑘
are the baselines

with the highest accuracy values on average. AS→HPO performs

worse on real-world data than on synthetic data. It is not able

to select a suitable algorithm for the unseen real-world data and

therefore achieves minimum AMI values of 0% (cf. Table 5).

EffEns achieves the most accurate results on 10 of the 15 datasets

and has an average rank of 1.6. In contrast, the best baselines,

AML4C
𝑘
and AML4C

𝐴
, have an average rank of 2.7. Hence, EffEns

outperforms the baselines on most of the datasets.

7.3.3 Runtime Comparison. On the real-world datasets, our ap-

proach is the fastest w.r.t. to the average and maximum runtimes (cf.

Table 5). The F-MNIST datasets have large feature sets comprising

784 features. This affects the runtime of most baseline approaches.

Therefore, the baseline approaches AML4C
𝑘
, AML4C

𝐴
, AutoClust,

and AS→HPO run into the timeout of 21,600 seconds for the largest

dataset (cf. Table 5). For EffEns, the large feature set is not that se-

vere, because the consensus functions are applied on the clustering

results. Therefore, the runtimes of consensus functions depend on

the size of the ensemble and not on the number of features.

7.3.4 Complexity Analysis. We focus the complexity analysis on

the number of instances 𝑛 in a dataset and on the application phase,

as this is crucial to obtain valuable clustering results in a short

time-frame. Our application phase has five subsequent steps and

therefore, the runtime complexity is the same as for the step with

the highest complexity. For extracting the meta-features (cf. A1

in Algorithm 2), the runtime complexity is 𝑂 (𝑛) as we only use

general and statistical meta-features [54]. Predicting the ensemble

(A2) and the consensus function (A4) using EGM and CFM is not

dependent on 𝑛 and can thus be done in 𝑂 (1). For the ensemble

generation (A3), we rely on 𝑘-Means as clustering algorithm to

generate the ensemble. In the worst case, we have to execute 𝑘-

Means for the whole hyperparameter space H , i. e., |H | times.

As 𝑘-Means has a linear runtime complexity and |H | << 𝑛, the

complexity for A3 is 𝑂 (𝑛 ∗ |H |) = 𝑂 (𝑛). For A5, the runtime

complexity for the consensus function is𝑂 (𝑛) as we only use linear
consensus functions and executing the function 𝑏 times also results

in 𝑂 (𝑛). Hence, the overall runtime complexity for the application

phase is 𝑂 (𝑛) +𝑂 (1) +𝑂 (𝑛) +𝑂 (1) +𝑂 (𝑛) = 𝑂 (𝑛).

7.4 Evaluation Summary
In the following, we summarize the main findings (F1 - F5) of our

comprehensive evaluation:

F1: On synthetic datasets, EffEns obtains more accurate results

than state-of-the-art baselines that use even more complex cluster-

ing algorithms (cf. Section 7.2.2).

F2: EffEns achieves the most robust results regarding different

data characteristics (cf. Section 7.2.3). Although it relies on efficient

clustering algorithms and consensus functions, it can still consider

complex data characteristics such as Half-Moons.

F3: In the application phase, EffEns achieves significant speedups
compared to state-of-the-art baselines (cf. Section 7.2.4). For datasets

with up to 1 million instances, it achieves speedups of 20x to 194x

(cf. Section 7.2.5). The learning phase is also much faster (≈ twice
as fast) than that of baseline approaches (cf. Section 7.3.1).

F4: We show that all three components (EGM, CFM, and the

optimizer) are crucial to obtain valuable ensemble clustering results

(cf. Section 7.2.6). Leaving out only one of these components already

leads to an accuracy loss of over 20%-points.

F5: The results on real-world data confirm our observations on

synthetic data regarding accuracy and runtime (cf. Section 7.3). This

demonstrates the practical feasibility of our approach as we can

easily generate data synthetically to train our approach and still

achieve accurate results on real-world data.

Due to F1 - F5, EffEns can be a strong fit especially for novice

analysts to achieve valuable clustering results in a short time frame.

Even experienced analysts can benefit from it. For instance, they

can adapt the recommendations of the models, e. g., the ensemble

from EGM, based on their domain knowledge and experience.

8 CONCLUSION
In this paper, we propose the novel efficient ensemble clustering

approach EffEns. We rely on meta-learning to learn the correla-

tion of clustering ensembles and consensus functions, depending

on the data characteristics. By relying on efficient algorithms for

the ensemble generation and on efficient consensus functions, our

approach is able to automatically apply ensemble clustering in an

efficient way. In our comprehensive evaluation, we unveil that our

approach significantly outperforms state-of-the-art approaches re-

garding clustering accuracy and runtime. Therefore, novice analysts

can achieve valuable clustering results even on large datasets.

Future work will investigate how data pre-processing steps can

be used to increase the accuracy of the ensemble clustering results,

while still preserving efficiency.

ACKNOWLEDGMENTS
Parts of this research were performed in the project ‘VALID-

PARTITION’ as part of the Software Campus program, which is

funded by the German Federal Ministry of Education and Research

(BMBF) under Grant No.: 01IS17051.

2891

REFERENCES
[1] Ebrahim Akbari et al. 2015. Hierarchical cluster ensemble selection. Engineering

Applications of Artificial Intelligence (2015).
[2] Edesio Alcobaça et al. 2020. MFE: Towards reproducible meta-feature extraction.

Journal of Machine Learning Research 21, 111 (2020), 1–5.

[3] Mihael Ankerst et al. 1999. OPTICS: Ordering Points to Identify the Clustering

Structure. In ACM SIGMOD.
[4] D. Arthur and Vassilvitskii. 2007. k-means++: The Advantages of Careful Seeding.

In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms. Society for Industrial and Applied Mathematics Philadelphia, 1027–1035.

[5] Hanan Ayad and Mohamed Kamel. 2003. Finding Natural Clusters Using Multi-

Clusterer Combiner Based on Shared Nearest Neighbors. In MCS.
[6] Hanan G. Ayad and Mohamed S. Kamel. 2008. Cumulative Voting Consensus

Method for Partitions with Variable Number of Clusters. IEEE TPAMI (2008).
[7] Hanan G. Ayad and Mohamed S. Kamel. 2010. On voting-based consensus of

cluster ensembles. Pattern Recognition 43, 5 (2010), 1943–1953.

[8] Javad Azimi and Xiaoli Fern. 2009. Adaptive Cluster Ensemble Selection. In

Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI’09). Morgan Kaufmann Publishers Inc., 992–997.

[9] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

[10] Tossapon Boongoen and Natthakan Iam-On. 2018. Cluster ensembles: A survey

of approaches with recent extensions and applications. Computer Science Review
(2018).

[11] Matthew R. Boutell et al. 2004. Learning multi-label scene classification. Pattern
Recognition 37, 9 (2004), 1757–1771. https://doi.org/10.1016/j.patcog.2004.03.009

[12] Paul S. Bradley and Usama M. Fayyad. 1998. Refining Initial Points for K-Means

Clustering. In ICML.
[13] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. 2008. Metalearning:

Applications to data mining. (1 ed.).
[14] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.

[15] T. Caliñski and J. Harabasz. 1974. A Dendrite Method For Cluster Analysis.

Communications in Statistics 1 (1974).
[16] Dorin Comaniciu and Peter Meer. 2002. Mean shift: A robust approach toward

feature space analysis. IEEE PAMI 24 (2002), 603–619.
[17] David L. Davies and Donald W. Bouldin. 1979. A Cluster Separation Measure.

IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (1979), 224–227.
[18] Carlotta Domeniconi and Muna Al-Razgan. 2009. Weighted cluster ensembles.

ACM TKDD (2009).

[19] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[20] Radwa ElShawi, Hudson Lekunze, and Sherif Sakr. 2021. cSmartML: A Meta

Learning-Based Framework for Automated Selection and Hyperparameter Tun-

ing for Clustering. In 2021 IEEE International Conference on Big Data.
[21] Radwa ElShawi and Sherif Sakr. 2022. TPE-AutoClust: A Tree-based Pipline

Ensemble Framework for Automated Clustering. In 2022 IEEE International Con-
ference on Data Mining Workshops (ICDMW). 1144–1153.

[22] Martin Ester et al. 1996. A Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise. In ACM SIGKDD.
[23] Xiaoli Z. Fern and Wei Lin. 2008. Cluster Ensemble Selection. Statistical Analysis

and Data Mining: The ASA Data Science Journal 1, 3 (nov 2008), 128–141.
[24] Daniel G Ferrari and Leandro Nune de Castro. 2015. Clustering algorithm selec-

tion by meta-learning systems: A new distance-based problem characterization

and ranking combination methods. Information Sciences 301 (2015), 181–194.

https://doi.org/10.1016/j.ins.2014.12.044

[25] Matthias Feurer et al. 2015. Efficient and robust automated machine learning. In

Advances in neural information processing systems. 2962–2970.
[26] Ana L.N. Fred and Anil K. Jain. 2005. Combining multiple clusterings using

evidence accumulation. IEEE PAMI (2005).
[27] Manuel Fritz et al. 2021. Efficient exploratory clustering analyses in large-scale

exploration processes. The VLDB Journal 31, 4 (nov 2021), 711–732.
[28] Manuel Fritz, Dennis Tschechlov, and Holger Schwarz. 2020. Learning from

Past Observations: Meta-Learning for Efficient Clustering Analyses. In Big Data
Analytics and Knowledge Discovery.

[29] Manuel Fritz Michael Behringer Holger Schwarz. 2020. LOG-Means: Efficiently

Estimating the number of Clusters in Large Datasets. PVLDB (2020).

[30] Junhao Gan and Yufei Tao. 2015. DBSCAN revisited: Mis-claim, un-fixability,

and approximation. In ACM SIGMOD.
[31] Andrey Goder and Vladimir Filkov. 2008. Consensus Clustering Algorithms:

Comparison and Refinement. In ALENEX.
[32] Keyvan Golalipour et al. 2021. From clustering to clustering ensemble selection:

A review. Engineering Applications of Artificial Intelligence 104 (2021), 104388.
[33] Ibai Gurrutxaga et al. 2010. SEP/COP: An efficient method to find the best

partition in hierarchical clustering based on a new cluster validity index. Pattern
Recognition (2010).

[34] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. 2001. On Clustering

Validation Techniques. Journal of Intelligent Information Systems (2001).

[35] Francisco Herrera et al. 2016. Multilabel classification. Springer.
[36] Ellen Hohma et al. 2022. SCAR: Spectral Clustering Accelerated and Robustified.

PVLDB (2022).

[37] Prodip Hore, Lawrence O. Hall, and Dmitry B. Goldgof. 2009. A scalable frame-

work for cluster ensembles. Pattern Recognition (2009).

[38] Dong Huang, Chang-Dong Wang, and Jian-Huang Lai. 2018. Locally Weighted

Ensemble Clustering. IEEE Transactions on Cybernetics 48, 5 (2018), 1460–1473.
https://doi.org/10.1109/TCYB.2017.2702343

[39] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential

model-based optimization for general algorithm configuration. In International
conference on learning and intelligent optimization.

[40] Anil K Jain. 2010. Data clustering: 50 years beyond K-means. Pattern recognition
letters 31, 8 (2010), 651–666.

[41] Anil K. Jain and Richard C. Dubes. 1988. Algorithms for clustering data. Prentice
Hall. 1–320 pages.

[42] Ludmila I Kuncheva, Stefan Todorov Hadjitodorov, and Ludmila P Todorova. 2006.

Experimental comparison of cluster ensemble methods. In 2006 9th International
Conference on Information Fusion. IEEE, 1–7.

[43] Marius Lindauer et al. 2022. SMAC3: A Versatile Bayesian Optimization Package

for Hyperparameter Optimization. Journal of Machine Learning Research (2022).

[44] Yanchi Liu et al. 2010. Understanding of internal clustering validation measures.

In Proceedings - IEEE International Conference on Data Mining, ICDM.

[45] Yue Liu, Shuang Li, and Wenjie Tian. 2021. AutoCluster: Meta-learning Based

Ensemble Method for Automated Unsupervised Clustering. In PAKDD.
[46] Stuart P Lloyd. 1982. Least Squares Quantization in PCM. Technical Report 2.

[47] Lukas Miklautz et al. 2022. Deep Clustering With Consensus Representations.

2022 IEEE International Conference on Data Mining (ICDM) (2022), 1119–1124.
[48] Murilo Coelho Naldi, ACPLF Carvalho, and Ricardo JGB Campello. 2013. Cluster

ensemble selection based on relative validity indexes. DataMining and Knowledge
Discovery 27 (2013), 259–289.

[49] Andrew Ng, Michael Jordan, and Yair Weiss. 2001. On spectral clustering: Anal-

ysis and an algorithm. Advances in neural information processing systems 14
(2001).

[50] Nam Nguyen and Rich Caruana. 2007. Consensus Clusterings. In IEEE ICDM.

[51] F Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12 (2011), 2825–2830.

[52] Robi Polikar and others. 2010. Learn++.MF: A Random Subspace Approach for

the Missing Feature Problem. Pattern Recognition (2010).

[53] Yannis Poulakis, Christos Doulkeridis, andDimosthenis Kyriazis. 2020. AutoClust:

A Framework for Automated Clustering Based on Cluster Validity Indices. In

IEEE ICDM.

[54] Adriano Rivolli, Lu´P F Garcia, Carlos Soares, Joaquin Vanschoren, and An-

dré CPLF de Carvalho. 2018. Towards reproducible empirical research in meta-

learning. arXiv preprint arXiv:1808.10406 (2018).
[55] Simone Romano, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor. 2016. Ad-

justing for chance clustering comparison measures. Journal of Machine Learning
Research 17, 134 (2016), 1–32.

[56] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian

optimization of machine learning algorithms. In NeurIPS.
[57] Alexander Strehl and Joydeep Ghosh. 2003. Cluster Ensembles - a Knowledge

Reuse Framework for Combining Multiple Partitions. J. Mach. Learn. Res. (2003).
[58] A. Topchy, A.K. Jain, and W. Punch. 2005. Clustering ensembles: models of

consensus and weak partitions. IEEE TPAMI (2005).
[59] Alexander Topchy, Anil K. Jain, and William Punch. 2004. A Mixture Model for

Clustering Ensembles. In SIAM SDM.

[60] A.P. Topchy, M.H.C. Law, A.K. Jain, and A.L. Fred. 2004. Analysis of Consensus

Partition in Cluster Ensemble. In IEEE ICDM.

[61] Dennis Treder-Tschechlov et al. 2023. ML2DAC: Meta-Learning to Democratize

AutoML for Clustering Analysis. Proc. ACM Manag. Data (2023).
[62] Dennis Tschechlov, Manuel Fritz, and Holger Schwarz. 2021. AutoML4Clust:

Efficient AutoML for Clustering Analyses. In EDBT.
[63] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML:

networked science in machine learning. SIGKDD Explor. Newsl. 15, 2 (jun 2014).

[64] Sandro Vega-Pons and José Ruiz-Shulcloper. 2011. A survey of clustering ensem-

ble algorithms. Int. J. Pattern Recognit. Artif. Intell. 3 (5 2011).
[65] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2010. Information theoretic

measures for clusterings comparison: Variants, properties, normalization and

correction for chance. Journal of Machine Learning Research (2010).

[66] Xindong Wu et al. 2008. Top 10 algorithms in data mining. Knowledge and
information systems (2008).

[67] Xingwang Zhao, Jiye Liang, and Chuangyin Dang. 2017. Clustering ensemble se-

lection for categorical data based on internal validity indices. Pattern Recognition
(2017).

2892

https://doi.org/10.1016/j.patcog.2004.03.009
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.ins.2014.12.044
https://doi.org/10.1109/TCYB.2017.2702343

	Abstract
	1 Introduction
	2 Challenges and Problem Statement
	3 Related Work
	4 EffEns: Efficient Ensemble Clustering
	4.1 Intuition of the Application Phase
	4.2 Intuition of the Learning Phase

	5 Learning Phase
	5.1 Extract Meta-Features
	5.2 Generate Base Clusterings
	5.3 Evaluate Ensembles
	5.4 Select Best CF and Ensemble
	5.5 Train CFM and EGM

	6 Application Phase
	7 Evaluation
	7.1 Setup
	7.2 Comparison on Synthetic Data
	7.3 Results on Real-world Data
	7.4 Evaluation Summary

	8 Conclusion
	Acknowledgments
	References

