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ABSTRACT
Zero-shot natural language to SQL (NL2SQL) aims to generalize pre-
trained NL2SQL models to new environments (e.g., new databases
and new linguistic phenomena) without any annotated NL2SQL
samples from these environments. Existing approaches either use
small language models (SLMs) like BART and T5, or prompt large
language models (LLMs). However, SLMs may struggle with com-
plex natural language reasoning, and LLMs may not precisely align
schemas to identify the correct columns or tables. In this paper, we
propose a Z���NL2SQL framework, which divides NL2SQL into
smaller sub-tasks and utilizes both SLMs and LLMs. Z���NL2SQL
�rst �ne-tunes SLMs for better generalizability in SQL structure
identi�cation and schema alignment, producing an SQL sketch. It
then uses LLMs’s language reasoning capability to �ll in the miss-
ing information in the SQL sketch. To support Z���NL2SQL, we
propose novel database serialization and question-aware alignment
methods for e�ective sketch generation using SLMs. Additionally,
we devise a multi-level matching strategy to recommend the most
relevant values to LLMs, and select the optimal SQL query via an
execution-based strategy. Comprehensive experiments show that
Z���NL2SQL achieves the best zero-shot NL2SQL performance
on benchmarks, i.e., outperforming the state-of-the-art SLM-based
methods by 5.5% to 16.4% and exceeding LLM-based methods by
10% to 20% on execution accuracy.
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1 INTRODUCTION
Natural Language to SQL (NL2SQL), which translates a natural lan-
guage question into an SQL query, makes it easier for non-technical
users to access and analyze data, and thus can be useful for business
intelligence, data analytics, and other data-driven applications.

Figure 1 shows how (a) a natural language question & posed
over (b) a database ⇡ can be translated into (c) an SQL query ( .
Zero-shot NL2SQL. A practical scenario for NL2SQL is that of-
tentimes, for new databases or applications, high-quality training
data (i.e., annotated NL2SQL samples) is time-consuming and labor-
intensive to acquire, and thus is not available. In this paper, we
refer to the case of zero annotated NL2SQL samples as zero-shot
NL2SQL. Thus, a natural question is: can we utilize existing anno-
tated NL2SQL samples, either from public benchmarks (e.g., Spi-
der [48]) or within enterprises, to train an NL2SQL model that is
generalizable to new test environments? An a�rmative answer to
this question has the potential to dramatically reduce the expert
knowledge and human e�orts for training data annotation.

However, the key obstacle to answer the question is that test
environments for NL2SQL may be very di�erent from existing an-
notated datasets, which may include the following cases. (1) new
databases: an NL2SQL model trained on the Spider [48] bench-
mark may not perform well for domain-speci�c (e.g., academic or
�nancial) databases [16, 28]. (2) new linguistic phenomena: varying
linguistic phenomena (e.g., abbreviations, synonyms, etc.) in the
test environments may lead to dramatic performance declines for
existing NL2SQL models [4].
State of the Art: Strengths and Limitations. The state-of-the-
art (SOTA) solutions for NL2SQL mainly rely on pre-trained lan-
guagemodels, which fall into two categories: small languagemodels
(SLMs) such as BART [17] and T5 [32], and large language models
(LLMs) such as GPT4 and PaLM [7]. We have conducted an in-depth
analysis to gain insights into strengths and limitations of the SOTA
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(a) A Text Question&
Which course has the highest score for the student named timothy ward?

(b) Snippets of a Database ⇡

Course id course teacher
001 math jordy wu
. . . . . . . . .

Student id given_name last_name score course
1 timmy ward 92 math
. . . . . . . . . . . . . . .

(c) The Ground-truth SQL Query ( w.r.t.&

SELECT course FROM Student

WHERE given_name = �timmy� AND last_name = �ward�

ORDER BY score LIMIT 1;

(d) An SQL query ( 0 translated by an SLM

SELECT course FROM Student

WHERE given_name = ’timothy ward’

ORDER BY score LIMIT 1;

(e) An SQL query ( 00 translated by an LLM

SELECT Course.course, Student.score

FROM Student JOIN Course ON Student.id = Course.id

WHERE given_name = ’timothy’ AND last_name = �ward�

ORDER BY score LIMIT 1;

Figure 1: A sample NL2SQL translation. The incorrect por-
tions are highlighted in red.

solutions for zero-shot NL2SQL, and report the error distributions
of both categories in Figure 2.

SLM-based methods, such as RASAT [30], PICARD [37], and
RESDSQL [18], have shown promise in generating accurate SQL
queries on NL2SQL datasets through �ne-tuning on numerous an-
notated NL2SQL samples. However, SLM-based methods may have
limited generalizability in natural language reasoning in our zero-
shot settings, which may dramatically degrade the performance of
the methods [28]. Consider ( 0 in Figure 1(d), given “student named
timothy ward” in question & , an SLM-based method only selects
one column given_name that is similar to the word “named”. This is
because the annotated NL2SQL samples used to train the method do
not di�erentiate between given_name and last_name. Although
further �ne-tuning on new databases or linguistic phenomena can
alleviate this problem, it requires a signi�cant amount of high-
quality training data, such as annotated NL2SQL samples. Acquir-
ing such data can be both time-consuming and labor-intensive,
making it a challenging task.

LLMs like PaLM [7] and GPT4 [25], which are often accessed
through API calls, have demonstrated remarkable reasoning abil-
ities across a range of domains and tasks. Compared with SLMs,
LLMs are capable of (complicated) language reasoning, including
understanding question semantics, resolving ambiguities, and per-
forming logical deductions, which are necessary for generating SQL
queries in new environments. However, LLMs may not achieve pre-
cise schema alignment: as shown in Figure 2, 42% of the errors

are caused by incorrect table/column selection. In particular, LLMs
tend to choose more columns and tables to cover the input content,
leading to incorrect execution results. Consider ( 00 in Figure 1(e):
the LLM identi�es incorrect columns (score) and tables (course)
in SELECT and FROM clauses.
Our Proposal. We propose a decomposition-based approach that
breaks down the NL2SQL task into smaller sub-tasks, such that
each sub-task is more amenable to solve in our zero-shot setting.
Naturally, the thought process of writing an SQL query can be
broken down into four sub-tasks:

(1) Identifying query structure that consists of SQL reserved
keywords, e.g.,SELECT, FROM, WHERE, and ORDER BY;

(2) Aligning relevant schema elements with the question, i.e.,
columns and tables in SELECT and FROM clauses;

(3) Completing the SQL query by deducing conditions in WHERE
clause, columns in ORDER BY or GROUP BY clauses, etc.

(4) Iteratively correcting the SQL query if there are syntax or
execution errors.

By analyzing the behavior of SLMs and LLMs over many di�er-
ent data sets, our key observation is that, contrary to the intuitive
observation that LLMs should outperform SLMs, we �nd that the
two together complement each other and perform better than ei-
ther alone when performing the above four steps. Speci�cally, a
task-speci�c �ne-tuned SLM can better understand the database
schema and the SQL syntax, which enables it to excel in structure
identi�cation and schema alignment. In contrast, existing research
reveals that LLMs often face an “hallucination” issue, generating
text unrelated to the given instructions, due to their lack of do-
main knowledge [21]. However, a general LLM possesses strong
language reasoning capabilities [2], making it well-suited for SQL
completion that require complex condition reasoning. Moreover,
LLM also exhibits excellent interaction capabilities, allowing it to
perform error correction e�ciently through appropriate feedback.

Based on the insight, we proposeZ���NL2SQL, a framework that
uses SLMs and LLMs to solve di�erent steps in our decomposition-
based approach, combining the best of the two worlds to address
the generalization challenge of zero-shot NL2SQL. Z���NL2SQL
consists of two key steps, as illustrated in Figure 3.
• Step 1: SQL sketch generation utilizes SLMs for SQL structure

identi�cation and schema alignment to generate an SQL sketch,
with attributes to SELECT, tables included in FROM, and necessary
keywords (e.g.,ORDER BY) for composing the SQL query.
• Step 2: SQL query completion and correction leverages

LLMs to complete the missing information in the SQL sketch and
generate complete SQL queries, e.g., aligning with data values from
the database. For example, although the question refers to “timothy”,
the database actually uses the abbreviation “timmy”. Thus, “timmy”
should be used in the SQL query.
Challenges and Solutions. The �rst challenge is how to de-
velop an SQL sketch generation method that can generalize to
new databases or linguistic phenomena. We introduce an encoder-
decoder based SLMmodel that generates an SQL sketch. Speci�cally,
to improve the generalizability of the model, we design a novel data-
base serialization strategy to make the encoder more adaptive to
new databases. Moreover, we propose a question-aware aligner to
obtain the most relevant SQL sketches by inferring the semantics
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Figure 2: Stats of SLMs and LLMs on di�erent error types.

Step 1: SQL sketch generation
SELECT course FROM Student

WHERE some conditions

ORDER BY some attributes LIMIT some number ;

w� (an SQL sketch)

Step 2: SQL query completion and correction
SELECT course FROM Student

WHERE given_name = �timothy� AND last_name = �ward�

ORDER BY score LIMIT 1;

Figure 3: An illustration of Z���NL2SQL.

of the question with new linguistic phenomena (e.g., di�erent ques-
tioning styles [4]: “Which airport has the most �ights? List its code.”
v.s. “What is the airport code with the largest amount of �ights?”).

The second challenge is how to e�ectively guide an LLM (e.g.,
GPT4) to complete SQL queries that are aligned with data values
stored in the databases. For example, in Figure 1, the NL2SQL model
needs to generate an SQL condition given_name = ‘timmy’ (rather
than ‘timothy’). Given to the length constraint of LLM’s input, it is
infeasible to include all values in the input context, whichmakes this
value alignment problem challenging. To this end, we design amulti-
level matching strategy to recommend the most relevant values
to the LLM, and propose an execution-based selection strategy to
select the best SQL query without syntax or execution errors.
Contributions.We summarize our contributions as follows.
(1) The Z���NL2SQL framework.We study the problem of zero-
shot NL2SQL, and introduce a novel framework, Z���NL2SQL, that
�rst generates SQL sketches using SLMs with optimized schema
alignment methods, then completes SQL queries using LLMs with
value alignment, to solve the generalization challenge of zero-shot
NL2SQL in a step-by-step fashion (Section 3)
(2) Optimizations.We propose novel techniques to tackle the chal-
lenges of the following problems: SQL sketch generation (Section 4),
SQL query completion and correction (Section 5).
(3) New SOTA Zero-shot NL2SQL Result. We conduct a com-
prehensive evaluation of zero-shot NL2SQL on two benchmarks:
Dr.Spider [4] and KaggleDBQA [16], on a total of 18 test sets (Sec-
tion 6). Our experimental results show that Z���NL2SQL can im-
prove the average execution accuracy of ChatGPT (API version:

gpt-3.5-turbo-0613) on the NL2SQL tasks by 10% to 20%, and its
performance surpasses the state-of-the-art SLM-based models and
�ne-tuned LLMs (Exp-1 & Exp-2), as well as in-context learning
methods (Exp-3).

2 PRELIMINARIES
2.1 Zero-shot NL2SQL
Let & be a natural language question, and ⇡ a relational database
consisting of = tables {)1,)2, . . . ,)=}, where 28 9 denotes the 9-th
column of the 8-th table )8 . The problem of NL2SQL is to generate
an SQL query ( , given the question & and a provided database ⇡ .

Zero-shot NL2SQL [4, 16, 51] refers to the fact that the infer-
ence environment Dtest = {(⇡8 ,&8 , (8 )}"8=0 does not appear in the
training set Dtrain = {(⇡ 9 ,& 9 , ( 9 )}#9=0, including three situations:
(1) Testing on new databases. The databases {⇡8 }"8=0 used for test-
ing is di�erent in terms of schema and instance from the databases
{⇡ 9 }#9=0 used for training. For example, the training database con-
tains column name, but the testing database contains the columns
given_name and last_name. Another example is the training data-
base is about science, while the testing database is about �nance.
(2) Testing on new questions. The questions {&8 }"8=0 used for
testing are di�erent in terms of linguistic phenomena from the
questions {& 9 }#9=0 used for training. For example, questions in
the training set explicitly mention column or table names in the
database schema, while the words in the testing questions do not
explicitly appear in the database schema or as synonyms (e.g., the
question in Figure 1 can also be expressed as “What is timothy
ward’s best performing course?”).
(3) Testing on new SQL. The SQL queries {(8 }"8=0 used for testing
are di�erent in terms of local semantics and complexity from the
SQL queries {( 9 }#9=0 used for training. For example, only a small
number of training SQL queries contain nested clauses, while a
large number of testing SQL queries contain nested clauses.

2.2 SQL Query and SQL Sketch
The SQL queries supported by Z���NL2SQL belong to Data query
language 1 (DQL) in the base grouping of SQL sub-languages, which
includes the following components: SELECT with multiple columns
and aggregations, WHERE, GROUP BY, HAVING, ORDER BY, LIMIT,
JOIN, INTERSECT, EXCEPT, UNION, NOT IN, OR, AND, EXISTS, LIKE
as well as nested queries.

An SQL Sketch consists of the following three components:
(1) SELECT.Attributes that need to be returned to the user, e.g., course
in Figure 3, as well as the aggregation function acting on the at-
tributes (e.g., AVG(score)).
(2) FROM. Tables used to obtain data, e.g., Student in Figure 3.
(3) KEYWORDs. Keywords representing sub-clauses, e.g., SELECT,
FROM, ORDER BY, LIMIT, as shown in Figure 3.

2.3 Language Models
Language models (LMs), typically based on Transformers [43], aim
to understand and generate human-like text. These models uti-
lize sophisticated algorithms and vast amounts of training data to
1https://en.wikipedia.org/wiki/Data_query_language
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learn the patterns, structures, and semantics of language. Techni-
cally, LMs are trained to model the generative likelihood of word
sequences, thereby enabling them to estimate the probability of
subsequent tokens based on the provided input context. They have
proven to be invaluable in various applications, especially in natural
language processing.

In this paper, we distinguish between two speci�c terms: small
language models (SLMs) and large language models (LLMs).
• SLMs refer to the models that can be hosted locally by nor-

mal users and �ne-tuned for di�erent downstream tasks, such as
BERT [9], BART [17], and GPT2 [31].
• LLMs refer to the models that achieve superior performance on

a variety of downstream tasks by increasing model capacity, such
as ChatGPT, PaLM [7], GPT4 [25] and LLaMA [40].

Although both SLMs and LLMs are pre-trained on a large amount
of text data, the former mainly adapt to downstream tasks through
�ne-tuning, while the latter achieves zero-shot complex reasoning
through in-context learning and instruction following [50], without
changing the model parameters.

2.4 Language Models for NL2SQL
Recent work [22, 33] formulates the NL2SQL task as an end-to-end
translation task, and leverages prompting % to guide LMs:

LM(&,⇡, %) ! (

The design of the prompt % is the key to the quality of generating
SQL queries. Existing methods include using only task description
as the prompt [22], or adding some manually annotated NL2SQL
samples (&D4BC8>=, (&!) to the prompt [52]. Our approach provides
�ne-grained prompts for LLMs through SQL sketches (generated by
SLMs) and value recommendation, aiming to support the accurate
generation of SQL queries.

3 AN OVERVIEW OF ZERONL2SQL
In this paper, we introduce Z���NL2SQL, which uses LLMs to pro-
duce precise SQL queries by providing them with customized SQL
sketches and high-quality value recommendations. As illustrated
in Figure 4, Z���NL2SQL consists of the following two key steps.

(1) SQL sketch generation. Given a user question & and a
database schema ⇡schema, an SQL Sketch Generation mod-
ule generates a list of SQL sketch candidates Dsketch =
(SELECT, FROM,Keywords) and passes it to an LLM.

(2) SQL query completion and correction. Given a set of
SQL sketch candidates Dsketch, an SQL Query Completion
and Correction module guides the LLM to complete SQL
sketches in the details, then we recommend the relevant
values in the database to calibrate the incorrect query (e.g.,
from ‘timothy’ to ‘timmy’). Finally, the best SQL query is
automatically selected as �nal output.

To support the above framework, we develop two key modules,
SQL Sketch Generation and SQL Query Completion and Correction,
to guide the LLMs with �ne-grained prompts.
SQL Sketch Generation. Given a user question & and a data-
base schema ⇡schema, this module generates a ranked list of SQL
sketch candidates Dsketch. A straightforward implementation of
SQL sketch generation is to model it as a sequence-to-sequence

generation problem and use an Encoder-Decoder based SLM to
generate the SQL sketch, i.e.,

C = (!"decode ((!"encode (&,⇡schema))
where (!"encode (·) is the SLM’s encoder for converting the in-
put (&,⇡schema) into a high-dimensional hidden vector G , and
(!"decode (·) is the SLM’s decoder for generating an SQL sketch C
based on G via beam search.

However, it is non-trivial to train such an SQL Sketch generation
module to provide accurate SQL sketch in our zero-shot setting
where test data di�ers from training data. To address this, we �rst
use an SQL sketch learning framework equipped with a database-
aware serialization strategy to guide the model to generate a list
of valid SQL sketches in di�erent test environments. We then in-
troduce a question-aware aligner to further rank the SQL sketches
based on the �ne-grained semantics of user questions. More details
of SQL Sketch Generation are given in Section 4.
SQL Query Completion and Correction. Given a ranked list
of SQL sketches, this module leverages LLMs to complete these
SQL sketches and selects the optimal SQL query as the �nal output.
There are two main challenges in this module: (1) achieving value
alignment, and (2) selecting the best SQL query.

To address the �rst challenge, we design a multi-level matching
strategy to provide the LLM with appropriate value recommenda-
tions that are both in line with the original SQL query and grounded
on the database. Speci�cally, this module takes the condition pre-
dicted by the LLM as input, denoted as (2>;D<=0, E0;D40). We start
from 2>;D<=0 and gradually expand thematching range of E0;D40 to
the entire database to obtain the best tuple (2>;D<=, E0;D4), which
is then fed back to the LLM for rewriting the SQL query. In addition,
we explore di�erent similarity calculation methods based on the
type of value, such as abbreviations or synonyms.

To address the second challenge, based on the observation that
the results of SQL execution can re�ect the quality of SQL, we
design an execution-based selection strategy to choose the best
SQL query that is executable and returns high-quality results. More
details of the SQL query completion and correction module are
given in Section 5.

4 SQL SKETCH GENERATION
Next, we present SQL Sketch Generation that generates a ranked
list of SQL sketches, as illustrated in Figure 5. The main challenge
is to achieve good generalization across new databases and new
linguistic phenomena. To this purpose, we �rst introduce an SQL
sketch learning framework equipped with a database-aware seri-
alization strategy in Section 4.1, and then develop question-aware
alignment in Section 4.2 to further rank the SQL sketches based on
the semantics of the natural language question.

4.1 SQL Sketch Learning
Given a user question& and a database schema⇡schema, we need to
generate three parts: SELECT, FROM, Keywords in the SQL sketch,
which are called sub-tasks for ease of presentation. We formulate
this problem as a sequence-to-sequence generation problem and
adopt an Encoder-Decoder small language model (SLM) as the back-
bone. We enable the Encoder-Decoder SLM to learn to generate
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SELECT course FROM student  
WHERE ___  
ORDER BY ___ LIMIT ___

A Sorted SQL sketch candidate set Dsketch

SELECT course FROM student, course 
WHERE ___ LIMIT ___

……

User Question :  
Which course has the highest score for 
the student named timmothy ward?

Q

Database schema  
course: id, course, teacher 
student: id, given_name, last_name …

Dschema

SQL Sketch  
Generation 

(SLM)

SQL Query  
Completion and Correction 

(LLM)

SELECT course FROM student 
WHERE given_name = ‘timmy’  
AND last_name = ‘ward’ 
ORDER BY score LIMIT 1

✅

Final SQL query

Figure 4: Z���NL2SQL Overview. Given a user question & and a database schema ⇡schema, (1) an SQL Sketch Generation Module
generates a list of SQL sketch candidates, and (2) an SQL Query Completion Module completes the SQL query.

these parts through multi-task learning, which is shown in Fig-
ure 5. Next, we introduce the two key steps of SQL Sketch Learning
component: database-aware serialization and parameter learning.
Database-aware serialization. Given a user question & and the
database schema ⇡schema, we combine them with di�erent instruc-
tions to construct speci�c inputs for each sub-task as:

[�#(] question : [&] database : S( [⇡schema])
where �#( is the instruction for each sub-task, and S(·) is a seri-
alization function for serializing the structured database schema
⇡schema into a text sequence.

Figure 5 shows the instructions corresponding to each sub-task,
following the previous works [1, 36, 45], which are mainly com-
posed of the task descriptions. For example, for FROM generation
sub-task, the corresponding instruction is “Generate the relevant
tables of this question according to the database”. The main intu-
ition is that di�erent instructions can enable the SLM to understand
di�erent sub-tasks in order to achieve the desired output.

For database schema serialization, previous SLM-basedworks [18,
30, 37, 38] directly concatenate the table/column names and require
the model to output these names to form an SQL query. However,
SLM is obliged to generate valid table/column names that exist in
the database. Previous methods [18, 30, 37, 38] cannot guarantee
this when the databases or linguistic phenomena changes. Exam-
ple 1 and Figure 6-(1) provides a detailed explanation.

E������ 1 (D����� �����/������ ���� �������������). Most
existing works use the Spider dataset [48] as the training set, which
has high column mention percentage in user questions [8]. We have
an observation that the SLM often directly copies column/table names
from the question & during training, rather than selecting from the
database. We design an experiment to explore the impact of data
distribution shift on the SLM. We train the T5-3B model [32] on the
Spider dataset by directly generating column/table names. Figure 6-(1)
shows the test results of the �ne-tuned T5-3B model, where column
“attendance” does not exist in the database.

To address this, we propose a simple yet e�ective database-aware
serialization strategy to enable the SLM to choose the valid database
tables or columns. Speci�cally, we achieve this by training the
SLM to refer to the column/table in the database by their indexes.
Speci�cally, given ⇡schema named ⇡name that contains = tables
{)0,)1, . . . ,)=}, and 28 9 is the 9-th column of the 8-th table )8 , we
use parentheses and indexes to the di�erent parts to serialize the
database, as shown below:

S( [⇡schema]) = [⇡name] t0 :)0 (c0 :200, c1 :201, c2 : . . . )
t1 :)1 (c0 :210, c1 :211, c2 : . . . )
. . .

For example, in Figure 5, the serialized representation of the
database “car_1” is “car_1: t0: model_list (c0: modelid, c1: maker,
c2: model) t1: continents (c0: contid, c1: continent) t2: car_names
(. . . )”. In addition, for tables containing foreign key relationships
(e.g., in Figure 5, column “id” of table “cars_data” has a foreign key
“makeid” in table “car_names”), we append it in the form of “t4.c0 =
t2.c0” after the serialized table “cars_data”.

In this way, we enforce the SLM to choose the table/column index
that best matches the user question rather than directly copying
it from the question. Finally, the index is automatically translated
back to the original column/table names. Example 2 and Figure 6-(2)
illustrate our database-aware serialization strategy.

E������ 2 (D������������� �������������). Continuing with
Example 1, we use Spider as the training set. The di�erence is that we
require the model to learn how to use indexes to refer to corresponding
tables or columns. Figure 6-(2) illustrates the test result, the model �rst
outputs SELECT t0.c2, which is then automatically translated into
column and table names in the database: SELECT stadium.highest.

Based on the comparison results, we can see that Database-aware
serialization strategy can enable the model to select valid table and
column names from the database, rather than directly copying words
from the question.

As discussed previously, to alleviate the local optimal problem
of beam search, we retain top-: hypotheses generated by the SLM
as candidates instead of only considering the best one. Thus, for
the three parts of an SQL sketch, our SQL sketch learning method
produces DSELECT = {SELECT8 } 1

8=0, DFROM = {FROM8 } 2
8=0, and

DKeywords = {Keywords8 }
 3
8=0.

Parameter Learning. To train such a model to generate SQL
sketches, we perform supervised �ne-tuning on an Encoder-decoder
SLM (e.g., T5 [32] and BART [17]) on a set of annotated data. Specif-
ically, we �rst extract training data for three sub-tasks from an
annotated NL2SQL dataset (e.g., Spider [48]). The obtained dataset
M = {(�#(,&,⇡⌫schema, !)} consists of instruction �#( , database
schema ⇡B2⌘4<0 and user question & for input, and label ! for tar-
get. Note that the instructions and labels for di�erent sub-tasks are
di�erent. The SLM is �ne-tuned on three sub-tasks simultaneously
and optimize parameters \ by minimizing the maximum likelihood:

L(\ ) = �E(�#(,&,⇡schema,!)2M log %\ (! |�#(,&,⇡schema)

4.2 Question-Aware Aligner
For SQL sketch learning, the SLM generates SQL sketches based
on the database schema. However, it is still lack of �ne-grained
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t2, t4t2, t4SELECT t2.c1SELECT t2.c1

Translate the question into an SQL structure 
according to the database

Question : For cars with 

four cylinders, show me the 

car models that have the 

most horsepower.

Q Database schema : 
t0: model_list ( c0: modelid, c1:maker, c2: model) 
foreign key: t0.c1 = t3.c0 
t1: continents (c0: contid, c1: continent) 
t2: car_names (c0: makeid, c1: model, c2: make) 
foreign key: t2.c1 = t0.c2 
……

Dschema

Generate the SELECT sub-clause of this question 
according to the database
Generate the relevant tables of this question 
according to the database

SQL Sketch Learning

SELECT t2.c1 t2, t4

SELECT __ FROM__ 
WHERE__ 
GROUP BY__

SELECT car_names.model, 
car_names.make

car_names, cars_data

➕

➕

➕

Sub-Task Instructions

SELECT car_names.model
……

……

SELECT __ FROM__ 
WHERE__ 
ORDER BY __ LIMIT __�select �keywords

(b) Question-Aware Aligner
Align Scores 

Ranking

SELECT car_names.model

SELECT __ FROM__ 
WHERE__ 
ORDER BY __ LIMIT __

car_names, model_list
……

Top-1

a

b

�sketch
�

Figure 5: An overview of the SQL Sketch Generation module. (a) A SLM is used to generate a list of candidates DSELECT, DFROM,
and DKeywords after SQL sketch learning (Section 4.1). (b) A Question-Aware Aligner is used to further rank the SELECT and
Keywords candidates based on �ne-grained question semantics (Section 4.2). The top-1 SELECT and Keywords are combined with
Dfrom to form the ordered SQL sketch candidate set Dsketch.

(1) Direct Table/Column Serialization

Question : show the highest attendance without any concert.Q
Database schema : 
stadium (stadium_id, capacity, highest, lowest, average)  
…

Dschema

INPUT

SELECT max(attendance)
OUTPUT

(2) Database-Aware Serialization

Database schema : 
t0:stadium (c0: stadium_id, c1:capacity, c2:highest, c3:lowest, 
c4:average)  
…

Dschema

INPUT
Question : show the highest attendance without any concert.Q

OUTPUT INDEX
SELECT t0.c2

SELECT stadium.highest
TRANSLATE

✅

❌

Figure 6: Comparison of direct table/column name serializa-
tion and database-aware serialization.

optimization at the semantic-level for di�erent parts. Speci�cally,
for SELECT and Keywords parts, they need to be closely aligned

with the question’s intention and the question’s requirements, re-
spectively. For example, in Figure 4, as the question’s intention is
“which course”, the corresponding SELECT part should be “SELECT
course”. In addition, as the question’s requirements are “has the
highest score”, the corresponding Keywords part should include
“ORDER BY”.

To bridge this gap, we design a question-aware aligner to fur-
ther prune SQL sketch candidates by selecting the best SELECT
and Keywords. Note that we do not perform question-based �l-
tering on FROM part here, because the FROM part also depends
on complex foreign key connections and cannot be inferred di-
rectly based on the semantics of the question. Speci�cally, we take
the Cartesian product of set DSELECT and set DKeywords to obtain
the �nal candidate set D = {(SELECT8 ,Keywords9 ) |SELECT8 2
DSELECT,Keywords9 2 DKeywords}. Then, for each candidate from
D, we concatenate it with the user question & to form an input
sequence, i.e.,

[CLS] user question :& . our solution :SELECT8 ,Keywords9 [SEP]
where [CLS] and [SEP] are special tokens that represent the start
and end of the input sentence, respectively. The input sequence is
converted to a high-dimensional representation � [CLS] through
an Encoder-based SLM (e.g., BERT [9], RoBERTa [24], and De-
BERTa [14]). � [CLS] is further fed into a fully connected layer
FC(·) to obtain the alignment score 08 9 = f (�⇠ (� [CLS] )) between
(SELECT8 ,Keywords9 ) and & , where f is the softmax function.
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Algorithm 1:Multi-Level Matching
Input: database ⇡ , SQL ( 0, similarity threshold A
Output: Rewritten SQL ( 00

1 5 443102: = [];
2 ;4E4;B = [2>;D<=, C01;4,30C010B4];
3 for (2>;D<=0, E0;D40) 8= extractCondition(⇡, () do
4 for ;4E4; in ;4E4;B do
5 getCandidateValues(;4E4;,⇡) ! V;
6 SimilarityCalculation(V, E0;D40) !

(2>;D<=0, E0;D40);
7 if closeEnough(E0;D40, E0;D40, A ) then
8 break;
9 end

10 end
11 5 443102: .append(2>;D<=0, E0;D40);
12 end
13 ( 00  feedbackToLLM(5 443102:);

Finally, we combine DFROM with the best (SELECT,Keywords)
selected by the question-aware aligner to form the ranked SQL
sketch candidate set Dsketch.
Parameter Learning.We perform supervised �ne-tuning on an
Encoder-based SLM to train our question-aware aligner. For each
question & in the training set M, we obtain the ordered candidate
set D as above. For each sample (SELECT8 ,Keywords9 ) 2 D, if
and only if both SELECT8 and Keywords9 are correct, the alignment
label !0 is 1; otherwise the alignment label !0 is set to 0. In this way,
we can convert⇡ into a training set� = {(&, SELECT,Keywords, !0)}.
Then, we optimize the parameters \aligner (including the parame-
ters of the Encoder-based SLM and the fully connected layer) by
minimizing the cross entropy loss on the training set �.

5 SQL QUERY COMPLETION & CORRECTION
In this section, we present our SQL query completion method that
leverages LLM to �ll the missing information in the SQL sketch.
Our main intuition is to mimic human behaviors to iteratively cor-
rect SQL queries, including revising queries based on the execution
results and the database content. To achieve this, we �rst intro-
duce a multi-level matching strategy to help LLM complete SQL
queries with correct value alignment (Section 5.1). Then, we design
a selection strategy to obtain optimal SQL queries (Section 5.2).

5.1 Multi-Level Matching
Z���NL2SQL aims to ensure consistency between the SQL query
and the database, i.e., the value alignment presented in the Introduc-
tion. To achieve this, we introduce a multi-level matching strategy
to provide appropriate value recommendations to the LLM. In this
process, we explore di�erent similarity calculation methods.

Given the condition (2>;D<=0, E0;D40) predicted by the LLM,
there are two types of errors: incorrect predicted value and incorrect
predicted column. For the former, we can directly �nd the value
that is most similar to E0;D40 in 2>;D<=0. On the other hand, for
the latter, we need to expand the matching range to the entire
database. However, directly setting the matching range as the entire

database may introduce completely unrelated columns. Therefore,
we consider gradually expanding the matching range in three levels.
As illustrated in Algorithm 1, we match the value on the column,
table, and database in sequential order (Line 2). In any level of
matching range, if we �nd a value that is close enough to E0;D40
(Line 7), we terminate the matching process and directly return the
value and its corresponding column as a recommendation to LLM.
Note that we only consider conditions where (2>;D<=0) equals a
string value, as correcting conditions involving greater than or less
than a numerical value is challenging due to the wide range of
potential incorrect types. We will consider this in the future work.

We also �nd that, due to the imperfect accuracy of SQL sketches,
this step can actually compensate for some errors introduced by
SQL sketch. For instance, an SQL sketch might predict the absence
of a certain table, but multi-level matching can provide feedback to
LLM by searching for target values and columns in the database,
enabling LLM to add the missing table based on this feedback.
Similarity Calculation. Given (E0;D40, E0;D40), the typical meth-
ods for similarity calculation can be generally divided into two
categories, namely character-based and semantic-based.

For character-based similarity calculation, the similarity score
can be calculated by fuzzymatch [15], i.e.,

1 � IndelDistance(E0;D40, E0;D40)
min[length(E0;D40), length(E0;D40)]

where IndelDistance() is the minimum number of insertions and
deletions to convert one sequence into another sequence, and
length() represents the length of a string.

For semantic-based similarity calculation, we �rst convert the
two values into two high-dimensional vector-based representations.
Then, we obtain the similarity score by calculating the inner product
of these two representations. Speci�cally, to obtain the vector-based
representation, we consider two representative methods, namely
word2vec-based and SLM-based.
• For word2vec-based method, we utilize the pre-trained GloVe

dictionary [27]. We �rst tokenize each value into several tokens
{C>:8 }=8=0, and look up in the dictionary to obtain the word embed-
ding 4<18 for each token C>:8 . Then the value is represented by
averaging the word embeddings {4<18 }=8=0.
• For SLM-based method, we utilize Sentence Bert (SBERT) [34]

to encode each value. Unlike word2vec-based method, SBERT uses
a bidirectional attention mechanism to model the overall seman-
tic interaction to obtain the encoded embeddings {4<108 }=8=0, and
averages them to obtain the �nal representation of the value.

5.2 SQL Query Selection
Based on each SQL sketch candidate obtained in Section 4, LLM
completes the SQL query to select the optimal query as the �nal
output. We trigger query revision if a query returns null results,
inspired by the observation that humans usually think twice when
encountering such queries. To achieve this, we design a selection
strategy based on execution results. That is, if the current SQL query
does not meet the requirements, we will use a new sketch candidate
to guide the LLM to generate a new SQL query. Our primary insight
is that the execution result of an SQL query indicates the quality
of the query itself. For instance, when a query yields null results,
humans typically reconsider the query.
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Algorithm 2: SQL Query Selection
Input: Question & , Database schema ⇡schema, Database ⇡ ,
ordered candidate set Dsketch, Execution patience ?
Output: The �nal SQL query ( 00

1 for each C8 2 Dsketch do
2 LLM(&,⇡schema, C8 ) ! (0;
3 ExecutionCheck((0,⇡, ?) ! ( 0;
4 if ( 0 then
5 MultiLevelMatching(( 0,⇡) ! ( 00;
6 GetExecutionResult(( 00,⇡) ! A4BD;C ;
7 if A4BD;C < #*!! then
8 break;
9 else
10 continue;
11 end
12 else
13 continue;
14 end
15 end
16 return ( 00;

Algorithm 2 illustrates the overall process of our selection strat-
egy. Given an SQL sketch candidate C8 2 Dsketch, together with
the question & and the database schema ⇡schema, they are fed into
the LLM to generate an SQL query (0 (Note that (0 is already a
complete query, while subsequent execution checks and multi-level
matching aim to re�ne it). Then (0 is subjected to executable check,
and an executable query ( 0 is obtained by continuously feeding
back error information to the LLM. Please note that we set the
number of feedback times not to exceed ?; otherwise we discard
C8 and repeat the above steps with the next candidate C8+1. ( 0 is
passed to the multi-level matching step to obtain an SQL query
( 00 grounded on the database. If the execution result of ( 00 is not
#*!!, we return ( 00 as the �nal SQL query. Otherwise, we discard
C8 and repeat the above steps for the next candidate C8+1.

6 EXPERIMENTS
6.1 Experimental Setup
6.1.1 Datasets. We train Z���NL2SQL using the Spider dataset
and then use Dr.Spider, GeoQuery and KaggleDBQA to evaluate
the e�ectiveness and robustness of the model. The databases and
user questions in the train and test sets are completely di�erent.
Spider is a well-known NL2SQL benchmark [48], which contains
200 databases that cover 138 domains, such as colleges, government,
etc. There are 10,181 question instances with 5,693 unique SQL
queries. Among them, Spider randomly selects 7000 annotated
instances as the training set.
Dr.Spider is a comprehensive benchmark [4] based on Spider,
which is designed for evaluating the performance of NL2SQL meth-
ods in new test environments, i.e., the zero-shot setting studied in
our paper. The basic idea is to make perturbations on the Spider
dataset to simulate new test sets. Speci�cally, there are 3 test sets
with database perturbation, 9 test sets with question perturbation,

and 5 test sets with SQL perturbation. Database perturbation simu-
lates the situations where data is represented in various ways in
databases. Question perturbation simulates various task-speci�c
linguistic phenomenon. SQL perturbation simulates the changes of
SQL structures. Please refer to the original paper [4] for details.
KaggleDBQA is a test set [16] for NL2SQL tasks that is designed
to closely mimic the data and questions that an NL2SQL model
might encounter in real-world scenarios. The databases used in
KaggleDBQA are sourced from Kaggle (https://www.kaggle.com/).
The questions in KaggleDBQA are annotated to ensure that they
re�ect the interests of real users.
GeoQuery is a benchmark for NL2SQL tasks, focusing solely on
US geography. It comprises a single database and encompasses 877
instances, each consisting of a natural language question paired
with an SQL query.

Table 1 displays the various SQL query types and corresponding
examples contained within these datasets.

6.1.2 Evaluation Metrics. As SQL expression styles used in LLMs
may di�er from the ground truth in the NL2SQL benchmarks [39],
traditional string-based evaluation metrics such as Exact Match
Accuracy [48] are not appropriate for evaluation in our paper. There-
fore, following previous works [22, 33, 52], we use the Execution
Accuracy (EX) metric, which compares the execution results of
a generated and the corresponding ground-truth SQL queries re-
trieved from the database.

6.1.3 Baselines. We consider the following two types of baselines.
First, we use SOTA SLM-based models �ne-tuned on the Spider
training set, including SMBOP [35] and RESDSQL [18]. We also
report the �ne-tuning results of LLaMA2 [40] model for comparison.
Second, we use LLM-based methods, including vanilla LLMs, LLM
+ In-Context Learning, and DIN-SQL [29]. We brie�y describe these
methods as follows.
SMBOP introduces a semi-autoregressive bottom-upNL2SQLmodel
as an alternative approach to top-down autoregressive model.
RESDSQL proposes a ranking-enhanced encoding method that
selects the most relevant schema items to inject into the encoder.
LLaMA2 is an open-source LLM (https://ai.meta.com/llama/) that
we �ne-tune directly on the Spider dataset and report the �ne-
tuning results of two di�erent model sizes, 7B and 13B.
Vanilla LLM refers to directly applying an LLM to the NL2SQL
task without any other task-speci�c designs. Speci�cally, we input
the user question, the database schema, and the task instruction
“Translate the user question into an SQL query.” to the LLM.
LLM + In-Context-Learning refers to adding some (user question,
SQL) examples to the input of the LLM to facilitate its understand-
ing and reasoning [1]. Considering that di�erent example selection
methods may produce di�erent results [23], we consider two typ-
ical ways to select examples: one is to randomly select from an
example pool, and the other is to select examples that are similar
to the user question. Besides, we also evaluate a method (named as
“Incremental ICL”) to approximate a scenario where we start with
zero examples in the train set. Speci�cally, we pick a test set, and
do zero-shot with an LLM. Then, if the generation is correct based
on the ground truth, it can be added into the train set and used for
in-context learning in subsequent LLM invocations.
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Table 1: Types of SQL queries contained in the dataset. The type is determined by the quantity of SQL components, selections,
and conditions, meaning that queries with a higher number of SQL keywords (such as GROUP BY, ORDER BY, and aggregators)
are considered to be more challenging.
Type Question SQL query
Easy What is the number of cars with more than 4 cylinders? SELECT COUNT(*) FROM cars_data WHERE cylinders > 4

Medium For each stadium, how many concerts are there? SELECT T2.name, COUNT(*) FROM concert AS T1 JOIN stadium AS
T2 ON T1.stadium_id = T2.stadium_id GROUP BY T1.stadium_id

Hard Which countries in Europe have at least 3 car manufacturers?

SELECT T1.country_name FROM countries AS T1 JOIN continents
AS T2 ON T1.continent = T2.cont_id JOIN car_makers AS T3 ON
T1.country_id = T3.country WHERE T2.continent = ‘Europe’ GROUP
BY T1.country_name HAVING COUNT(*) >= 3

Extra
Hard

What is the average life expectancy in the countries where
English is not the o�cial language?

SELECT AVG(life_expectancy) FROM country WHERE name NOT IN
(SELECT T1.name FROM country AS T1 JOIN country_language AS T2
ON T1.code = T2.country_code WHERE T2.language = ‘English’ AND
T2.is_o�cial = ‘T’)

DIN-SQL focuses on breaking down complex text-to-SQL tasks
into sub-tasks to enhance the performance of LLMs in reasoning.

6.1.4 Implementation Details. In this work, we use OpenAI’s APIs
with versions gpt-3.5-turbo-0613 and gpt-4-0613, as the backbone
LLM. Speci�cally, we set the generation temperature to 0.0, fre-
quency penalty to 0.0, and top-? to 1.0. For SQL sketch learning,
we adopt T5-3B (https://huggingface.co/t5-3b) as the backbone
Encoder-Decoder SLM. We set the batch size to 32 and the learning
rate to 0.00005. In question-aware aligner, we adopt DeBERTaV3-
Large (https://huggingface.co/microsoft/deberta-v3-large) as the
backbone Encoder SLM. We set the batch size to 4 and the learn-
ing rate to 0.000005. In addition, for the number of hypotheses
retained for di�erent parts, we set  1,  2, and  3 to 4, 2, and 2
respectively, and set ? to 1 for the execution check part. For SQL
query completion, we use Sentence Bert (https://huggingface.co/
sentence-transformers/bert-base-nli-stsb-mean-tokens) and pre-
trained GloVe dictionary (https://nlp.stanford.edu/projects/glove/)
containing 200-dimensional representations of 400K English words
to obtain the embedding of the value.We set the similarity threshold
A in Algorithm 1 to 0.65 which is determined by a hyper-parameter
search in our evaluation. For database components, we use SQLite
as the database and the sqlite3 package in Python to parse and
execute SQL queries over the databases.

All the experiments are implemented using PyTorch [26], and
evaluated on NVIDIA RTX A6000 48G.

6.2 Comparison with open-source LMs.
First, we compare Z���NL2SQL and baseline models on di�erent
zero-shot test environments (Exp-1 and Exp-2).
Exp-1: What is the zero-shot reasoning ability on Dr.Spider
(i.e., single perturbation per test set)? We conduct experiments
on the Dr.Spider benchmark [4] containing 17 test sets, and Table 2
reports the experimental results. Overall, Z���NL2SQL based on
gpt-3.5-turbo-0613 outperforms all the baselines, including the SLM-
based SOTAmodels (74.9%VS. 71.7%), �ne-tuned LLaMA2 (74.9%VS.
61.6%) and the vanilla gpt-3.5-turbo-0613 (74.9% VS. 63.5%). Further-
more, when combined with a more powerful backbone LLM, GPT-4,
our method can demonstrate even better performance (77.2% VS.
74.9%). Speci�cally, we have the following �ndings: (1) Comparing
the previous SLM-based SOTA model and vanilla gpt-3.5-turbo-
0613, we can see that there is a gap on the average performance

between the two methods, which is also reported in the existing
work [22]. However, gpt-3.5-turbo-0613 exhibits relatively stable
performance in di�erent zero-shot tests and does not show a par-
ticularly signi�cant performance declines due to certain types of
perturbations. For example, on the DBcontent-equivalence test set,
the EX accuracy of SMBOP [38] is only 37.2%, which is much worse
than its average performance. In contrast, the EX accuracy of gpt-
3.5-turbo-0613 is 54.5%, which is close to its average performance.
(2) Combining with Z���NL2SQL, gpt-3.5-turbo-0613 shows better
and more stable NL2SQL performance than the SLM-based SOTA
models. For example, on the di�cult value-synonym test set, the
SLM-based SOTA models have an EX accuracy between 29.1% and
53.2%, while Z���NL2SQL achieves an EX accuracy of 70.6%, which
shows a signi�cant improvement of 17.4%. (3) The LLaMA2 model
�ne-tuned directly on the NL2SQL dataset does not perform as
well as task-customized SLMs (i.e., SMBOP, RESDSQL), which is
consistent with the �ndings of DAIL-SQL [10]. As for the reason,
our main analysis is that training LLMs on a speci�c task can easily
lead to over�tting on a single task (i.e., NL2SQL), which may impact
their generalization capabilities.

Conclusion: This experiment shows that our method uni�es the
advantages of SLMs and LLMs for supporting zero-shot NL2SQL.
Exp-2: What is the zero-shot reasoning ability on unseen
domains (i.e., the distribution of databases, user question
and SQL all changes)? We conduct experiments on the KaggleD-
BQA [16] and GeoQuery [49] datasets, which has a completely
di�erent style of databases, user questions, and SQL queries com-
pared to the Spider dataset [48] used for training. Table 3 reports
the experimental results. Comparing with SLM-based SOTA model
and vanilla gpt-4-0613, the EX accuracy of “Z���NL2SQL + gpt-4-
0613” achieves the best NL2SQL performance. This indicates that
when using the same training set, Z���NL2SQL can exhibit better
zero-shot reasoning ability on completely di�erent test sets.

Conclusion: This experiment demonstrates that LLMs are more
generalizable to new domains. Furthermore, Z���NL2SQL evokes
the superior zero-shot reasoning capabilities o� LLMs.

6.3 Comparison with proprietary LLMs.
Exp-3: How does our model compare with proprietary LLM-
based methods in terms of performance and cost? A typical
method of applying LLMs to a speci�c task is in-context learning.
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Table 2: Comparison of the execution accuracy (%) between Z���NL2SQL and the open-source language models �ne-tuned on
the Spider dataset. “DB” represents perturbations on the database, “NLQ” represents perturbations on user issues, and “SQL”
represents perturbations on SQL queries. We report macro-average scores over multiple perturbations.
Type Perturbation # Test SMBOP [35] RESDSQL [18] LLaMA-2-7B LLaMA-2-13B gpt-3.5-turbo-0613 Z���NL2SQL

(gpt-3.5-turbo-0613)
Z���NL2SQL
(gpt-4-0613)

Spider-dev 1034 78.0 84.1 72.7 74.6 72.4 82.0 84.0

DB
schema-synonym 2619 53.9 68.3 45.1 47.9 58.7 69.8 71.4

schema-abbreviation 2853 59.0 70.0 56.9 60.8 64.7 74.8 75.9
DBcontent-equivalence 382 37.2 40.1 48.4 49.8 54.5 56.8 72.0

NLQ

keyword-synonym 953 64.3 72.4 61.2 64.3 57.1 74.0 74.5
keyword-carrier 399 79.2 83.5 78.2 80.6 85.7 88.2 89.0
column-synonym 563 48.7 63.1 43.5 45.1 51.2 62.7 64.5
column-carrier 579 64.6 63.9 62.0 64.6 57.9 71.7 73.2
column-attribute 119 58.0 71.4 58.8 60.8 58.0 70.6 73.9
column-value 304 58.9 76.6 52.3 55.0 64.5 76.0 74.3
value-synonym 506 29.1 53.2 41.1 44.2 54.9 70.6 68.9

multitype 1351 46.1 60.7 49.7 50.2 52.2 66.4 67.6
others 2819 73.7 79.0 68.8 71.2 68.6 79.4 81.3

SQL

comparison 178 65.2 82.0 61.2 63.9 61.2 73.6 79.2
sort-order 192 76.6 85.4 69.8 72.5 52.1 80.2 83.3

nonDB-number 131 71.8 85.5 71.8 74.4 88.5 92.4 92.4
DB-text 911 63.1 74.3 57.5 61.8 72.3 80.7 82.1

DB-number 410 84.4 88.8 77.3 80.2 78.0 86.1 86.3
All Average - 60.8 71.7 59.0 61.6 63.5 74.9 77.2

Figure 7: Comparison of methods in terms of token con-
sumption and end-to-end time consumption (seconds). Both
Z���NL2SQL and DIN-SQL are based on gpt-3.5-turbo-0613.

Table 3: Comparison of the execution accuracy (%) between
Z���NL2SQL and the other methods on unseen domains.

Dataset Previous SOTA gpt-4-0613 Z���NL2SQL
(gpt-4-0613)

GeoQuery 74.7 [46] 65.4 84.6
KaggleDBQA 31.9 [18] 25.2 42.4

For In-context learning, we use the Spider training set as the exam-
ple pool. Table 4 presents the experimental results. Comparing with
in-context learning, our method can bringmore signi�cant improve-
ments to LLM. For example, on the DBcontent-equivalence test set,
in-context learning results in poor gpt-3.5-turbo-0613 performance
(54.5% VS. 54.2%), while our method does not (54.5% VS. 56.8%). Fur-
thermore, when combined with a more powerful backbone LLM,
GPT-4, our method can demonstrate even better performance (67.7%

VS. 63.9%). In addition, we compare OpenAI’s text-embedding-ada-
002 against SBERT in obtaining in-context learning examples. Each
example is encoded into a high dimensional embedding using dif-
ferent methods (i.e., text-embedding-ada-002 and SBERT), and then
cosine similarity is used to select 20 annotated examples to be added
to the prompt to assist LLM’s inference. According to the exper-
imental results in Table 5, the text-embedding-ada-002 performs
slightly better than SBERT, as it can better encode the semantic
information of sentences. However, considering that the encoding
cost of SBERT is much lower than that of text-embedding-ada-002,
we believe that using SBERT for retrieval is a reasonable choice.

We compare the methods on costs from two perspectives. As
shown in Figure 7: (1) number of tokens consumed by our method is
much lower than various in-context learning methods. (2) regarding
the run time of end-to-end inference, Z���NL2SQL is only second
to directly using gpt-3.5-turbo-0613 for inference, and signi�cantly
better than other methods which are based on chain-of-thought
reasoning and in-context learning. For detailed training and infer-
ence costs, training takes substantial time, but Z���NL2SQL only
needs to be trained once for inference in new domains, without
the need for retraining. In addition, multi-level matching does not
cause much delay, as we can cache the embeddings of values in
the database, and cosine similarity calculations can fully utilize
matrix multiplication, which can be further accelerated through
cuda support.

Conclusion: This experiment demonstrates that Z���NL2SQL
+ LLM outperforms direct usage of LLM alone in terms of both
accuracy and e�ciency in NL2SQL reasoning.

6.4 Ablation Study
Exp-4:What is the e�ect of each component in the SQL sketch
generation module? Table 6 shows the impact of di�erent parts
on the string match accuracy of generating SQL sketch. Overall,
database-aware serialization strategy has the greatest impact on
generating SQL sketches, avoiding the model from over-focusing
on user questions and enabling the model to generate valid SQL
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Table 4: Comparison of the execution accuracy (%) between Z���NL2SQL and di�erent in-context learning methods based on
proprietary LLMs. We report macro-average scores over datasets. † represents that the method does not use database content.

Dataset gpt-3.5-turbo-0613 gpt-3.5-turbo-0613
+ random 10-shot

gpt-3.5-turbo-0613
+ random 20-shot

gpt-3.5-turbo-0613
+ similarity 10-shot

gpt-3.5-turbo-0613
+ similarity 20-shot

gpt-3.5-turbo-0613
+ Incremental ICL DIN-SQL † [29] Z���NL2SQL

(gpt-3.5-turbo-0613)
Z���NL2SQL
(gpt-4-0613)

DBcontent-equivalence 54.5 51.3 54.2 51.3 53.9 64.9 48.7 56.8 72.0
column-value 64.5 64.5 67.4 64.5 66.1 70.5 51.6 76.0 74.3

DB-text 72.3 75.7 75.6 75.3 76.9 78.9 61.7 80.7 82.1
KaggleDBQA 24.3 26.5 29.7 27.6 28.1 34.6 27.0 44.9 42.4

Average 51.6 54.5 56.7 54.7 56.3 62.2 47.3 63.9 67.7

Table 5: Comparison between OpenAI’s text-embedding-ada-
002 and SBERT.

Approach column-value DB-text KaggleDBQA
text-embedding-ada-002 67.2 76.9 28.9

SBERT 66.1 76.9 28.1

Table 6: Ablation on di�erent components in the SQL sketch
generation module (on the KaggleDBQA dataset).

Approach select keywords from
T5-3B 54.2 65.7 76.8

Z���NL2SQL (gpt-3.5-turbo-0613) 61.1 68.6 81.6
w/o database-aware serialization 55.1 66.5 76.8

w/o question-aware aligner 58.3 68.1 81.6
embedding-based aligner 54.2 63.1 75.2

sketches based on the database schema. Secondly, question-aware
aligner has a gain on the SELECT part and the KEYWORDS part,
indicating that further aligning these two parts with the user ques-
tion can help SQL sketch generation. Additionally, we compare
with an embedding-based aligner, which calculates the cosine simi-
larity between the question and candidates. Experimental results
indicate that “embedding-based aligner” performs weaker than our
method used in Z���NL2SQL. The main reason is that during the
alignment step, semantically each candidate and question are very
similar (with di�erences in only one or two tokens). Compared
to “embedding-based aligner”, our method can encode both the
question and candidate, capturing more �ne-grained alignment re-
lationships through self-attention mechanisms. Table 7 shows two
examples of what the aligner does speci�cally. That is, it reorders
candidates according to the semantics of the natural language ques-
tion. This assigns higher scores to the best matching candidates.
Exp-5: Evaluating the e�ect of each component in the SQL
query completion and correction module? Firstly, to evaluate
the e�ectiveness of our matching method, we conduct experiments
in the following two aspects:

(1) We demonstrate the importance of similarity-based match-
ing by comparing with other design choices, including providing
random values from the predicted column to the LLM (denoted as
“randommatch”) and providing data formats, such as lowercase and
abbreviations (denoted as “format match”). We report the experi-
mental results in Table 9. We can see that both “random match” and
“format match” perform worse than similarity-based match meth-
ods. This is because “random match” introduces too much noise,
while “format match” is too limited. We also analyze the correlation
between the predicted values and the actual values. We identify
300 error samples where the predicted values di�ered from the
ground truth, categorized as “lexical errors” and “semantic errors”.
"Lexical errors" involve similar semantics but di�erent spellings
(e.g.,True -> T), amendable through similarity retrieval. “Semantic
errors” involve distinct semantics (e.g.,Alice -> Alan), not amend-
able through similarity retrieval. Among the 300 errors, 268 were

lexical errors and 32 were semantic errors. Hence, correcting LLM
errors through similarity retrieval is reasonable.

(2) We evaluate the e�ectiveness of multi-level matching by com-
paring with the question-based method used in previous work [30,
37] (i.e., baseline), in-column matching and in-database matching.
The latter two represent only matching in the predicted column
and directly matching throughout the entire database, respectively.
According to the results, multi-level matching achieves the best
performance. The main reason is that in-column matching does
not consider LLM’s mis-prediction of columns, and thus matching
in the wrong columns and feeding noisy information back to the
LLM causes further errors. In addition, in-database matching com-
pletely disregards the predicted column, resulting in feedback to
be signi�cantly deviated from the original reasoning.

Secondly, to explore the best similarity calculation method for
this scenario, we compare di�erent representative methods in Ta-
ble 10. Fuzzy matching method [15] can better capture character-
level similarity, and thus it performs well in abbreviation/full name
matching, e.g., “HI” and “Hawaii”. The Glove method [27], as a
representative semantic level matching method, can better handle
synonym situations, such as “putty” and “dog”. However, GloVe
only considers the co-occurrence of words in a text corpus, while
may not capture more complex semantic relationships between
words (e.g., order). Moreover, due to the use of a bidirectional atten-
tion mechanism, SBERT [34] can better capture the overall meaning
of the value. Therefore, SBERT exhibits more stable and excellent
performance than both Glove and fuzzy matching methods.
Exp-6: Evaluating the relevance and usefulness of combining
SLMs with LLMs. To validate the design of SLMs and LLMs in
Z���NL2SQL, we compare four di�erent design choices: (1) Re-
placing the SQL Sketch generation module with LLM (prompted
by in-context learning), with the subsequent modules remaining
unchanged, denoted as “LLM +LLM”; (2) Replacing the SQL query
completion module with SLMs (since SLMs does not have interac-
tive capabilities, we removed the correction part), with the previous
modules remaining unchanged, denoted as “SLM +SLM”; (3) Replac-
ing SQL Sketch generation module with LLM and the SQL query
completion with SLM, denoted as “LLM +SLM”; (4) The original
design of Z���NL2SQL, which is denoted as “SLM +LLM”. The ex-
perimental results are shown in Table 8, and it can be seen that the
design of Z���NL2SQL outperforms the other three design meth-
ods. This indicates that SLM is suitable for controllable generation
of SQL sketches, while LLM is suitable for generating parts that
require complex reasoning, such as the conditions in SQL queries.

7 RELATEDWORK
SLM-based NL2SQL.Many studies have shown that pre-trained
language models can perform well in structured data (e.g., table,

2760



Table 7: Two alignment examples from the aligner. Note that the order of the candidates in the table is determined by the
generation probability of the SQL sketch generator, and the role of the aligner is to reorder these candidates based on the
semantics of natural language question, with the goal of assigning the maximum score to the correct candidate (ÿ).

Question SELECT Candidates Structure Candidates

For cars with four cylinders, show me the
car models that have the most horsepower.

1. SELECT car_names.model, car_names.make
2. SELECT car_names.model (ÿ)

1. SELECT-FROM-WHERE-ORDER BY-LIMIT (ÿ)
2. SELECT-FROM-WHERE-GROUP BY

Please �nd the name and ranking points of
the player who has won the most times.

1. select players.�rst_name, players.last_name,
rankings.ranking_points
2. select matches.winner_name,
matches.winner_rank_points (ÿ)

1. SELECT-FROM-WHERE
2. SELECT-FROM-GROUP BY-ORDER BY-LIMIT (ÿ)

Table 8: Comparison of di�erent design choices, which re-
ports execution accuracy (%).

Approach KaggleDBQA column-value DB-text
SLM + LLM (Z���NL2SQL) 44.9 76.0 80.7

LLM + SLM 21.4 71.4 75.6
LLM + LLM 25.6 67.5 75.7
SLM + SLM 29.7 72.6 73.8

Table 9: Ablation study on di�erent matching methods,
which reports execution accuracy (%).

Approach column-value DB-text Average
Similarity-based Methods

baseline 69.8 68.8 69.3
in-column matching 71.7 81.0 76.4
in-database matching 62.8 64.7 63.8
multi-level matching 76.0 80.9 78.5
Other Methods

random match 70.1 67.2 68.7
format match 72.4 73.6 73.0

Table 10: Ablation study on di�erent similarity calculation
methods, which reports execution accuracy (%).

Approach column-value DB-text Average
Fuzzy [15] 73.4 81.0 77.2
GloVe [27] 74.6 78.0 76.3
SBERT [34] 76.0 80.9 78.5

database) inference [12, 13, 41, 42]. Therefore, many works have
applied pre-trained language models to the NL2SQL task, as pre-
training on large amounts of text corpus enables SLMs to better
model the semantic relationship between user question and data-
base schema [11]. Overall, The SLMs used in these works is mainly
divided into two types: Encoder-only SLMs and Encoder-Decoder
SLMs. For Encoder-only SLMs, RATSQL [44] and LGESQL [3] lever-
age BERT [9] to encode the user question and database schema,
and further adopt graph neural network to model the foreign keys
and schema links. Then the encoded representation is fed into a
grammar-based syntactic neural decoder to generate a SQL query.
For Encoder-Decoder SLMs, PICARD [37], RASAT [30] and RESD-
SQL [18] formulate the NL2SQL task as an end-to-end translation
problem and leverage the T5 model [32] to directly translate user
question into SQL query. Additionally, CodeS [19] trains on the
Star-Coder using SQL data and achieves good NL2SQL performance.
Di�erent from previous methods, the goal of Z���NL2SQL is to
enable SLMs to generate accurate SQL sketches on new test envi-
ronments. Therefore, we focus on the impact of test environment

changes on SLMs and propose adaptive methods to address this
challenge.
LLM-based NL2SQL. With the excellent performance of LLMs in
many natural language processing tasks [6], recent work attempts
to apply LLMs to the NL2SQL task. Rajkumar et al. [33] evaluate the
zero-shot NL2SQL capabilities of CodeX model [5]. Zhuo et al. [52]
further validate the robustness of the Codex model on NL2SQL
task and proposes e�ective example sampling method to enhance
robustness. Recently, with the popularity of ChatGPT, Liu et al. [22]
conduct experiments to explore its zero-shot NL2SQL inference
ability and point out that it still has a certain gap with existing
�ne-tuned PLM-based methods, but it exhibits strong robustness
on new datasets. To improve the NL2SQL e�ectiveness of LLMs,
DIN-SQL [29] enables LLMs to generate SQL queries step by step
by adding examples of di�erent sub-tasks. Di�erent from the above
methods, Z���NL2SQL provides grained guidance (i.e., SQL sketch
and value recommendation) for an LLM, signi�cantly improving
NL2SQL accuracy while ensuring high e�ciency.

8 CONCLUSION AND FUTUREWORK
In this paper, we have proposed a Z���NL2SQL framework, which
combines tunable SLMs and LLMs to achieve zero-shot NL2SQL gen-
eration. Z���NL2SQL mainly consists of two modules: SQL sketch
generation by SLMs and SQL query completion and correction by
LLMs. Our extensive experiments demonstrate that Z���NL2SQL
can achieve the best zero-shot NL2SQL performance, compared
with the SOTA SLM-based methods and LLM-based methods.

For future work, we believe that the Z���NL2SQL framework
can be extended to di�erent NL2SQL scenarios. First, considering
the excellent interaction ability of LLMs, Z���NL2SQL can be
applied to conversational NL2SQL tasks [47]. Second, considering
the e�ective value alignment method in Z���NL2SQL, it can also
be extended to extra large databases [20].
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