
Robust Best Point Selection under Unreliable User Feedback

Qixu Chen
The Hong Kong University of Science and Technology

Kowloon, Hong Kong
qchenax@connect.ust.hk

Raymond Chi-Wing Wong
The Hong Kong University of Science and Technology

Kowloon, Hong Kong
raywong@cse.ust.hk

ABSTRACT

The task of �nding a user’s utility function (representing the user’s

preference) by asking them to compare pairs of points through a

series of questions, each requiring him/her to compare 2 points for

choosing a more preferred one, to �nd the best point in the database

is a common problem in the database community. However, in

real-world scenarios, users may provide unreliable answers due

to two major types of errors, namely persistent errors and random

errors. Existing interaction algorithms either simply assume that all

answers provided by the user are reliable, or are capable of handling

random errors only, which can lead to �nding undesirable points,

ignoring persistent errors. To address this challenge, we propose

more generalized algorithms that are robust to both persistent and

random errors made by the user. Speci�cally, we propose (1) an

algorithm that asks an asymptotically optimal number of questions,

and (2) an algorithm that asks an even smaller number of questions

empirically, with provable performance guarantee. Our experiments

on both real and synthetic datasets demonstrate that our algorithms

outperform existing methods in terms of accuracy, even with a

small number of questions asked.

PVLDB Reference Format:

Qixu Chen and Raymond Chi-Wing Wong. Robust Best Point Selection

under Unreliable User Feedback. PVLDB, 17(11): 2681 - 2693, 2024.

doi:10.14778/3681954.3681955

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/qixuchen/PersistErr.

1 INTRODUCTION

When faced with a database containing millions of points, an end

user may be only interested in �nding his/her favorite point in the

database. For example, a user may want to buy a car with a cheap

price and a high horsepower from a car database, and s/he might

only investigate the cars that excel in these aspects. Here, price

and horsepower are some attributes that a user will consider when

buying a car. To help the user e�ciently �nd the most interesting

point, multi-criteria decision-making queries are proposed to return

a representative set from the database which consists of potentially

interesting points. Two popular queries are the top-ġ query [25, 33]

and the skyline query [5]. The top-ġ query returns ġ points from

the dataset with the highest utility w.r.t a utility function. However,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3681955

in practice, this utility function may not be known in advance.

The second query, namely the skyline query, is based on a concept

called dominance. Speci�cally, a point Ħ dominates another point

ħ if Ħ is not worst than ħ in any attribute and is better than ħ in

at least one attribute. The skyline query returns all points that are

not dominated by any other points in the database. Although the

knowledge of the user’s utility function is not required, the skyline

query does not guarantee a controllable return size, which might

be as large as the entire database in the worst case [29, 32].

Recently, a novel interactive framework [31, 43, 46] was proposed

to combine the advantage of both the top-ġ query (which has a

�xed return size) and the skyline query (which does not need an

exact utility function). Without any required knowledge of the user

in advance, it asks the user a number of rounds of simple questions

and learns the user’s preference progressively, and recommends

points based on the learned preference. A widely applied form of

questions [31, 34, 37, 41, 43, 44, 46] is to present 2 points in each

round, and asks the user to select the preferred one. Consider the car

purchasing scenario. The interactive framework simulates a sales

assistant that asks Alice to indicate her preference among several

pairs of cars and make recommendations based on her answers.

Although with good experimental performance, one key factor

that prevents the existing interactive algorithms from being more

practical is that they take no consideration of the reliability of the

user feedback and implicitly assume that the user is always correct.

However, in practice, the user’s feedback can be unreliable due to

various reasons. For example, during the interaction, even though

Alice wants a car with good horsepower and costs as low as possible,

she may indicate that she prefers a more expensive car to a cheap

car due to a careless mistake (e.g., mis-clicking) or some cognitive

bias (e.g., she mistakenly thinks that a car with a higher price must

have better horsepower). Although a sales assistant can observe

Alice’s real intent by considering her overall choices, making this

error when interacting with the existing algorithms will make them

believe that Alice is willing to spend more. Consequently, these

algorithms prune a set of cars from further consideration, possibly

including the real best car for Alice.

It is worth mentioning that making small errors in the decision-

making process can cause unforgettable and unchangeable conse-

quences. For example, a common type of error that occurs in the

trading market is known as a "fat �nger error", which refers to a mis-

take made by a trader in the trading system by clicking or pressing

the wrong key. In 2018, Samsung Security made a wrong transaction

worth 100 billion dollars due to a fat �nger error, which could have

resulted in a loss of 428 million dollars, equivalent to 12.17% of the

company’s market capitalization [2]. Another example is about one

of the critical milestones of one’s life: the selection of the tertiary

school. In 2020, a student in Mainland China achieved a top-tier

score in the National College Entrance Examination in China (also

2681

https://www.acm.org/publications/policies/artifact-review-and-badging-current

called gaokao). However, he was admitted to a low-ranked college

with a similar name to his target university since he confused the

name of the two schools in the tertiary school selection system,

which may cause a huge impact on his future life [45].

Motivated by the de�ciency of existing algorithms, in this paper,

we study the problem called the interactive best point retrieval prob-

lem under unreliable user input, which is more realistic. Roughly

speaking, our problem is to �nd in a dataset Ā the best point (i.e.,

the point with the highest utility) for a user w.r.t. his/her person-

alized utility function Ĝ , which we do not know in advance and

needs to be learned by asking the user to answer several rounds of

questions. We focus on a type of question that is widely adopted

[31, 34, 37, 41, 43, 44, 46], which is to display two points fromĀ and

asks the user to select the preferred point. Due to the simplicity of

this question type, the techniques developed for this question type

can be easily extended to other types of questions (e.g., displaying

more than two points in each question and asking for the favorite

one). In our technical report [8], we show how the proposed algo-

rithms can be applied to other question types as well.

There are two major types of user errors that cause the unreli-

ability in the user’s answers, namely random errors and persistent

errors. Random errors [7, 20] occur due to unintentional reasons

such as mis-clicking and pressing the wrong key, which means that

the answer to the same question may be di�erent when asked again

due to this careless mistake. On the other hand, persistent errors

[17, 20, 24] are caused by cognitive biases or other sources of inter-

ference, and the answer to the same question may be consistently

wrong. For example, when comparing a car priced at $5000 and an-

other car originally priced at $10000 but currently o�ered at a 50%

discount, despite the former having slightly better speci�cations

and o�ering higher utility, Alice may consistently choose the lat-

ter. This decision is in�uenced by the psychological phenomenon

known as the “anchoring bias”, wherein individuals are swayed by

the allure of discounts [48]. Compared to random errors, persistent

errors are harder to be handled, since in the case of a random error,

the user’s real preference can be revealed by repeating the same

question several times. The techniques developed in this paper can

handle both types of errors, or even a combination of them.

Unfortunately, most existing interactive algorithms which do not

consider user errors will return undesirable points based on wrongly

learned utility functions. Their accuracy in returning the best point

under the setting of unreliable user feedback is unsatisfactory (e.g.,

smaller than 70% on a 4-d dataset with 1 million points). Moreover,

direct adaptations of existing algorithms considering user errors

from the �eld of “learning to rank” and machine learning turn out to

be ine�cient since they ask too many questions. In our experiment,

algorithms in this line of research, such as Active-Ranking [20]

and Pref-Learn [34], ask more than 60 questions when the input

dataset is large (i.e., 1 million points), which is undesirable. Users

will lose the plot and get frustrated if they need to answer excessive

questions [26, 35].

The most closely related work is [7] which aims at �nding the

best point considering random user errors. However, the techniques

developed in [7] can only handle random errors by asking the same

pair of points multiple times and taking the majority vote, which

cannot be adapted to address persistent errors because the majority

vote also results in incorrect preferences in this scenario. Compared

to [7], our algorithms are more generalized and practical since

they e�ectively handle both types of errors in a uni�ed way. This

advancement is attributed to a novel and previously unexplored

geometrical concept proposed in this paper called the con�dence

region. The con�dence region exhibits several interesting properties

when dealing with user errors, and we leverage these properties in

the design of our algorithms.

Contributions. We summarize our contributions as follows.

Firstly, we study the interactive best point retrieval problem con-

sidering both persistent errors and random errors. Secondly, we

show a lower bound on the number of questions needed (also called

round complexity) for our problem. Thirdly, we study a novel geo-

metrical concept called the con�dence region, which is instrumental

in e�ectively handling both types of errors. Fourthly, we propose

(1) an algorithm with asymptotically optimal round complexity;

and (2) an algorithm with even better empirical performance. Both

algorithms return the best point with provable guarantee. Lastly,

we conducted comprehensive experiments to demonstrate the supe-

riority of our algorithms. They maintain high accuracy (e.g., nearly

to 100% in most experiments) with only a small number of ques-

tions, but existing approaches either ask too many questions (e.g.,

twice as many as ours) or are much more inaccurate (e.g., more

than 10% less accuracy than ours).

Organizations. The rest of the paper is organized as follows.

Section 2 shows the related work. The formal de�nition of the

studied problem is given in Section 3. In Section 4, we show the

lower bound on the number of rounds required by this problem and

describe the general framework of our algorithms. We present the

details of proposed algorithms in Section 5 and show experimental

results in Section 6. Section 7 concludes the paper.

2 RELATED WORK

Various queries are proposed to assist the multi-criteria decision-

making. The preference-based queries return points based on the

preference or the expected point of the user, and interactive queries

involve user interaction to �nd points that may interest the user.

Besides the top-ġ and skyline queries mentioned in Section 1,

various other preference-based queries have been proposed. The

ġ-nearest neighbors query (kNN) [39] returns ġ points closest to

a user-provided example point based on Euclidean distances. Sim-

ilarly, the similarity query [38] uses a complex distance function

to �nd the ġ closest points. The problem with these two queries

is that an example point must be provided by the user in advance,

which can be demanding. Some recent studies aim to combine the

ideas of top-ġ and skyline. [10, 29, 30] consider returning a �xed

number of points to the user whose preference is estimated to lie

in a region of the function space. However, if this region is large,

the output size must also increase to guarantee the retrieval of

high-quality points. In the worst case, it degenerates to the orig-

inal skyline query. [1, 9, 32] propose ġ-regret minimizing query,

which computes a set such that for any utility function, there exists

a point in the set whose regret ratio f Ċ , a user parameter. How-

ever, to guarantee a small Ċ , the output size could be large for some

datasets (e.g., > 1000 points when Ċ = 0.5% [1]).

Interactive queries learn the user’s preferences through interac-

tion and return points based on these preferences. [28] introduces

2682

the interactive skyline query, which reduces skyline size by learn-

ing the user’s relative skyline importance. The user is asked to par-

tition points into superior and inferior groups. However, the output

size remains uncontrolled even with complete attribute preference.

The interactive similarity query [3, 4, 37] learns a distance function

from user interactions to �nd the ġ points closest to a query point.

However, it requires users to assign relevant scores to hundreds of

points, which is too demanding for most users.

Although the type of interaction varies, one widely adopted

interaction is to display a pair (or set) of points in each round and

ask the user to select the preferred one [31, 34, 37, 41, 43, 44, 46].

[31] proposes an interactive regret minimization query, which aims

at minimizing the regret ratio of the return set with a �xed size

by learning the user’s utility function using arti�cial points. To

overcome the de�ciency of using unreal points, [46] introduces

UH-Simplex and UH-Random, which only display points inside the

database. [43] proposes HD-PI and RH that return one of the top-ġ

points of the user. However, these algorithms all assume that the

user makes no error, and make decisions based on user’s answers

without questioning their reliability. It is hard to directly adapt these

algorithms to handle user errors, and their performance degenerates

when the user makes mistakes.

The most closely related work is [7], which proposes the Verify-

Point and Verify-Space algorithms to �nd the best point considering

random user errors. However, these methods have several draw-

backs. Firstly, they handle random errors through majority votes

on repetitive questions, which fail against persistent errors, as the

feedback to the same question will be the same. Our experiments

show their accuracy drops by over 10% when addressing persistent

errors compared with addressing random errors. Additionally, re-

peating the same question is not suitable for many applications. For

example, Alice would be confused if asked to compare the same

pair of cars three times. They also display arti�cial points during

interactions. Our algorithms overcome these limitations.

In the �eld of machine learning (ML) and information retrieval

(IR), the robustness to erroneous user input is considered in some

algorithms [12, 13, 20, 21, 34, 36]. However, since their focuses (e.g.,

�nding the exact ranking) are typically di�erent from ours, they

tend to be extravagant in the number of pairwise comparisons used,

and thus, are ine�cient for the user to interact with. [34] proposes

Preference-Learning to learn user’s preference and addresses user

errors by introducing a slack variant in a linear SVM. It tends to ask

extra questions since the major focus of this work is to approximate

a preference vector. [20] aims at computing the ranking of all points

and uses the majority vote to resolve con�icts in comparison results.

This line of work needs more questions to �nd the ordering of non-

best points, which is not a concern in our problem. [12] �nds top-ġ

points with initial partial ordering information and handle errors

using majority votes. They require more questions than ours since

they do not consider the geometric relation between points.

Compared to existing work, our approach has several advantages.

Firstly, we do not require prior knowledge of the user’s utility func-

tion and ensure a small return size, addressing the limitations of

traditional top-ġ and skyline queries. Secondly, we minimize user

e�ort by requiring only a few simple questions, unlike some algo-

rithms that ask many (e.g., [13, 20, 34]) or di�cult questions (e.g.,

[4, 28]). Finally, our algorithms accommodate potentially unreliable

Figure 1: The upper hull Figure 2: Utility space in 3d

user feedback without signi�cantly impacting the quality of the

results, o�ering more practical value than approaches that assume

perfect user feedback (e.g., [31, 43, 46]).

3 PROBLEM DEFINITION

In this section, we provide the formal de�nitions for the interactive

best point retrieval problem, the random errors, and the persistent

errors. The commonly used symbols are summarized in Table 1. The

input to our problem is a Ě-dimensional dataset Ā . It may contain

more than Ě attributes, but we assume that the user is interested

in exactly Ě of them. Since the number of attributes considered in

human decision-making is typically limited, similar to [7, 41, 43], we

focus on the case where Ě is not too large (e.g., Ě f 7), although the

developed techniques can be applied to any Ě . The ğ-th dimensional

value of a point Ħ is denoted by Ħ [ğ] for ğ ∈ [1, Ě], and the range of

value for each attribute is normalized to [0, 1]. For each attribute,

we assume that a higher value is preferred, but our techniques can

be easily extended to the case where a small value is preferred.

Following [29, 31, 34, 42, 43, 46, 47], we focus on the family of

linear utility functions. That is, the family of functions that express

the utility of a point Ħ as Ĝ (Ħ) = ī · Ħ , where ī is a Ě-dimensional

non-negative vector called the utility vector. The utility vector ī

encodes the user’s preference, where a higher value at the ğ-th

dimension (i.e., ī [ğ]) implies that the user is more concerned about

the ğ-th attribute. We are interested in returning a set of points

with a �xed size Ģ containing the best point, i.e., the point with the

highest utility w.r.tī, which we denote by ĦģėĮ = argmaxĦ∈Ā ī ·Ħ .
Note that scaling ī has no in�uence on the rank of points as well

as the best point. Therefore, we assume that
∑Ě
ğ=1 ī [ğ] = 1.

The utility vector ī of a user is initially unknown and will be

learned by interacting with the user. The interaction continues for

several rounds and the user will answer one question in each round.

In the rest of the paper, we use the term “round” and “question”

interchangeably. We adopt a popular type of questions [31, 34, 37,

41, 43, 46] which is to display two points, namely Ħğ and Ħ Ġ , from

Ā , and the user is asked to choose the preferred point. Let > and <

denote the ground truth relation between two points’ utilities, and {
and z denote the preference indicated by the user. That is, Ħğ > Ħ Ġ
ifī ·Ħğ > ī ·Ħ Ġ , and Ħğ { Ħ Ġ if the user indicates that s/he prefers Ħğ
to Ħ Ġ . The existing algorithms assume that the user always selects

the point with a higher utility (i.e., if Ħğ { Ħ Ġ , then Ħğ > Ħ Ġ with

100% certainty). In practice, however, the user occasionally chooses

the point with a lower utility (e.g., due to the reasons described

in Section 1). We say that the user makes an error if Ħğ > Ħ Ġ but

the indicated preference is Ħ Ġ { Ħğ , and we assume that the user

makes an error when comparing each pair of points with an error

rate at most Ă . An error is called a persistent error if the answer

to the same pair of points is consistently wrong; otherwise, it is a

random error. Notably, persistent errors are harder to be handled

compared to random errors. This is because when a user has a

random error, if the same question involving two points are asked

2683

Table 1: Commonly-used Symbols

Ā the input dataset

Ě the dimensionality of Ā

Ĥ size of īℎīĢĢ (Ā)
ī the utility vector

Ă the upper bound of user error rate

Ħğ data point in Ā

Čğ partition of Ħğ
ℎğ, Ġ the hyperplane related to Ħğ and Ħ Ġ
Ģ the return size

Ī number of rounds

Ďğ (ĎğĪ) the ğ-th con�dence region (just after round Ī)

Ĕ ğ (Ĕ ğ
Ī) set of partitions belonging to Ďğ (ĎğĪ)

to him/her multiple times, it is possible that s/he could indicate

the correct preference in one of the questions, giving a chance for

the system to know the inconsistency from the user for the same

question implying a possible error. But, when a user has a persistent

error, if the same question is asked multiple times, it is not possible

that s/he could indicate the correct preference, which means that

this increases the di�culty of inferring his/her preference. From

now on, we assume that all the errors made are persistent since if

we can handle persistent errors, the case for random errors could

be handled automatically. In practice, Ă can be set to a reasonable

number larger than the real error rate, and the exact value of the

real error rate need not be known. According to [7, 23], Ă can be

naturally assumed to be less than 0.5 for reasonable users. In their

studies, Ă is at most 5%. Following [14–16, 18, 19, 22, 36], we assume

that the user errors are independent across di�erent pairs of points.

In this paper, we are interested in the following problem:

Problem 1. Given a dataset Ā with size Ĥ, an error rate upper

bound Ă and a return size Ģ , how to interact with the user to �nd a set

with size at most Ģ such that the probability that this set contains the

best point is maximized?

4 ALGORITHM FRAMEWORK

In this section, we present the general framework of our proposed

algorithms. We �rst introduce some useful concepts in Section 4.1.

Then, in Section 4.2, we present the algorithm framework and prove

the lower bound on the required number of rounds for our problem.

4.1 Preliminaries

In geometry, the convex hull of a dataset Ā , denoted by ęĥĤĬ (Ā),
is the smallest convex set containing all points in Ā [27]. A point

Ħ ∈ Ā is a vertex of ęĥĤĬ (Ā) if Ħ ∉ ęĥĤĬ (Ā/{Ħ}). Let Ęğ be the Ě-
dimensional point with its ğ-th coordinate being 1 and all other

coordinates being 0. Furthermore, let þ = {Ęğ |1 f ğ f Ě} and ċ

be the origin. Consider the set of points that are both in Ā and in

ęĥĤĬ (Ā ∪ þ ∪ {ċ}). We call these points the upper hull vertices and

denote this set by īℎīĢĢ (Ā). For example, in Figure 1, we visualize

a 2-d dataset Ā = {Ħğ |ğ ∈ [1, 7]}. Its upper hull vertices are Ħ1, Ħ3,
Ħ4, Ħ5 and Ħ6. One important conclusion is that the best point must

be in īℎīĢĢ (Ā) [29, 46]. Therefore, the set of upper hull vertices
constitutes possible candidates of the best point. Let Ĥ denote the

size ofīℎīĢĢ (Ā). For the ease of illustration, in the rest of this paper,

when we say Ā , we mean īℎīĢĢ (Ā) unless otherwise speci�ed.

Figure 3: Example on parti-

tions

Figure 4: Example on con�-

dence regions

Recall that all possible utility vectors form a setđ = {ī |ī [ğ] g 0

and
∑Ě
ğ=1 ī [ğ] = 1}. đ is called the utility space and is a (Ě − 1)-

dimensional convex polytope. Consider a 3-dimensional example

in Figure 2. The utility space đ is a planar triangle with vertices

(1, 0, 0), (0, 1, 0) and (0, 0, 1). For any two points Ħğ and Ħ Ġ in Ā

where ğ < Ġ , we can construct a hyperplane ℎğ Ġ that has its normal

Ħğ − Ħ Ġ and passes through the origin. ℎğ Ġ intersects with đ and

divides the utility space into two halfspaces [27]. The halfspace

above (resp. below) ℎğ Ġ is denoted by ℎ
+
ğ Ġ (resp. ℎ

−
ğ Ġ), which contains

all utility vectors ī that satisfy ī · Ħğ > ī · Ħ Ġ (resp. ī · Ħğ < ī · Ħ Ġ).
In each round, two points from Ā , denoted by Ħğ and Ħ Ġ , are dis-

played to the user. When the user indicates the preference between

them, we could learn that the utility vector of the user is in ℎ+ğ Ġ or
ℎ−ğ Ġ . Let ĩ denote a halfspace indicated by the user and ď the set of

all halfspaces indicated by the user so far. Besides, let ĩğ Ġ denote the

halfspace selected by the user when Ħğ and Ħ Ġ are displayed (i.e.,

ĩğ Ġ could be either ℎ+ğ Ġ or ℎ
−
ğ Ġ based on the answer provided by the

user). We say that a region (or a point) is supported by a halfspace

ĩ if this region (or this point) lies completely in ĩ . Given a set ď ′

of halfspaces, we say that a region (or a point) is supported by set

ď ′ if this region (or this point) is supported by each halfspace in

ď ′. When the user makes no error, the utility vector ī must lie in

the intersection of all halfspaces in ď (i.e., ī ∈ ∩ĩ∈ďĩ). Many exist-

ing algorithms [41, 43, 46, 47] utilize this property to approximate

the utility vector, which explains why they are prone to user er-

rors: When the wrong halfspace is chosen, the real ī will not locate

in the intersection of all halfspaces. Consequently, the resulting

estimation of ī is less accurate and the best point may be missed.

For each point Ħğ ∈ Ā , its corresponding best partition Čğ , or

partition for short, is the set of utility vectors inđ that give Ħğ the

highest utility score. This means that for anyī ∈ Čğ and for any Ħ Ġ ∈
Ā/{Ħğ }, ī · Ħğ > ī · Ħ Ġ . Therefore, Čğ is the intersection of all ℎ+ğ Ġ for
Ħ Ġ ∈ Ā/{Ħğ } and the utility spaceđ , i.e., Čğ = (⋂Ħ Ġ ∈Ā/{Ħğ } ℎ

+
ğ Ġ)∩đ ,

which is also a (Ě−1)-dimensional convex polytope. As an example,

consider Figure 3 where we show the partitions corresponding to a

3-d dataset containing 5 points in its upper hull. The utility spaceđ

is the outer triangle. The partitions Č1 to Č5, which are 2-d polygons,

are bounded by solid lines and the intersection of (some) ℎğ Ġ andđ

are shown as dashed lines.

Next, we introduce an important concept, called con�dence region,

in De�nition 1.

Definition 1. The ğ-th con�dence region, denoted by Ďğ , is the

maximal area in the utility spaceđ that is supported by at least one set

of |ď | − ğ halfspaces in ď . Mathematically, Ďğ =
⋃

ď ′∈ď |ď |−ğ (∩ĩ∈ď ′ ĩ)
where ď |ď |−ğ is the set of all (|ď | − ğ)-subsets of ď .

If the user makes at most ğ errors during the interaction, the util-

ity vector is not supported by at most ğ halfspaces in ď . In this case,

we immediately have ī ∈ Ďğ by its de�nition. Consider the example

2684

shown in Figure 4. The dashed lines represent the hyperplanes ask-

ing the user, and the arrow on each hyperplane shows the halfspace

indicated by the user. Assume that the user has indicated 5 halfs-

paces so far, i.e., ď = {ĩ1, ĩ2, ĩ3, ĩ4, ĩ5}. Ď0 is the area supported by all
5 halfspaces, which is the gray pentagon. Ď1 is the area supported

by at least one set of all halfspaces except 1 halfspace (i.e., 4 out of

5 halfspaces), which corresponds to the star-shaped area bounded

by bold lines. If the user makes at most 1 error when indicating ĩ1,

ĩ2, ĩ3, ĩ4 and ĩ5, his/her utility vector must lie in Ď1. Although Ď0

must be convex, when ğ g 1, Ďğ could be non-convex and is in fact

made of the union of several disjoint convex polytopes. In Figure

4, Ď1 is the union of Ď0 and 5 small convex polytopes (triangles in

this example) adjacent to Ď0.

We have the following observation.

Observation 1. For any ğ′ g ğ , Ďğ ¦ Ďğ
′
.

We say that a partition Č Ġ overlaps with a con�dence region Ďğ

if Č Ġ ∩ Ďğ ≠ ∅. Based on Observation 1, if Č Ġ overlaps with Ďğ ,

Č Ġ also overlaps with all Ďğ
′
s where ğ′ g ğ . On the other hand, if

Č Ġ does not overlap with Ďğ , it also does not overlap with all Ďğ
′
s

where ğ′ f ğ . Since when the user makes at most ğ errors, the real

ī falls in Ďğ , it follows that only points whose partitions overlap

with Ďğ can be the best point, while those whose partitions do not

overlap with Ďğ cannot be. For example, if the user makes no errors,

then only points whose partitions overlap with Ď0 can be the best

point. Therefore, when determining which points should be in the

returned set, we adopt a strategy that �rst includes points whose

partitions overlap with Ď0, followed by points whose partitions

overlap with Ď1, Ď2 and so on.

To make sure that the return size is at most Ģ , we only maintain

con�dence regions that guarantee to overlap with at most Ģ parti-

tions when questions related to all pairs of points (i.e., all possible

questions) are asked. The relation between Ďğ and the number of

partitions it overlaps is shown in Lemma 1.

Lemma 1. If questions related to all pairs of points are asked, the

con�dence region Ďğ overlaps with at most 2ğ + 1 partitions.

Proof sketch. Denote the set of points whose partitions over-

lap withĎğ byĎď . Since each pair of points inĎď has been compared,

there are in total |Ďď | (|Ďď | − 1)/2 comparisons. Each comparison

yields one loser. Any points inĎď cannot lose more than ğ times, oth-

erwise, it will not be in Ďğ . Thus, we have |Ďď | (|Ďď | − 1)/2 f ğ |Ďď |,
so |Ďď | f 2ğ + 1. The complete proofs of theorems and lemmas in

this paper can be found in our technical report [8]. □

Corollary 1. Let ĪĢ be the number of questions required such that

Ďġ overlaps with at most Ģ partitions. If ġ f
⌊

Ģ−1
2

⌋

, then ĪĢ is at most

the total number of possible questions. In practice, ĪĢ is much smaller

than the total number of possible questions.

If ġ f
⌊

Ģ−1
2

⌋

, Corollary 1 suggests that ĪĢ is at most the number

of all possible questions. In practice, ĪĢ is typically much smaller

than the number of all possible questions (often less than 30 in our

experiments). In the rest of this paper, we set ġ =

⌊

Ģ−1
2

⌋

unless

otherwise speci�ed.

4.2 The General Framework

In this section, we introduce the general framework of our pro-

posed algorithms. We maintain ġ + 1 con�dence regions, namely

Ď0, Ď1, ..., Ďġ (Later in Section 5, we will see that we need not main-

tain the real Ďğs. Instead, they are only maintained conceptually).

Note that Ďğ in Lemma 1 (and Ďġ in Corollary 1) is the �nal Ďğ (Ďġ)

after some questions are asked. In our algorithms, since we have

not asked any questions at the beginning, Ďğs are initialized to the

entire utility space and will be updated when more questions are

asked. We use a subscript Ī , i.e., ĎğĪ , to denote Ď
ğ just after Ī halfs-

paces are indicated. Lemma 2 shows the rule of updating ĎğĪ where

ğ ∈ [0, ġ], when the (Ī + 1)-th halfspace is indicated.

Lemma 2. For each ğ ∈ [0, ġ] and each Ī g 0, let ĩ be the halfspace

indicated in round Ī +1. The relation between ĎğĪ and ĎğĪ+1 is as follows:

ĎğĪ+1 = ĎğĪ ∩ ĩ if ğ = 0

ĎğĪ+1 = (ĎğĪ ∩ ĩ) ∪ (Ďğ−1Ī ∩ ĩ−) if ğ ∈ [1, ġ]
where ĩ− is the complement of ĩ .

Proof sketch. We prove this lemma using induction. The spe-

cial case where ğ = 0 is trivially correct since Ď0Ī is the region sup-

ported by all Ī halfspaces. We then show that if at round Ī ′, all ĎğĪ ′s
are correct, then at round Ī ′ + 1, the resulting ĎğĪ ′+1 is indeed the

maximal region supported by at least Ī ′ + 1 − ğ halfspaces. □

As a running example, consider Figure 5 where ġ = 1 and Ī = 2.

Assume that the user indicated ℎ+34 and ℎ
+
14 in round 1 and round 2,

respectively (Recall that ℎ+ğ Ġ is the halfspace containing Čğ). Then,

Ď02 is the gray region and Ď12 is the area bounded by bold lines. If

the user indicates ℎ+13 the next round, we know from Lemma 2 that

Ď03 = Ď02 ∩ ℎ+13, and Ď
1
3 = (Ď12 ∩ ℎ+13) ∪ (Ď02 ∩ ℎ−13). The resulting Ď

0
3

and Ď13 are shown in Figure 6, where Ď03 is the gray region and Ď13
is the area bounded by bold lines.

Lemma 3. For each ğ ∈ [0, ġ] and each Ī g 0, we have (1) ĎğĪ+1 ¦
ĎğĪ and (2) Ď

ğ
Ī ¦ Ďğ+1Ī+1.

Proof sketch. (1) can be proved using Lemma 2 and the fact

that Ďğ−1Ī ¦ ĎğĪ . To prove (2), observe that for any point Ĭ ∈ ĎğĪ , Ĭ

is supported by a set of (Ī − ğ) halfspaces. The same set of (Ī − ğ)
halfspaces makes Ĭ also in Ďğ+1Ī+1, which implies that ĎğĪ ¦ Ďğ+1Ī+1. □

In round Ī , a partition Č Ġ is said to belong to a con�dence region

ĎğĪ if either (1) Ď
ğ
Ī (ğ g 1) overlaps with Č Ġ but Ď

ğ−1
Ī does not, or

(2) ĎğĪ (ğ = 0) overlaps with Č Ġ . That is, a partition belongs to the

smallest con�dence region that overlaps with it. Note that knowing

the partitions overlapping with each Ďğ could help us easily derive

the partitions belonging to each Ďğ , and vice versa. Similarly, we

say that a point Ħ Ġ belongs to Ď
ğ
Ī if its corresponding partition Č Ġ

belongs to ĎğĪ . From Lemma 3, con�dence regions can only shrink

by each round. Due to this shrinking behavior, a partition Č Ġ that

belongs to ĎğĪ in round Ī may no longer belong to ĎğĪ+1 in round Ī +1.
If this happens, we say that Č Ġ is detached from ĎğĪ+1 (or simply Ďğ

if the context is clear). Note that after being detached from ĎğĪ+1, Č Ġ
will belong to Ďğ+1Ī+1 in round Ī + 1 (by Lemma 3, Č Ġ overlaps with

Ďğ+1Ī+1 since Ď
ğ
Ī ¦ Ďğ+1Ī+1). When more and more new halfspaces are

2685

indicated, a partition is gradually detached from Ď0, Ď1, Ď2 until Ďġ .

Since we are not interested in partitions that do not overlap with

Ďġ , if a partition Čğ is detached from Ďġ , we say that Čğ (and point

Ħğ) is discarded. We use Ĕ ğ to denote the set of partitions belonging

to Ďğ , and use Ĕ ğ
Ī to denote Ĕ ğ just after round Ī .

Consider our running example in Figure 5. Assume that ġ = 1

and Ī = 2, and recall that Ď02 is the gray region and Ď12 is the area

bounded by bold lines. Since both Č1 and Č3 overlaps with Ď02 , we

knot that both Č1 and Č3 (and thus Ħ1 and Ħ3) belong to Ď02 . Č2
overlaps with Ď12 but not Ď

0
2 , so it belongs to Ď12 . In the next round

(Ī = 3), consider the updated Ď03 and Ď
1
3 in Figure 6, where Ď03 is the

gray region and Ď13 is the area bounded by bold lines. Since Č3 no

longer overlaps with Ď03 , it is detached from Ď03 and belongs to Ď13
instead. Č2 is detached from Ď13 and is thus discarded.

Stopping Condition. The algorithm stops when the number

of partitions overlapping with Ďġ is at most Ģ (i.e.,
�

�

�

⋃ġ
ğ=0 Ĕ

ğ
�

�

� f Ģ).

Then, it returns the points that correspond to these partitions.

We are now ready to present the lower bound on the number of

rounds required to reach the stopping condition.

Theorem 1. Given an input size Ĥ, a parameter Ģ and an error rate

upper bound Ă . There exists a dataset such that any question-asking

strategy must ask ¬(Ģ
Ă
+ Ĥ) questions to discard at least Ĥ − Ģ points.

Proof sketch. We �rst prove that there exists a dataset Ā such

that the following property holds for any Ħğ ∈ Ā and its partition

Čğ : For any non-empty set of halfspaces Ąď ¦ {ℎ∗
ėĘ
|ė, Ę ≠ ğ, ∗ ∈

{+,−}}, if the intersection of halfspaces in Ąď forms a non-empty

region, then Čğ also overlaps with this region. This property implies

that, for any Ħğ ∈ Ā , if in some round Čğ is detached from some

con�dence region Ďģ where ģ ∈ [0, ġ], the halfspace indicated
in this round must satisfy one of the following: (1) This halfspace

is related to Ħğ and some other point Ħ Ġ , and Ħğ is less preferred

to Ħ Ġ ; or (2) This halfspace makes Ďģ an empty region. We then

show that to discard at least Ĥ − Ģ partitions, the round complexity

for these two cases are ¬(ĢĤ) and ¬(Ģ
Ă
+ Ĥ), respectively. Since

¬(ĢĤ) > ¬(Ģ
Ă
+ Ĥ), the lower bound is ¬(Ģ

Ă
+ Ĥ). □

5 THE SS AND FC ALGORITHMS

In this section, we introduce two algorithms, namely SS (Shape-

Sampling) (Section 5.1), and FC (FindCycles) (Section 5.2), which are

developed based on the framework described in Section 4.2. These

algorithms di�er primarily in the strategies they use to choose

questions in each round. For SS, we propose two (sub-)strategies

that are empirically demonstrated to require only a small number of

questions. On the other hand, FC employs a strategy that is shown

to have an asymptotically optimal round complexity.

5.1 The SS Algorithm

In this section, we introduce SS by addressing two sub-problems,

namely (1) what data structures are required and how to update

them in each round, and (2) how to design question selection strate-

gies such that a small number of questions is required.

5.1.1 Data Structure Maintenance. While it is possible to directly

compute the exact shapes of con�dence regions (i.e., Ďğs), updating

these non-convex regions can be computationally expensive when

Ě increases. However, it is worth noting, as discussed in Section 4.2,

that the stopping condition relies solely on the sets of partitions

belonging to each con�dence region (i.e.,Ĕ ğs). As long asĔ ğs can be

obtained, maintaining the exact shapes of Ďğs will not be necessary.

Therefore, in algorithm SS, Ďğs are only kept conceptually, and

Ĕ ğs are determined using some pre-computed results on a set of

randomly sampled points (and thus the name Shape-Sampling). By

sacri�cing a small degree of accuracy in �nding the best point, SS

achieves an e�cient processing time, as demonstrated in Section 6.

SS consists of two phases, namely the pre-processing phase and

the running phase. The task of the pre-processing phase is to

uniform-randomly sample a number ĕ of points from each par-

tition Č using techniques developed in existing studies (e.g., [6]).

To distinguish between data points and sample points, we use ħ

to denote a sampled point and Č (ħ) to denote the partition where

ħ is sampled from. After the pre-processing phase is �nished, the

sampled points can be stored so that future runs can skip this phase

and start directly with the running phase. In the running phase,

SS maintains ġ + 1 sets, namely č0, č1, ..., čġ , where čğ stores the

set of sample points that falls in Ďğ where ğ ∈ [0, ġ]. We use čğ
Ī to

denote čğ just after round Ī .

Next, we describe how to maintain čğ
Ī s and Ĕ

ğ
Ī s in the running

phase. Initially, when Ī = 0, since all partitions overlaps with

Ď00, Ď
1
0, . . . , Ď

ġ
0 , each of č0

0, č
1
0, . . . , č

ġ
0 stores the entire set of sam-

ple points. In round Ī , let ĩ be the halfspace indicated at this round,

the empty-initialized čğ
Ī is constructed using čğ

Ī−1 and čğ−1
Ī−1 as

follows: (1) For each point ħ ∈ čğ
Ī−1, ħ is inserted to čğ

Ī if ħ ∈ ĩ;

(2) If ğ > 0, for each point ħ ∈ čğ−1
Ī−1, ħ is inserted to čğ

Ī if ħ ∉ ĩ .

It is easy to verify using Lemma 3 that with the above updating

rules, each čğ
Ī stores the sample points in ĎğĪ . After č

ğ
Ī s are ob-

tained, with the assumption that the number of sampled points

is adequately large (to be discussed next), Ĕ ğ
Ī s can be determined

as follows: (1) When ğ = 0, Ĕ ğ
Ī = {Č (ħ) |ħ ∈ čğ

Ī }; (2) When ğ > 0,

Ĕ ğ
Ī = {Č (ħ) |ħ ∈ čğ

Ī }/{Č (ħ) |ħ ∈ čğ−1
Ī }. SS stops when the size of

⋃ġ
ğ=0 Ĕ

ğ
Ī is at most Ģ , and it returns the points that correspond to

the partitions in
⋃ġ

ğ=0 Ĕ
ğ
Ī .

To illustrate SS, we use Figure 5 as a running example. Assume

that Ģ = 3 and ġ = 1, and the number of sample points is su�ciently

large. Initially,č0
0 andč

1
0 each contains a set of all sample points.We

have Ĕ 0
0 = {Č1, Č2, Č3, Č4, Č5} and Ĕ 1

0 = ∅. After the user indicated
ℎ+34 and ℎ+14 in the �rst 2 rounds, č0

2 contains all sample points

in Ď02 (i.e., the gray region) and č1
2 contains all sample points in

Ď12 (i.e., the area bounded by bold lines). Then, Ĕ 0
2 = {Č1, Č3} and

Ĕ 1
2 = {Č2}. Since

�

�

�

⋃ġ
ğ=0 Ĕ

ğ
2

�

�

� = |{Č1, Č2, Č3}| = 3 f Ģ , SS stops and

returns {Ħ1, Ħ2, Ħ3}.
Since SS uses sample points to decide Ĕ ğs, when it terminates,

even if the partition corresponding to the best point still overlaps

with Ďġ , the best point will not be returned if there is no sample

point in the intersection of this partition and Ďġ . To make this prob-

ability small, the sample size should be su�ciently large. Lemma 4

decides a su�cient number of samples which guarantees that this

case happens with a probability at most a user parameter ÿ.

2686

Figure 5: Con�dence regions

before asking ℎ13

Figure 6: Con�dence regions

after asking ℎ13

Figure 7: FC example just af-

ter round 3

Figure 8: FC example just af-

ter round 4

Lemma 4. The intersection of hyperplanes in set {ℎğ Ġ |Ħğ , Ħ Ġ ∈
Ā} divides the utility space into a number of cells, where each cell

corresponds to a unique ranking of points in Ā . Given a parameter

ÿ, if the number of cells in any partition is at most Ā , by sampling

ĕ =
Ā
ÿě points from each partition, SS returns the best point with

probability at least 1 − ÿ if the cell where the real utility vector lies

overlaps with Ďġ .

Proof sketch. When the algorithm stops, if the cell where the

real utility vector lies overlaps with Ďġ , then the best point will not

be returned only if there is no sample point in this cell. We show

that the upper bound of this event’s probability is
Ā
ĕ ě

−1. Solving
Ā
ĕ ě

−1 f ÿ yields the lemma. □

Although in the worst case ĕ = ċ (ĤĚÿ) [27], in practice, ĕ can

be set by gradually increasing it until the accuracy of returning the

best point converges, and thus, ĕ could be set to a much smaller

number. In our experiments, on a 4-d dataset with 100000 points,

by sampling 1000 points from each partition, the accuracy already

converges, indicating a small accuracy loss caused by sampling.

5.1.2 �estion Selection Strategies. Next, we describe how SS

chooses the question in each round so that the required number of

questions can be reduced. Observe that to detach a partition Č from

a con�dence region Ďğ , Č must also be detached from all Ďğ
′
s where

ğ′ f ğ . Thus, intuitively, a question is more preferred if (1) it can

detach partitions from Ďğ with a smaller ğ and (2) it can detach a

larger number of partitions. For example, questions that can detach

a large number of partitions from Ď0 are the most preferred. We de-

velop two question selection strategies that comply with the above

intuition, namely the random-based selection and the score-based

selection. The random-based selection has a faster process time, and

the score-based selection asks fewer questions empirically. In the

following, we describe the two selection strategies in detail.

The Random-based Selection. In round Ī , let Ĕ ğ
Ī be the set of

partitions that belongs to ĎğĪ , and let Xğ
Ī be the set of points whose

partition is inĔ ğ
Ī . The random-based selection runs for at most ġ +1

iterations. In iteration ğ (ğ ∈ [1, ġ + 1]), it sets a candidate point set,
denoted by ÿČ , to be

⋃ğ−1
Ġ=0 X

Ġ
Ī , enumerates all (order-insensitive)

pairs of points consisting of points in ÿČ and randomly permutes

them, and sequentially checks each pair that has not been checked

in previous iterations. If it �nds a pair that has not been asked

in previous questions, it selects this pair and stops. If such a pair

cannot be found after depleting all pairs in this iteration, it starts

the next iteration. Note that this strategy favors questions that can

detach partitions belonging to ĎğĪ with a small value of ğ . It also

guarantees to �nd an unasked pair if one exists, since otherwise,

the stopping condition described in Section 4.2 is already met.

As a running example, assume that ġ = 1 and at round Ī we

have X0
Ī = {Ħ1, Ħ2, Ħ3} and X1

Ī = {Ħ4, Ħ5}. In the �rst iteration,

ÿČ is set to {Ħ1, Ħ2, Ħ3}. We randomly permute all pairs of points

consisting of points in ÿČ (i.e., (Ħ1, Ħ2), (Ħ2, Ħ3) and (Ħ1, Ħ3)) and
sequentially consider each of them. If we �nd a pair that is unasked

before (e.g., (Ħ1, Ħ2)), we use this pair. If all 3 pairs are already

asked, we enter the second iteration, where ÿČ is set to X0
Ī ∪ X1

Ī
(i.e., {Ħ1, Ħ2, Ħ3, Ħ4, Ħ5}).

The Score-based Selection. Although the random-based selec-

tion has a fast processing time, it does not fully utilize the distribu-

tion of partitions to select the optimal hyperplane. Therefore, we

design the score-based selection to further reduce the number of

questions required. We �rst introduce a data structure that will be

used for this strategy. For each partition Čė and a hyperplane ℎğ Ġ ,

there are 3 possible relationships between Čė and ℎğ Ġ : (1) Čė ∈ ℎ+ğ Ġ ,
(2) Čė ∈ ℎ−ğ Ġ , and (3) Čė intersects with ℎğ Ġ . Consider the example in

Figure 5. For hyperplane ℎ13, Č1 is in ℎ+13, Č2, Č3 and Č5 are in ℎ−13,
and Č4 intersects with ℎ13. We maintain a table Ĉ to store these re-

lationships, where each row corresponds to a hyperplane ℎğ Ġ . Ĉ has

3 columns: (1) ℎ+ğ Ġ , which stores all partitions that lie in ℎ+ğ Ġ , (2)ℎ
−
ğ Ġ ,

which stores all partitions that lie in ℎ−ğ Ġ , and (3) score which will

be explained next. The table Ĉ corresponding to Figure 5 is shown

in Table 2.

Let Ċīģ(ĩ, Ĕ ğ
Ī) denote the number of partitions in Ĕ ğ

Ī that lies

in a halfspace ĩ . We de�ne the score of a hyperplane ℎ at round Ī to

be ĩęĥĨěĪ (ℎ) = min(∑ġ
ğ=0 Ă

ğĊīģ(ℎ+, Ĕ ğ
Ī),

∑ġ
ğ=0 Ă

ğĊīģ(ℎ−, Ĕ ğ
Ī)),

where Ă is a parameter between 0 and 1 capturing the relative

priority between di�erent Ĕ ğ
Ī s. In practical applications, Ă can be

determined by conducting a grid search between 0 and 1 and �nd-

ing the value that minimizes the required number of rounds. We set

Ă = 0.2 in this paper based on the empirical results in Section 6.2.

Note that this de�nition gives higher scores to those hyperplanes

intersecting ĎğĪ with a smaller ğ and with partitions in Ĕ ğ
Ī more

evenly distributed on each side, indicating a higher chance of de-

taching more partitions. In round Ī , the hyperplane with the highest

score that has not been chosen before will be selected and its corre-

sponding points will be displayed. Consider the example in Figure

5 where Ī = 2 and ġ = 1. After ℎ+34 and ℎ+14 are indicated by the

user in the �rst 2 rounds, the table Ĉ corresponding to this stage is

shown in Table 2. Based on this table, Ħ1 and Ħ3 will be displayed

to the user in the next round since ℎ13 obtains the highest score.

Based on the question selection strategy applied, there are two

variants of SS, which are called SS-random and SS-score, respectively.

The time complexities for each round of these two variants are

presented in Theorem 2.

Theorem 2. Given an input sizeĤ, dimensionalityĚ and the return

size Ģ . Let ĕ be the number of samples from each partition. The time

complexity for the pre-processing phase isċ ((|Ē | +ĕ)ĚĤ2), where |Ē |
is the maximum number of vertices in all partitions. In the running

phase, the time complexities in each round of SS-random and SS-score

are ċ (ĕĢĚĤ) and ċ (ĕĢĚĤ + Ĥ3), respectively.

2687

Table 2: Table Ĉ

ℎ+ğ Ġ ℎ−ğ Ġ score (Ă = 0.2)

ℎ13 {Č1} {Č2, Č3, Č5} 1

ℎ14 {Č1} {Č2, Č4, Č5} 0.2

ℎ23 {Č2} {Č1, Č3, Č4, Č5} 0.2

ℎ25 {Č2} {Č5} 0

ℎ34 {Č2, Č3} {Č4, Č5} 0

ℎ45 {Č1, Č2, Č3, Č4} {Č5} 0

Proof sketch. The time complexity for the pre-processing

phase is ċ ((|Ē | + ĕ)ĚĤ2) since computing all partitions takes

ċ (|Ē | ĚĤ2) time and sampling all ĕĤ points takes ċ (ĕĚĤ2) time

[6]. In each round of the running phase, the time required to up-

date čğs and compute Ĕ ğs is ċ (ĕĢĚĤ), and the time required to

decide the next question for SS-random and SS-score are ċ (Ī) and
ċ (Ĥ3), respectively, where Ī is the current number of rounds. Since

typically Ī j ĕĚĤ, the total time complexity then follows. □

It is worth mentioning that |Ē | is not large in typical scenarios.

From [40], |Ē | = ċ (ģ
⌊

Ě
2

⌋

) where ģ is the maximum number of

halfspaces bounding a polytope. Typically,ģ j Ĥ although it can

be Ĥ − 1 in the worst case. For our experiment where Ě = 5 and

Ĥ = 10, 000, the value ofģ is smaller than 100. Besides, the value of

Ě is not large (at most 7 in most cases) due to the limited number of

attributes considered by humans in decision-making [7, 30, 43, 46].

Lastly, Theorem 3 bounds the probability that the best point

is returned by SS. Intuitively, when Ģ = 10, Ă = 0.05, Đ = 20 and

ÿ = 0.01, Theorem 3 guarantees that SS �nd the best point with

probability at least 82%. Note that this is a loose bound. In our

experiments, if we set Ģ = 10, our algorithms return the best point

with probability at least 99%.

Theorem 3. Given an error rate upper bound Ă , a return size Ģ ,

and a parameter ÿ as de�ned in Lemma 4. If SS terminates inĐ rounds,

then the probability that the best point is returned by SS is at least

1 − ÿ − ě
− (+ (Ģ−1)/2,−ĂĐ)2

+ (Ģ−1)/2,+ĂĐ .

Proof sketch. SS does not return the best point only if either

(1) there is no sample point in the cell containing the real utility

vector; or (2) the cell containing the real utility vector does not

overlap with Ďġ . By Lemma 4, (1) happens with probability at most

ÿ. By Cherno� inequality, (2) happens with probability at most

ě
− (+ (Ģ−1)/2,−ĂĐ)2

+ (Ģ−1)/2,+ĂĐ . Summing them together completes the proof. □

5.2 The FC Algorithm

Although SS typically requires only a small number of questions in

practice, it does not have a guarantee on the number of questions

needed before termination. In this section, we introduce our second

algorithm FC, which has an asymptotically optimal number of

rounds. We �rst introduce an important concept called cycle.

Definition 2. A set ofģ g 3 points {Ħ1, Ħ2, . . . , Ħģ} form a cycle

if the user indicates that Ħ1 { Ħ2, . . . , Ħģ−1 { Ħģ , and Ħģ { Ħ1. Two

cycles are called disjoint if there are no two points, Ħğ and Ħ Ġ , such

that Ħğ { Ħ Ġ appears in both cycles.

Due to possible user errors, we do not assume transitivity in the

indicated preferences. That is, Ħğ { Ħ Ġ and Ħ Ġ { Ħġ (indicated by a

user) do not imply Ħğ { Ħġ . Lemma 5 reveals the relation between

the occurrences of cycles and con�dence regions.

Lemma 5. If there are ğ + 1 disjoint cycles, then the ğ-th con�dence

region Ďğ = ∅.

Proof sketch. We �rst show that the intersection of halfs-

paces corresponding to a cycle is an empty region. Since Ďğ =
⋃

ď ′∈ď |ď |−ğ (∩ĩ∈ď ′ ĩ), where ď
′ has a cardinality of |ď | − ğ , if there are

ğ + 1 disjoint cycles, no matter how we set ď ′, ∩ĩ∈ď ′ ĩ will be empty

since there is at least one cycle in ď ′. Thus, Ďğ is also empty. □

Intuitively, FC has two stages, namely Stage 1 and Stage 2, and

each stage consists of several rounds. Similar to SS, FC only keeps

con�dence regions conceptual and utilizes the same sampling tech-

nique described in Section 5.1.1 to maintain Ĕ ğs, i.e., the sets of

partitions belonging to each con�dence region. After each round, it

checks if it stops by checking if
�

�

�

⋃ġ
ğ=0 Ĕ

ğ
�

�

� f Ģ . In Stage 1, FC adopts

a question selection strategy that is di�erent from the two strate-

gies described in Section 5.1.2. This strategy attempts to quickly

obtain disjoint cycles (if cycles appear during interaction), thereby

reducing some con�dence regions to empty and detaching a large

number of partitions from them. When Stage 1 ends, it is shown

later in Lemma 6 that at most ġ disjoint cycles are obtained. Let Ġ

be the number of disjoint cycles obtained just after Stage 1 (where

Ġ f ġ). By Lemma 5, this means that Ď0, Ď1, . . . , Ď Ġ−1 all become

empty. Then, FC enters Stage 2. At this stage, a partition either be-

longs to one of the non-empty con�dence regions Ď Ġ , Ď Ġ+1, . . . , Ďġ ,
or is already discarded. In this stage, FC chooses questions follow-

ing either the random-based selection or the score-based selection

in Section 5.1.2, until the stopping condition is met.

Next, we describe the details of these 2 stages. In Stage 1, FC

maintains a set Čď of points, initialized to an empty set. Initially,

the algorithm randomly selects two points from Ā , asks the user’s

preference on them, and inserts them into Čď . Then, it randomly

picks a point fromĀ that has not been picked before, which is called

the focusing point, denoted by Ħ Ĝ , and asks the user’s preferences

between Ħ Ĝ and each point in Čď . After all points in Čď are compared

with Ħ Ĝ , Ħ Ĝ is inserted into Čď . FC then selects a new point from

Ā as the new focusing point and repeats the above process. Stage

1 stops when one of the following two conditions is met: (1) it

already lasts formax(ġ (ġ−1)2 , 3ġ
Ă
) rounds just after a focusing point

is inserted into Čď ; or (2)
⋃ġ−1

ğ=0 Ĕ ğ
= ∅. Lemma 6 states several

important properties when Stage 1 ends.

Lemma 6. When Stage 1 ends, the following properties hold:

1. The number of obtained disjoint cycles is at most ġ .

2. If Stage 1 ends on Condition (1), then the expected number of

obtained disjoint cycles is at least max(0, ġ − 17).

Proof sketch. To prove Property 1, assume that Stage 1 ends

after round Ī . Since it does not end after round Ī−1,⋃ġ−1
ğ=0 Ĕ ğ

Ī−1 ≠ ∅,
it follows that Ďġ−1Ī−1 ≠ ∅. By Lemma 3, Ďġ−1Ī−1 ¦ ĎġĪ ≠ ∅. Thus, the
number of disjoint cycles must not exceed ġ (Lemma 5). To prove

Property 2, we show that if Stage 1 ends on Condition (1), the user

makes at least ġ errors with probability at least 1− 1
ġ
. We then show

that if at least ġ errors are made, the expected number of disjoint

2688

cycles is at least ġ − 16. The expected number of obtained disjoint

cycles is thus at least (1 − 1
ġ
) (ġ − 16) g ġ − 17. □

FC then enters Stage 2, in which it needs to further discard the

remaining partitions. To do so, FC follows either the random-based

selection or the score-based selection in Section 5.1.2 to select a pair

of points and display them to the user in each round. The algorithm

terminates when at most Ģ partitions remain.

To illustrate FC, assume that Ģ = 3 and ġ = 1, and in the �rst 3

rounds of Stage 1 the user indicated Ħ1 { Ħ3, Ħ3 { Ħ4 and Ħ4 { Ħ1,

which forms a cycle. The related halfspaces ℎ+13, ℎ
+
34 and ℎ

−
14 and

the resulting con�dence regions are shown in Figure 7, where Ď03 is

an empty region and Ď13 is the union of the three regions bounded

by bold lines. Since Ĕ 0
3 = ∅ and Ĕ 1

3 = {Č1, Č2, Č3, Č4}, Stage 1 ends
because Condition (2) is satis�ed. After the user indicated ℎ−23 in
round 4, the resulting Ď14 is the union of the three regions bounded

by bold lines shown in Figure 8. SinceĔ 0
4 = ∅ andĔ 1

4 = {Č1, Č3, Č4},
�

�

�

⋃ġ
ğ=0 Ĕ

ğ
4

�

�

� = |{Č1, Č3, Č4}| = 3 f Ģ . FC stops and returns {Ħ1, Ħ3, Ħ4}.
Theorem 4 presents the major conclusion of FC.

Theorem 4. Given an input size Ĥ, an output size Ģ and an error

rate upper bound Ă , FC returns a set of points with size at most Ģ using

ċ (Ģ
Ă
+ Ĥ) rounds on expectation.

Proof sketch. Firstly, note that Stage 1 �nishes withinċ (Ģ
Ă
+Ĥ)

rounds as long as Ģ = ċ (
√
Ĥ). When entering Stage 2, there are 2

cases: (1) Condition 1 is satis�ed, and (2) Condition 1 is not satis�ed,

but Condition 2 is satis�ed. We then show that the expected round

complexity combining these 2 cases is ċ (Ĥ). Therefore, the total
expected round complexity is ċ (Ģ

Ă
+ Ĥ). □

Corollary 2. The round complexity of FC is asymptotically opti-

mal.

Lastly, Theorem 5 bounds the probability of FC returning the

best point.

Theorem 5. Given an error rate upper bound Ă , a return size Ģ ,

and a parameter ÿ as de�ned in Lemma 4. If FC terminate inĐ rounds,

then the probability that the best point is returned by FC is at least

1 − ÿ − ě
− (+ (Ģ−1)/2,−ĂĐ)2

+ (Ģ−1)/2,+ĂĐ .

Proof sketch. The proof is nearly identical to the proof of

Theorem 3. □

6 EXPERIMENT

6.1 Experimental Setup

Our experiments were conducted on a computer with 3.10 GHz

CPU and 64GB RAM. All programs were implemented in C/C++.

Datasets. We conducted experiments on synthetic and real

datasets. Statistics of the datasets are summarized in the techni-

cal report [8]. For synthetic datasets, we generated anti-correlated

datasets using a dataset generator developed for skyline operators

[5]. For real datasets, we used 3 real datasets: AirQuality, Weather,

and HTRU. AirQuality has 420,478 tuples with 4 attributes,Weather

includes 96,483 weather records with 6 attributes, and HTRU has

17,898 points with 7 attributes. Each dimension is normalized into

the range of [0, 1]. We preprocessed all the datasets to contain only

the skyline points, which are the possible best points for any utility

function.

Algorithms. We compare our proposed algorithms, namely FC,

SS-score and SS-random, against the competitor algorithms, includ-

ing (a) algorithms that do not consider user errors, namely HD-PI

[43], UH-Simplex [46] and UtilApprox [31], and (b) algorithms that

consider user errors, namely Verify-Point [7], Active-Ranking [20]

and Pref-Learn [34]. Note that [7] also proposes another algorithm

Verify-Space. Since its performance is similar to Verify-Point in [7],

we do not include it here. To make the comparison fair, we adapt

each of them to return at most Ģ points that are most likely to be

the best point. The adaptions are summarized below.

(1) Algorithms HD-PI, Verify-Point and UH-Simplex all maintain

a set of candidate points during their interaction processes. We

return all points in the candidate set when its size is no more than Ģ .

Speci�cally, since the candidate set maintained by HD-PI stores the

possible top-ġ points, we set ġ to 1. The set maintained in Verify-

Point stores the possible best points, which need no further adaption.

In UH-Simplex, the candidate set contains points with regret ratios

possibly lower than a parameter Ċ . Following [7, 43], we set Ċ to

1 − Ĝ (Ħ2)/Ĝ (Ħ1), where Ħ1 and Ħ2 are the best and second best

points according to the utility vector, which is equivalent to �nding

the best point. (2) Algorithm Active-Ranking aims at learning the

entire ranking of all points by interacting with the user. We return

the top-Ģ points after the entire ranking is obtained. (3) Algorithm

Pref-Learn interacts with the user to learn the user’s utility vector.

Algorithm UtilApprox returns points with regret ratios smaller than

a parameter Ċ by estimating the user’s utility vector. For these two

algorithms, we return the top-Ģ points w.r.t to the learned utility

vector after the learning processes �nish. Speci�cally, for Pref-Learn,

we set its error threshold to 10−6 since according to [34], the learnt
vector is very close to the theoretical optimum if the error threshold

is less than 10−5. For UtilApprox, we set Ċ in the same way as UH-

Simplex (Ċ = 1 − Ĝ (Ħ2)/Ĝ (Ħ1)) to �nd the best point.

Parameter Setting. We evaluate the performance of each algo-

rithm by varying di�erent parameters: (1) the dataset size Ċ , (2)

the dimensionality Ě , (3) the user error rate upper bound Ă , (4) the

return size Ģ , (5) the parameter Ă in the score-based selection (Sec-

tion 5.1.2), and (6) the parameter ĕ in Theorem 2 controlling the

number of samples from each partition. The default setting for each

synthetic dataset is Ċ = 100, 000 and Ě = 4. The default value of Ă

is 0.05, which, according to the human reliability assessment data

in [23], is a reasonable upper bound for the human error rate. Ac-

cording to the results in Section 6.2, we set the default value Ģ = 5,

Ă = 0.2, and ĕ = 1000.

Performance Measurement. The performance of each algo-

rithm is evaluated by the following measurements: (1) Accuracy

which is the probability that the best point is returned. Formally,

accuracy is de�ned as ĐĨěĪ
ĐĪĥĪ

where ĐĪĥĪ is the total number of trails

and ĐĨěĪ is the number of times the best point is returned. (2) Num-

ber of questions required to return the points. (3) Processing time

which is the average processing time to decide the next question.

We report the processing time per question since compared to the

total processing time, it is a more informative metric for evaluating

the algorithm’s responsiveness during user interaction. Each set-

ting is repeated 100 times and the average value is reported. In each

2689

score random
Question selection strategy

85%

90%

95%

100%

A
cc

ur
ac

y

score random
Question selection strategy

25

30

35

of

 ro
un

ds

score random
Question selection strategy

0.03

0.04

0.05

Ti
m

e(
s)

1 3 5 7 9
l

40%

60%

80%

100%

Ac
cu

rac
y

1 3 5 7 9
l

10
20
30
40
50

o
f r

ou
nd

s

1 3 5 7 9
l

1022

1021

100

Ti
me

(s)

FC SS-score SS-random

(a) (b) (c) (a) (b) (c)

Figure 9: E�ect of question selection strategies on FC Figure 10: E�ect of Ģ (and ġ)

0.2 0.4 0.6 0.8 1.0
³

70%

80%

90%

100%

A
cc

ur
ac

y

0.2 0.4 0.6 0.8 1.0
³

10

20

30

40

of

 ro
un

ds

0.2 0.4 0.6 0.8 1.0
³

1023
1022
1021
100

Ti
m

e(
s)

FC SS-score

50 100 500 1000 5000
Sample size (Y)

70%

80%

90%

100%

A
cc

ur
ac

y

50 100 500 1000 5000
Sample size (Y)

0

10

20

30

of

 ro
un

ds

50 100 500 1000 5000
Sample size (Y)

1023
1022
1021
100
101
102

Ti
m

e
(s

)

FC SS-score SS-random Preprocessing Time

(a) (b) (c) (a) (b) (c)

Figure 11: E�ect of Ă Figure 12: E�ect of sample size

repetition, we randomly sample a vector ī from the utility space as

the underlying utility vector, and the point with the highest utility

with respect to ī in the dataset is regarded as the real best point.

The rest of the paper is organized as follows. In Section 6.2, we

analyze the impact of various parameters on the performance of our

algorithms. We then present the experimental results on synthetic

datasets (Section 6.3) and real datasets (Section 6.4). The �ndings

from a user study are discussed in Section 6.5. Finally, we provide a

summary of the experiments in Section 6.6.

6.2 Experiments on Parameter Setting
In this section, we evaluate the impact of di�erent parameter set-

tings, including Ģ , Ă and ĕ , on our algorithms.

We studied the e�ect of using the score-based selection and

the random-based selection in Stage 2 of FC. Figure 9 shows the

results. We observe that the score-based selection obtains a higher

accuracy and requires fewer questions, while the processing time

of the random-based selection is slightly faster. Since the increase

in accuracy and round e�ciency is considered more important than

a small gain in processing time, we chose the score-based selection

as the default question selection strategy for Stage 2 of FC.

Figure 10 analyzes the impact of varying the value of Ģ from 1

to 9 on our algorithms. According to Figure 10 (a) and (b), when

Ģ increases, the accuracies and the number of questions of all our

algorithms also increase. This is because with a larger value of Ģ ,

the best point is less likely to be discarded, but more questions are

required to discard other points. Based on these results, we select

Ģ = 5 as our default setting since it yields a high level of accuracy

while asking a small number of questions.

In Figure 11, we varied Ă from 0.1 to 1.0 to study its impact on FC

and SS-score (note that Ă is a parameter in the score-based selection

so it does not a�ect SS-random, which uses the random-based se-

lection). Changing Ă does not signi�cantly a�ect the accuracies of

the algorithms. We chose Ă = 0.2 since it minimized the number of

questions needed for both algorithms. In Figure 12, we studied the

in�uence of increasing parameter ĕ from 50 to 5000 on the perfor-

mance of FC, SS-score and SS-random. As ĕ increases, all algorithms

exhibit improved accuracies, a higher number of questions, and a

longer processing time. The time required by the pre-processing

phase also increases. We choseĕ = 1000 as it provides a satisfactory

level of accuracy while maintaining a fast processing time.

6.3 Experiments on Synthetic Datasets
Figure 13 summarizes our study on the algorithms’ performance

when handling di�erent types of user errors: random errors, per-

sistent errors and a combination of both. In this �gure, “random”

means that all errors are random errors, “persist” means that all

errors are persistent errors, and “combined” means that 50% of

the errors are persistent errors and the rest are random errors. Ex-

cept for Verify-Point, all algorithms exhibit similar performance

across the three error types, since they avoid asking repeated ques-

tions, making persistent and random errors equivalent. Verify-Point

achieves slightly lower accuracy than our algorithms when dealing

with random errors. However, since its technique (i.e., asking the

same question several times) fails to address persistent errors, its

accuracy decreases when the fraction of persistent errors increases.

Since persistent errors are harder to be handled, we assume all user

errors are persistent for the rest of this section.

In Figure 14, we compare the performance of our algorithms

(FC, SS-score, and SS-random) with existing methods on 4-d syn-

thetic datasets of varying sizes (from 100 to 100 million). As shown

in Figure 14 (a), our algorithms consistently outperform existing

methods in terms of accuracy, with a widening performance gap

when the dataset size increases. They achieve over 10% higher accu-

racy than the closest competitor (UtilApprox) for large input sizes

(100 million). Among our algorithms, SS-score is the most round-

e�cient, asking at most 10 more questions compared to the most

round-e�cient one (HD-PI). SS-random asks slightly more questions

than SS-score. However, it scales well on large datasets (100 million

points) since it determines the next question within 0.7 seconds.

Figure 15 shows the e�ect of varying Ă from 0 to 0.15. According

to Figure 15 (a), our algorithms achieve the highest accuracies,

decrease at the slowest rates and remain above 75% even with

high error rates (e.g., 0.15), but all other methods fall below 65%.

Increasing Ă does not have a signi�cant impact on the number of

questions required by our algorithms, except for FC, whose number

of questions decreases whenĂ increases since cycles can be obtained

more quickly when more inconsistencies are involved.

Figure 16 shows our algorithms’ scalability with increasing di-

mensionality Ě . Our algorithms consistently achieve higher accu-

racies for all dimensional settings compared to existing methods,

and the di�erence in accuracy grows even larger when Ě increases.

Besides, they require only 5 to 8 additional questions per dimen-

sionality increase. Although SS-score takes around 10 seconds for

Ě = 5 (since �nding the best hyperplane in the large table Ĉ is time-

consuming), the processing time of SS-random and FC is still within

1 second.

6.4 Experiments on Real Datasets
We compared the performance of our algorithms against the exist-

ing methods on 3 real datasets, namely AirQuality, Weather and

2690

random combined persist
Error type

60%
70%
80%
90%

100%
A

cc
ur

ac
y

random combined persist
Error type

22
23
24
25
26

of

 ro
un

ds

random combined persist
Error type

1025

1023

1021

Ti
m

e(
s)

100 10K 1M 100M
Dataset size

40%

60%

80%

100%

Ac
cu

ra
cy

100 10K 1M 100M
Dataset size

22
23
24
25
26
27

of

 ro
un

ds

100 10K 1M 100M
Dataset size

1025

1023

1021

101

Ti
m

e(
s)

(a) (b) (c) (a) (b) (c)

Figure 13: E�ect of di�erent types of errors Figure 14: E�ect of input size on 4d datasets

0 0.03 0.07 0.11 0.15
»

20%

40%

60%

80%

100%

Ac
cu
ra
cy

0 0.03 0.07 0.11 0.15
»

22
23
24
25
26

of

 ro
un

ds

0 0.03 0.07 0.11 0.15
»

1025
1024
1023
1022
1021
100

Ti
m
e(
s)

2 3 4 5
d

20%

40%

60%

80%

100%

Ac
cu
ra
cy

2 3 4 5
d

22

24

26

28

of

 ro
un

ds

2 3 4 5
d

1025
1023
1021
101

of

 ro
un

ds

(a) (b) (c) (a) (b) (c)

Figure 15: E�ect of Ă Figure 16: E�ect of Ě

FC
SS-score
SS-random
HD-PI
Verify-Point

UtilApprox
Active-Ranking
Pref-Learn
UH-Simplex

FC
SS-score
SS-random
HD-PI
Verify-Point

UtilApprox
Active-Ranking
Pref-Learn
UH-Simplex

Algs
60%

70%

80%

90%

100%

Ac
cu
ra
cy

Algs

21
22
23
24
25
26

of

 ro
un

ds

Algs

1025

1023

1021

101

Ti
m
e(
s)

(a) (b) (c)

Figure 17: Results on dataset AirQuality

Algs
60%

70%

80%

90%

100%

Ac
cu
ra
cy

Algs

21
22
23
24
25
26

of

 ro
un

ds

Algs

1025

1023

1021

101

Ti
m
e(
s)

Algs
40%

60%

80%

100%

Ac
cu
ra
cy

Algs

22
24
26
28

210

of

 ro
un

ds

Algs
1025

1023

1021

101

Ti
m
e(
s)

(a) (b) (c) (a) (b) (c)

Figure 18: Results on datasetWeather Figure 19: Results on dataset HTRU

HTRU. The results are summarized in Figure 17, 18 and 19, respec-

tively. Our methods obtain higher accuracies than existing algo-

rithms on all 3 datasets. In particular, the accuracies of FC, SS-score,

and SS-random are consistently above 90%. Although existing al-

gorithms HD-PI and Verify-Point require 5 to 7 fewer rounds than

our most round-e�cient algorithm (SS-score), their accuracies are

10% to 20% lower than ours, which is not satisfactory. Our algo-

rithm runs at an interactive speed since they process each question

within 0.6 seconds on all 3 datasets.

6.5 User Study
We conducted two user studies on a real dataset Airbnb [11]. Airbnb

consists of 6809 Airbnb rentals in Amsterdamwith 4 attributes: daily

price, cleanliness rating, location rating and the number of reviews.

Following [7, 43], we randomly sampled 1000 Airbnb rentals and

recruited 25 participants.

(1) The �rst user study aims to study user errors’ impact on

algorithm performance and our algorithms’ e�ectiveness. We com-

pared SS-score against existing methods, namely Verify-Point, HD-PI,

Active-Ranking and Pref-Learn. For Pref-Learn, since it is hard to ob-

tain the user’s real utility vector, it is re-adapted following [7, 43]:

It maintains an estimated utility vector ī. If 75% [34] of some ran-

domly selected questions answered by the user can be correctly

predicted using ī, it stops and returns the top-Ģ points w.r.t. ī. We

set Ģ = 5 and derive that ġ = 2, following our experimental settings.

This user study contains 3 parts. In Part 1, the user interacted with

each algorithm for several rounds until the algorithm returns a list

of at most Ģ items. During each round, two Airbnb rental options

were shown, and the user was asked to select the preferred option.

Once the list was returned, the user was required to select one item

from the list as the selected favorite rental option of the algorithm.

After the selected favorite rental options of all algorithms are cho-

sen by the user, the user was asked to select one option among all of

these selected favorite rental options as his/her tentative best point.

Then, a set of additional questions were asked to con�rm whether

this tentative best point was indeed preferred to each of the other

selected favorite rental options. Whenever each of these selected

favorite rental options, says Ħ , was more preferred to the tentative

best point ĦĘěĩĪ , an additional question was asked to compare these

two points (i.e., Ħ and ĦĘěĩĪ) and the point preferred by the user

with more questions became the new tentative best point. After we

�nish the process, the current tentative best point is regarded as

the best point of the user.

Part 2 and Part 3 follow the design of Part 1 with the only di�er-

ence that in these two parts, each algorithm was required to stop

and return a list of at most Ģ options after Ī rounds. In Part 2, Ī is set

to 10. In Part 3, Ī is set to the number of rounds required by SS-score

to terminate (which is typically 12 to 13). Since some algorithms

cannot guarantee the size of the returned list when forced to stop,

they are re-adapted as follows: (1) For SS-score, we randomly re-

turn Ģ points whose partition is in
⋃

ġ

ğ=0
Ĕ ğ . (2) For Verify-Point and

HD-PI, we randomly return Ģ points from their candidate sets. (3)

For Active-Ranking, we return the top-Ģ points in the topological

order resulting from the Ī comparisons. For each part, we evalu-

ated algorithms’ performance with the following metrics: (1) the

hit rate which is the probability that the best point is included in

the returned list, (2) the number of rounds required to return the

list, and (3) the average processing time to decide the next question.

The average scores of all participants are reported.

Figure 20 displays the results. In Part 1, SS-score achieves over

90% hit rate, signi�cantly outperforming other competitors. The

2691

processing time of our algorithm is also short since it determines

the next question within 0.01 seconds. Given that SS-score obtains a

hit rate exceeding 90%, we conclude that the linear utility function

approximates the user’s preference reasonably well. In Part 2, the

hit rate of SS-score is lower than HD-PI and Verify-Point. This is ex-

plainable because there is a trade-o� between round e�ciency and

error handling capacity. Since SS-score prioritizes error handling, it

is expected that its round e�ciency is lower than algorithms that

either do not consider error handling or have a lower error han-

dling capacity. Consequently, when forced to stop after round 10,

SS-score has to randomly select Ģ points from a relatively large num-

ber of candidates, resulting in a lower hit rate. However, as can be

observed in Part 3, when allowed to use slightly more rounds (i.e.,

2 to 3 more rounds), the hit rate of SS-score exceeds other baselines

by a large margin, aligning with its performance in Part 1.

Based on the results obtained in Part 1, we estimated how fre-

quently users make errors using algorithm SS-score, using the prop-

erties that if ĕ is large enough, the best point belongs to the ğ-th

con�dence region only if at least ğ errors are made, and the best

point is not in the returned set only if at least ġ + 1 errors are made.

We regard the best point found in Part 1 by our user study as the

real best point of the user (since we used additional checking ques-

tions to make sure that this point is the real best point with high

probability) and record necessary information that decides the con-

�dence region this point belongs to. The user error rate can be

estimated as
∑

Į
ěĮ∑

Į
ĪĮ
, where ěĮ is the number of errors made by user

Į (calculated based on the above properties) and ĪĮ is the number

of rounds used by user Į . Among 272 questions asked by SS-score,

users made 16 errors, resulting in a 5.8% empirical error rate.

(2) Our second user study aims to show the presence of persistent

user errors in the real-world scenarios. In this user study, each

Airbnb has 5 attributes: labeled price, discount, cleanliness rating,

location rating and the number of reviews. For brevity, we will refer

to cleanliness rating, location rating, and the number of reviews

as the “other attributes” throughout this section. The term labeled

price represents the original price before the discount, while the

�nal price refers to the price after the discount has been applied

(i.e., �nal price = labeled price ×(100%− discount)). For example,

given an option with a labeled price of $300 and a 20% discount, its

�nal price is $300 × (100% − 20%) = $240. We have a hypothesis

that some people in the world have the (wrong) impression that

the �nal price could be low when they see a high discount rate. We

could regard this impression as persistent errors in our user study.

The user study consists of 3 settings. In Setting 1, we display all

5 attributes for each Airbnb, and the utility function is assumed

to be linear w.r.t. all 5 attributes. In Setting 2, we still display all 5

attributes for each option, but the utility is assumed to be linear w.r.t.

the �nal price (instead of the labeled price and the discount) and

other attributes. Then, in Setting 3, only the �nal price and other

attributes are displayed, and the utility is assumed to be linear w.r.t.

the �nal price and other attributes. In each setting, the user interacts

with algorithm SS-score until a list of at most Ģ points are returned,

and is then asked to select one option from the list as the selected

favorite rental option of this setting. We refer to the selected favorite

rental option of Setting 1, 2 and 3 as Ħ1, Ħ2 and Ħ3, respectively.

After obtaining Ħ1, Ħ2 and Ħ3, the user is required to choose one

SS-score
HD-PI

Verify-Point

Active-Rank

Pref-Learn

Algs

20%

40%

60%

80%

100%

H
it

ra
te

Part 1
Part 2
Part 3

SS-score
HD-PI

Verify-Point

Active-Rank

Pref-Learn

Algs

21

22

23

24

25

of

 ro
un

ds

Part 1
Part 2
Part 3

SS-score
HD-PI

Verify-Point

Active-Rank

Pref-Learn

Algs

1023

1022

1021

Ti
m

e(
s)

Part 1
Part 2
Part 3

(a) (b) (c)

Figure 20: Results on user study

options among them as the best point. Notably, if Ħ3 is chosen as the

best point, it indicates that the user considers the �nal price, rather

than the labeled price and discount, when making their decision.

For users who selected Ħ3 as the best point, an additional question

is asked: The user is presented with Ħ2, including its labeled price,

discount, and computed �nal price, and is asked if they think the

�nal price is higher than their expectation. Note that when the

user selected Ħ2 in Setting 2, only the labeled price and discount

of Ħ2 are presented to the user. Given that the user considers �nal

price when making the decision, if the computed �nal price of Ħ2 is

higher than the user’s expectation, it suggests that the user is prone

to persistent errors, possibly due to the false impression that the

�nal price could be low because of the high discount rate. Among

the 21 users who selected Ħ3 as the best point, 33% (7) of them found

that the �nal price of Ħ2 was higher than expected, indicating that

they have a tendency to make persistent errors. Moreover, 24%

(5) users found that their best point was not in the list of options

recommended by Setting 2, indicating that 24% users missed their

best point due to persistent errors.

6.6 Summary

The experiments demonstrated the superiority of our proposed

algorithms, namely FC, SS-score and SS-random, over existing ap-

proaches. (1) We are e�cient and e�ective. We achieve nearly 100%

accuracy inmost of the experiments using a small number of rounds,

outperforming existing algorithms. (2) We are scalable to the in-

put size and dimensionality. On the 7-d dataset HTRU, SS-score and

SS-random �nish with around 20 questions and achieve over 98% ac-

curacy, but algorithms UtilApprox and Active-Ranking obtain lower

accuracies with more rounds. (3) We are capable of handling many

persistent errors. Even with a high error rate (e.g., 0.15), our algo-

rithms still achieve more than 75% accuracy, which is at least 10%

higher than other existing approaches.

7 CONCLUSION

In this paper, we propose interactive algorithms that robustly re-

turn the user’s best point with high con�dence, even when the user

makes persistent and random errors. We introduce algorithm FC,

which requires an asymptotically optimal number of rounds, and al-

gorithm SS, which empirically requires fewer questions. Both have

provable guarantees of returning the best point. Extensive experi-

ments show our algorithms are e�cient and e�ective in handling

errors. In the future, we aim to extend our solutions to return the

user’s top-ġ points.

ACKNOWLEDGEMENT

We are grateful to the anonymous reviewers for their construc-

tive comments on this paper. This work was supported in part by

WEB24EG01-H.

2692

REFERENCES
[1] Pankaj K Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. 2017. E�-

cient algorithms for k-regret minimizing sets. arXiv preprint arXiv:1702.01446
(2017).

[2] Yongkil Ahn. 2019. The economic cost of a fat �nger mistake: a comparative case
study from Samsung Securities’s ghost stock blunder. Journal of Operational
Risk 16, 2 (2019).

[3] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. 2014. Domination in the
probabilistic world: Computing skylines for arbitrary correlations and ranking
semantics. ACM Transactions on Database Systems (TODS) 39, 2 (2014), 1–45.

[4] Ilaria Bartolini, Paolo Ciaccia, and Florian Waas. 2001. FeedbackBypass: A new
approach to interactive similarity query processing. In VLDB. 201–210.

[5] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. 2001. The skyline
operator. In Proceedings 17th international conference on data engineering. IEEE,
421–430.

[6] Apostolos Chalkis and Vissarion Fisikopoulos. 2020. volesti: Volume approxi-
mation and sampling for convex polytopes in r. arXiv preprint arXiv:2007.01578
(2020).

[7] Qixu Chen and Raymond Chi-Wing Wong. 2023. Finding Best Tuple via Error-
prone User Interaction. In Proceedings of the 39th IEEE International Conference
on Data Engineering.

[8] Qixu Chen and Raymond Chi-Wing Wong. 2023. Robust Best Point Selection
under Unreliable User Feedback (Technical Report). https://github.com/qixuchen/
PersistErr/blob/main/PersistError_Techreport.pdf.

[9] Sean Chester, Alex Thomo, S Venkatesh, and Sue Whitesides. 2014. Computing k-
regret minimizing sets. Proceedings of the VLDB Endowment 7, 5 (2014), 389–400.

[10] Paolo Ciaccia and Davide Martinenghi. 2017. Reconciling skyline and ranking
queries. Proceedings of the VLDB Endowment 10, 11 (2017), 1454–1465.

[11] Airbnb dataset. 2023. http://insideairbnb.com/get-the-data/.
[12] Eyal Dushkin and Tova Milo. 2018. Top-k sorting under partial order information.

In Proceedings of the 2018 International Conference on Management of Data. 1007–
1019.

[13] Brian Eriksson. 2013. Learning to top-k search using pairwise comparisons. In
Arti�cial Intelligence and Statistics. PMLR, 265–273.

[14] Moein Falahatgar, Yi Hao, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh
Ravindrakumar. 2017. Maxing and ranking with few assumptions. Advances in
Neural Information Processing Systems 30 (2017).

[15] Moein Falahatgar, Ayush Jain, Alon Orlitsky, Venkatadheeraj Pichapati, and
Vaishakh Ravindrakumar. 2018. The limits of maxing, ranking, and preference
learning. In International conference on machine learning. PMLR, 1427–1436.

[16] Moein Falahatgar, AlonOrlitsky, Venkatadheeraj Pichapati, andAnanda Theertha
Suresh. 2017. Maximum selection and ranking under noisy comparisons. In
International Conference on Machine Learning. PMLR, 1088–1096.

[17] Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. 2018. Op-
timal sorting with persistent comparison errors. arXiv preprint arXiv:1804.07575
(2018).

[18] Reinhard Heckel, Nihar B Shah, Kannan Ramchandran, and Martin J Wainwright.
2019. Active ranking from pairwise comparisons and when parametric assump-
tions do not help. The Annals of Statistics 47, 6 (2019), 3099–3126.

[19] Reinhard Heckel, Max Simchowitz, Kannan Ramchandran, and Martin Wain-
wright. 2018. Approximate ranking from pairwise comparisons. In International
Conference on Arti�cial Intelligence and Statistics. PMLR, 1057–1066.

[20] Kevin G Jamieson and Robert Nowak. 2011. Active ranking using pairwise
comparisons. Advances in neural information processing systems 24 (2011).

[21] Yiling Jia, Huazheng Wang, Stephen Guo, and Hongning Wang. 2021. Pairrank:
Online pairwise learning to rank by divide-and-conquer. In Proceedings of the
Web Conference 2021. 146–157.

[22] Sumeet Katariya, Lalit Jain, Nandana Sengupta, James Evans, and Robert Nowak.
2018. Adaptive sampling for coarse ranking. In International Conference on
Arti�cial Intelligence and Statistics. PMLR, 1839–1848.

[23] Barry Kirwan. 2017. A guide to practical human reliability assessment. CRC press.
[24] Rolf Klein, Rainer Penninger, Christian Sohler, and David P Woodru�. 2011.

Tolerant algorithms. In Algorithms–ESA 2011: 19th Annual European Symposium,
Saarbrücken, Germany, September 5-9, 2011. Proceedings 19. Springer, 736–747.

[25] Jongwuk Lee, Gae-won You, and Seung-won Hwang. 2009. Personalized top-
k skyline queries in high-dimensional space. Information Systems 34, 1 (2009),
45–61.

[26] Alchemer LLC. 2023. https://www.alchemer.com/resources/blog/how-many-
survey-questions/.

[27] De Berg Mark, Cheong Otfried, van Kreveld Marc, and Overmars Mark. 2008.
Computational geometry algorithms and applications. Spinger.

[28] Denis Mindolin and Jan Chomicki. 2009. Discovering relative importance of
skyline attributes. Proceedings of the VLDB Endowment 2, 1 (2009), 610–621.

[29] Kyriakos Mouratidis, Keming Li, and Bo Tang. 2021. Marrying top-k with skyline
queries: Relaxing the preference input while producing output of controllable
size. In Proceedings of the 2021 International Conference on Management of Data.
1317–1330.

[30] Kyriakos Mouratidis and Bo Tang. 2018. Exact processing of uncertain top-k
queries in multi-criteria settings. Proceedings of the VLDB Endowment 11, 8 (2018),
866–879.

[31] Danupon Nanongkai, Ashwin Lall, Atish Das Sarma, and Kazuhisa Makino.
2012. Interactive regret minimization. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. 109–120.

[32] Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J Lipton, and Jun
Xu. 2010. Regret-minimizing representative databases. Proceedings of the VLDB
Endowment 3, 1-2 (2010), 1114–1124.

[33] Peng Peng and Raymong Chi-Wing Wong. 2015. k-hit query: Top-k query
with probabilistic utility function. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 577–592.

[34] Li Qian, Jinyang Gao, and HV Jagadish. 2015. Learning user preferences by
adaptive pairwise comparison. Proceedings of the VLDB Endowment 8, 11 (2015),
1322–1333.

[35] QuestionPro. 2023. https://www.questionpro.com/blog/optimal-number-of-
survey-questions/.

[36] Wenbo Ren, Jia Kevin Liu, and Ness Shro�. 2019. On sample complexity upper
and lower bounds for exact ranking from noisy comparisons. Advances in Neural
Information Processing Systems 32 (2019).

[37] Gerard Salton. 1989. Automatic text processing: The transformation, analysis,
and retrieval of. Reading: Addison-Wesley 169 (1989).

[38] Thomas Seidl and Hans-Peter Kriegel. 1997. E�cient user-adaptable similarity
search in large multimedia databases. In VLDB, Vol. 97. 506–515.

[39] Zhexuan Song and Nick Roussopoulos. 2001. K-nearest neighbor search for mov-
ing query point. In International Symposium on Spatial and Temporal Databases.
Springer, 79–96.

[40] Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. 2017. Handbook of
discrete and computational geometry. CRC press.

[41] Weicheng Wang and Raymond Chi-Wing Wong. 2022. Interactive mining with
ordered and unordered attributes. Proceedings of the VLDB Endowment 15, 11
(2022), 2504–2516.

[42] Weicheng Wang, Raymond Chi-Wing Wong, H Jagadish, and Min Xie. 2024.
Reverse Regret Query. In 2024 IEEE 40th International Conference on Data Engi-
neering (ICDE). IEEE.

[43] Weicheng Wang, Raymond Chi-Wing Wong, and Min Xie. 2021. Interactive
Search for One of the Top-k. In Proceedings of the 2021 International Conference
on Management of Data. 1920–1932.

[44] Weicheng Wang, Raymond Chi-Wing Wong, and Min Xie. 2023. Interactive
search with mixed attributes. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE). IEEE, 2276–2288.

[45] A Student with Top-tier Score Admitted by mediocre University (Chinese version
only). 2020. https://news.southcn.com/node_6854f1135c/4357641930.shtml.

[46] Min Xie, Raymond Chi-Wing Wong, and Ashwin Lall. 2019. Strongly truthful
interactive regretminimization. In Proceedings of the 2019 International Conference
on Management of Data. 281–298.

[47] Jiping Zheng andChenChen. 2020. Sorting-based interactive regretminimization.
(2020), 473–490.

[48] Yi Zong and Xiaojie Guo. 2022. An experimental study on anchoring e�ect of
consumers’ price judgment based on consumers’ experiencing scenes. Frontiers
in Psychology 13 (2022), 794135.

2693

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Algorithm Framework
	4.1 Preliminaries
	4.2 The General Framework

	5 The SS and FC Algorithms
	5.1 The SS Algorithm
	5.2 The FC Algorithm

	6 Experiment
	6.1 Experimental Setup
	6.2 Experiments on Parameter Setting
	6.3 Experiments on Synthetic Datasets
	6.4 Experiments on Real Datasets
	6.5 User Study
	6.6 Summary

	7 Conclusion
	References

