
Efficient Influence Minimization via Node Blocking
Jinghao Wang

Zhejiang Gongshang University

University of Technology Sydney

jinghaow.au@gmail.com

Yanping Wu

University of Technology Sydney

yanping.wu@student.uts.edu.au

Xiaoyang Wang

The University of New South Wales

xiaoyang.wang1@unsw.edu.au

Ying Zhang

Zhejiang Gongshang University

ying.zhang@zjgsu.edu.cn

Lu Qin

University of Technology Sydney

lu.qin@uts.edu.au

Wenjie Zhang

The University of New South Wales

wenjie.zhang@unsw.edu.au

Xuemin Lin

Shanghai Jiaotong University

xuemin.lin@sjtu.edu.cn

ABSTRACT
Given a graph𝐺 , a budget 𝑘 and a misinformation seed set 𝑆 , Influ-
ence Minimization (IMIN) via node blocking aims to find a set of

𝑘 nodes to be blocked such that the expected spread of 𝑆 is mini-

mized. This problem finds important applications in suppressing

the spread of misinformation and has been extensively studied in

the literature. However, existing solutions for IMIN still incur sig-

nificant computation overhead, especially when 𝑘 becomes large.

In addition, there is still no approximation solution with non-trivial

theoretical guarantee for IMIN via node blocking prior to our work.

In this paper, we conduct the first attempt to propose algorithms

that yield data-dependent approximation guarantees. Based on the

Sandwich framework, we first develop submodular and monotonic

lower and upper bounds for our non-submodular objective func-

tion and prove the computation of proposed bounds is #P-hard.

In addition, two advanced sampling methods are proposed to es-

timate the value of bounding functions. Moreover, we develop

two novel martingale-based concentration bounds to reduce the

sample complexity and design two non-trivial algorithms that pro-

vide (1− 1/𝑒 −𝜖)-approximate solutions to our bounding functions.

Comprehensive experiments on 9 real-world datasets are conducted

to validate the efficiency and effectiveness of the proposed tech-

niques. Compared with the state-of-the-art methods, our solutions

can achieve up to two orders of magnitude speedup and provide

theoretical guarantees for the quality of returned results.
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1 INTRODUCTION
With the rapid development of the Internet, various online social

networks (OSNs) have thrived, immensely satisfying and facilitat-

ing the need for individuals to share their perspectives and acquire

information. Leveraging the established connections between in-

dividuals, information and opinions can spread through word-of-

mouth effects across OSNs [42–44]. However, immense user bases

and rapid sharing abilities also make OSNs effective channels for

spreading misinformation, which leads to significant harm, such

as economic damages and societal unrest [3, 28]. Therefore, it is

necessary to implement a series of strategies to minimize the spread

of misinformation. In the literature, strategies for addressing this

problem can be categorized into three types: 𝑖) positive information

spreading [6, 39], which selects a set of nodes to trigger the spread of

positive information to fight against the spread of misinformation;

𝑖𝑖) edge blocking [20, 22], which removes a set of edges to decrease

the spread of misinformation; 𝑖𝑖𝑖) node blocking [41, 46], which

removes a set of critical nodes to limit the spread of misinformation.

In this paper, we consider the problem of Influence Minimization
(IMIN) via node blocking [41, 46]. Specifically, given a graph 𝐺 , a

seed set 𝑆 of misinformation and a budget 𝑘 , IMIN aims to find

a set of 𝑘 nodes to be removed such that the expected spread of

𝑆 is minimized. These removed nodes are called blockers. Note

that, removing a node causes some nodes previously reachable by

misinformation to become unreachable. We call that these nodes

are protected by the blocker. In such a condition, IMIN equals to

identify a blocker set with at most 𝑘 nodes so that the expected

number of protected nodes is maximized.

The IMIN problem is NP-hard and APX-hard unless P=NP [46].

Wang et al. [41] first study IMIN via node blocking under the IC

model. They use Monte-Carlo simulations to estimate the expected

decreased spread of misinformation seed set and provide a greedy

algorithm to select blockers, i.e., iteratively select the node that

leads to the largest decreased spread. However, the proposed solu-

tion is prohibitively expensive on large social networks due to the

inefficiency of Monte-Carlo simulations. Recently, Xie et al. [46]

propose a novel approach based on the dominator tree (formal

definition can be found in Section 2.2) that can effectively and effi-

ciently estimate the decreased spread of misinformation seed set.

They also adopt the greedy algorithm, but the difference is that they
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use the newly proposed estimation method. They observe that the

greedy method may miss selecting some critical nodes. Therefore,

they propose a more effective modified greedy algorithm, which

prioritizes the outgoing neighbors of misinformation seed nodes.

However, the solutions in [46] require re-estimating the value

of decreased spread of misinformation seed set after selecting a

blocker in each iteration, which results in prohibitive computation

overhead, especially when the budget becomes large. Besides, since

the objective function of IMIN is non-submodular [46], directly

adopting the greedy method cannot provide (1 − 1/𝑒)-approximate

solutions [29]. Moreover, based on curvature and submodularity

ratio [4], we show that the result returned by greedy does not

provide any non-trivial guarantees. Therefore, it remains an open

problem to devise efficient algorithms for IMIN with non-trivial

theoretical guarantees.

In this paper, we address this problem based on the Sandwich

approximation strategy [27, 45], which is a widely used framework

for non-submodular maximization problems. The general idea of

Sandwich framework is to first develop monotone nondecreasing

and submodular lower and upper bounds for the objective function

studied, and then produce solutions with approximation guarantees

(breads of the Sandwich) for bounding functions maximization (i.e.,

maximize the lower and upper bounding functions). The actual

effectiveness of the Sandwich-based approach relies on how close

the proposed bounds are to the objective function. In other words,

a loose submodular bound w.r.t. the objective function can also be

applied to solve our problem, but it cannot produce satisfactory

results in terms of effectiveness, and would only yield trivial data-

dependent approximation factor. For example, a constant function

can serve as a trivial submodular upper bound (e.g., an upper bound

that equals the number of nodes in the graph). However, it is ap-

parent that this bounding function may adversely affect our results

since the solution to the constant function can be arbitrary. Thus,

to provide high-quality results, tight bounds with submodularity

property for our objective function are required.

Following the Sandwich framework, we first propose appropri-

ate lower and upper bounds for our functions, and prove that the

computation of them is #P-hard. Additionally, the widely used tech-

nique for influence estimation, Reverse Influence Sampling (RIS) [5],

cannot directly extend to the proposed bounding functions estima-

tion. This is because, different from the classic RIS, which treats

all the nodes equally and samples the node uniformly, we need

to focus on the nodes who are prone to be affected by the misin-

formation, since only those nodes can contribute to the bounding

functions. That is, if we estimate the bounding functions using a

similar manner of RIS, we need to sample the node based on its

probability of being activated by the misinformation. However, this

probability is #P-hard to compute [8]. To overcome this issue, we

propose two novel unbiased estimators based on two new proposed

sample sets, i.e., CP sequence and LRR set, to estimate the value of

lower and upper bounding functions, respectively.

For maximizing the bounding functions with theoretical guaran-

tees, a straightforward approach is to employ OPIM-C [33], which

is RIS-based and the state-of-the-art method for Influence Maximiza-
tion (IM). However, given that RIS cannot be applied to estimate

the bounding functions, we cannot inherit the sample complex-

ity from OPIM-C. To tackle this challenge, we first design two

novel martingale-based concentration bounds tailored to the new

proposed unbiased estimators. By utilizing these, the sample com-

plexity required to make an unbiased estimate of the bounding

functions is significantly reduced, in comparison to the previous

concentration bounds used in OPIM-C. Moreover, to avoid the new

derived sample complexity depending on the expected spread of

the misinformation E[𝐼𝐺 (𝑆)], whose computation is #P-hard, we

resort to the generalized stopping rule algorithm in [47], to obtain

the value of estimated E[𝐼𝐺 (𝑆)]. Based on the above analysis, we

design two non-trivial algorithms, LSBM and GSBM, to maximize

lower and upper bounding functions with a provable approxima-

tion guarantee of (1 − 1/𝑒 − 𝜖) with high probability, respectively.

Finally, we propose a lightweight heuristic LHGA for IMIN, to serve

as the filling of the Sandwich. By instantiating the Sandwich with

LSBM, GSBM and LHGA, our proposed solution SandIMIN can

offer a strong theoretical guarantee for the IMIN problem (details

can be found in Section 6.4). Experiments over 9 real-world graphs

are conducted to verify the efficiency and effectiveness of proposed

techniques compared with the state-of-the-art solutions [46]. The

main contributions of the paper are summarized as follows.

• In this paper, based on the Sandwich search framework, we pro-

pose a novel solution SandIMIN for the influence minimization

problem via node blocking. To the best of our knowledge, we are

the first to propose algorithms that yield approximation guar-

antees for the problem. Submodular and monotonic lower and

upper bounds are designed for the objective function, and we

prove the computation of bounding functions is #P-hard.

• To estimate the bounds proposed, two novel sample sets and the

corresponding sampling techniques are proposed. In addition,

new martingale-based concentration bounds are developed to

reduce the sample complexity and improve the overall perfor-

mance. Furthermore, we propose two non-trivial algorithms to

maximize lower and upper bounding functions, which provide

(1 − 1/𝑒 − 𝜖) approximation guarantee with high probability.

• We conduct extensive experiments on 9 real-world graphs to

verify the efficiency and effectiveness of proposed techniques.

Comparedwith the state-of-the-art algorithms [46], our solutions

show better scalability in terms of dataset size and parameters,

and can achieve up to two orders of magnitude speedup.

Note that, due to the limited space, all the proofs are omitted and
can be found in the full version [40].

2 PRELIMINARIES
In this section, we first formally define the Influence Minimiza-
tion (IMIN) problem, and then we present an overview of existing

solutions for the IMIN problem.

2.1 Problem Definition
We consider a directed graph 𝐺 = (𝑉 , 𝐸) with a node set 𝑉 and

a directed edge set 𝐸, where |𝑉 | = 𝑛 and |𝐸 | = 𝑚. Given an edge

⟨𝑢, 𝑣⟩ ∈ 𝐸, we refer to 𝑢 as an incoming neighbor of 𝑣 and 𝑣 as an

outgoing neighbor of 𝑢. Each edge ⟨𝑢, 𝑣⟩ is associated with a propa-

gation probability 𝑝 (𝑢, 𝑣) ∈ [0, 1], representing the probability that

𝑢 influences 𝑣 . Table 1 summarizes the notations frequently used.

Diffusion model. In this paper, we focus on the independent cas-
cade (IC) model, which is widely used to simulate the information
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Table 1: Frequently used notations

Notation Description

𝐺 = (𝑉 , 𝐸 ) a social network with node set𝑉 and edge set 𝐸

𝑆, 𝐵 the seed set of misinformation and blocker set

E[𝐼𝐺 (𝑆 ) ] the expected spread of seed set 𝑆

𝐺 [𝑉 ′ ] the subgraph in𝐺 induced by node set𝑉 ′

𝜙,Ω a realization and the set of all possible realizations

𝐷𝑆 (𝐵)
the expected decreased spread of seed set 𝑆 after block-

ing nodes in 𝐵

𝐷𝐿
𝑆
( ·), 𝐷𝑈

𝑆
( ·) the submodular and monotonic lower bound and upper

bound of 𝐷𝑆 ( ·)

𝐵𝑜
𝐿
, 𝐵𝑜

𝑈
, 𝐵𝑜 the optimal solution to the lower bounding function,

upper bounding function and objective function

𝐶𝑠 ,C𝑠 a CP sequence and the set of CP sequences

𝐿 (𝑣),L a LRR set of 𝑣 and the set of LRR sets

diffusion in the literature [5, 19, 33, 43, 44]. Given a seed set 𝑆 ⊆ 𝑉 ,

the diffusion process of 𝑆 under the IC model unfolds in discrete

timestamps, whose details are shown in the following.

• At timestamp 0, the nodes in the seed set 𝑆 are activated, while

all other nodes are inactive. Each activated node will remain

active in the subsequent timestamps.

• If a node 𝑢 is activated at timestamp 𝑡 , for each of its inactive

outgoing neighbor 𝑣 , 𝑢 has a single chance to activate 𝑣 with

probability 𝑝 (𝑢, 𝑣) at timestamp 𝑡 + 1.
• The propagation process stops when no more nodes can be acti-

vated in the graph 𝐺 .

Given a seed set 𝑆 ⊆ 𝑉 , let 𝐼𝐺 (𝑆) be the number of active nodes in

𝐺 when the propagation process stops. Alternatively, the diffusion

process can also be characterized as the live edge procedure [19].
Specifically, by removing each edge ⟨𝑢, 𝑣⟩ ∈ 𝐸 with 1−𝑝 (𝑢, 𝑣) prob-
ability, the remaining graph is referred to as a realization, denoted
as 𝜙 . Let 𝐼𝜙 (𝑆) denote the number of nodes that are reachable from

𝑆 in 𝜙 . For any seed set 𝑆 , its expected spread E[𝐼𝐺 (𝑆)] can be

defined as follows.

E[𝐼𝐺 (𝑆)] = EΦ∼Ω [𝐼Φ (𝑆)] =
∑︂
𝜙∈Ω

𝐼𝜙 (𝑆) · 𝑝 (𝜙), (1)

where Ω is the set of all possible realizations of𝐺 , Φ ∼ Ω denotes

that Φ is a random realization sampled from Ω and 𝑝 (𝜙) is the
probability for realization 𝜙 to occur.

In this paper, we study the problem of minimizing the spread of

misinformation. One strategy for influence minimization problem

is to block critical nodes on social networks [41, 46]. When a node

𝑢 is blocked, we set the probability of all edges pointing to 𝑢 as

0 and refer to 𝑢 as a blocker. We can obtain that the activation

probability of a blocker is 0. Additionally, we assume that a blocker

cannot be a seed node for propagating misinformation. Note that,

after blocking a node 𝑣 , the status of some nodes changes from

active to inactive. We call these nodes are protected by 𝑣 . Given a

seed set 𝑆 ⊆ 𝑉 and a blocker set 𝐵 ⊆ (𝑉 \𝑆), we denote 𝐷𝑆 (𝐵) =
E[𝐼𝐺 (𝑆)] −E[𝐼𝐺 [𝑉 \𝐵 ] (𝑆)] as the expected decreased spread of seed
set 𝑆 after blocking nodes in 𝐵, where𝐺 [𝑉 \𝐵] denotes the subgraph
in 𝐺 induced by node set 𝑉 \𝐵.
Problem statement. Given a directed social network𝐺 = (𝑉 , 𝐸), a
seed set 𝑆 for propagating misinformation and a budget 𝑘 , Influence
Minimization (IMIN) via node blocking is to find a blocker set 𝐵∗

with at most 𝑘 nodes such that the influence (i.e., expected spread)

of seed set 𝑆 is minimized after blocking nodes in 𝐵∗. In other words,
IMIN aims to identify a blocker set 𝐵∗ with at most 𝑘 nodes such

that the expected number of protected nodes is maximized, i.e.,

𝐵∗ = argmax

𝐵⊆(𝑉 \𝑆 ), |𝐵 | ≤𝑘
𝐷𝑆 (𝐵).

As shown in [46], IMIN is proved to be NP-hard and APX-hard

unless P=NP. In addition, given a seed set 𝑆 , 𝐷𝑆 (·) is monotonic,

but not submodular. Due to the non-submodularity property of

the IMIN objective, the direct use of the greedy framework cannot

return a result with an approximation ratio of (1 − 1/𝑒) [29].

2.2 Existing Solutions Revisited
Here we first abstract the greedy framework from recent studies

[41, 46], and then we introduce the state-of-the-art approaches for

addressing the IMIN problem and show their limitations.

Greedy framework for IMIN. Suppose 𝐷𝑆 (𝑢 |𝐵) = 𝐷𝑆 (𝐵∪ {𝑢}) −
𝐷𝑆 (𝐵) as the marginal gain of adding 𝑢 to the set 𝐵. In a nutshell,

the greedy framework [41] starts from an empty blocker set 𝐵 = ∅.
The subsequent part of the algorithm consists of 𝑘 iterations. At

each iteration, it iteratively selects the node 𝑣 from𝑉 \𝑆 that leads to
the largest 𝐷𝑆 (𝑣 |𝐵) and adds it into 𝐵. After selecting one blocker,

the probability of all edges pointing to it is set as 0.

Due to 𝐷𝑆 (𝐵) = E[𝐼𝐺 (𝑆)] − E[𝐼𝐺 [𝑉 \𝐵 ] (𝑆)], one feasible way

for calculating 𝐷𝑆 (𝐵) is to compute E[𝐼𝐺 (𝑆)]. However, the com-

putation of E[𝐼𝐺 (𝑆)] is proved as #P-hard [8], which means that

the computation of 𝐷𝑆 (𝐵) is also #P-hard. In [41], Wang et al. use

Monte-Carlo simulations to estimate the influence spread E[𝐼𝐺 (𝑆)]
and adopt the greedy framework. It can solve the IMIN problem

effectively but due to the inefficiency of Monte-Carlo simulations,

it incurs significant computation overhead.

The state-of-the-art approach. Compared to the Monte-Carlo

based estimation method under the greedy framework, the state-of-

the-art approach [46] optimizes the estimation for 𝐷𝑆 (·). Instead
of estimating the expected spread (i.e., E[𝐼𝐺 (𝑆)]), Xie et al. [46]

directly estimate the expected decreased spread (i.e., 𝐷𝑆 (·)) based
on the dominator tree (DT) [2, 26]. To explain how this estimation

algorithm works, we first introduce three concepts as follows.

Definition 2.1 (Dominator). Given a realization 𝜙 and a source 𝑠 ,

a node 𝑢 is called a dominator of a node 𝑣 if and only if all paths

from 𝑠 to 𝑣 pass through 𝑢.

Definition 2.2 (Immediate Dominator). Given a realization 𝜙 and

a source 𝑠 , a node 𝑢 is said to be an immediate dominator of a node

𝑣 , denoted as 𝑖𝑑𝑜𝑚(𝑣) = 𝑢, if and only if 𝑢 dominates 𝑣 and every

other dominator of 𝑣 dominates 𝑢.

Definition 2.3 (Dominator Tree (DT)). Given a realization 𝜙 and

a source 𝑠 , the dominator tree of 𝜙 is induced by the edge set

{⟨𝑖𝑑𝑜𝑚(𝑢), 𝑢⟩ : 𝑢 ∈ 𝑉 \{𝑠}} with root 𝑠 .

According to the concept of DT, each DT has one root. Xie et

al. [46] first propose to create a unified seed node 𝑠 to replace the

given seed set 𝑆 under the IC model. For each node 𝑢 ∈ (𝑉 \𝑆), if
there are ℎ distinct seed nodes pointing to node 𝑢, and each edge

has a probability 𝑝𝑖 (1 ≤ 𝑖 ≤ ℎ), they will remove all edges from

the seed nodes to node 𝑢, and add an edge from node 𝑠 to node 𝑢
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Figure 1: Example of estimating 𝐷𝑠 (·)

with the probability (1 −∏︁ℎ
𝑖=1 (1 − 𝑝𝑖 )). Correspondingly, 𝐷𝑆 (·) is

replaced by 𝐷𝑠 (·). In addition, Xie et al. [46] prove that for each

node 𝑢 ∈ (𝑉 \𝑆), the expected number of protected nodes by 𝑢 (i.e.,

𝐷𝑠 (𝑢)) equals the expected size of the subtree rooted at 𝑢 in the

DT. Based on these, the estimation algorithm of [46] runs in the

following steps, where �̂�𝑠 (·) is the estimated value of 𝐷𝑠 (·).
• Generate a certain number of random realizations G from 𝐺 .

• For each generated realization 𝜙 ∈ G, apply Lengauer-Tarjan

algorithm [23] to construct the DT of 𝜙 , which roots at 𝑠 . For

each node 𝑣 ∈ (𝑉 \𝑆), measure the size of subtree with the root 𝑣

in DT, which is denoted as 𝑐𝜙 (𝑣).
• For each node 𝑣 ∈ (𝑉 \𝑆), the estimated value of 𝐷𝑠 (𝑣) is the

average value of 𝑐𝜙 (𝑣) in all realizations that are generated, i.e.,

�̂�𝑠 (𝑣) = (
∑︁
𝜙∈G 𝑐𝜙 (𝑣))/|G|.

Example 2.1. Here we illustrate an example of the above esti-

mation procedure with one realization. Figure 1(a) shows a social

network𝐺 = (𝑉 , 𝐸), where 𝑣0 is the misinformation seed node. The

number associated with each edge is its corresponding propagation

probability. Figure 1(b) shows a realization 𝜙 obtained from𝐺 . In

Figure 1(c), a DT rooted at 𝑠 of 𝜙 is constructed by Lengauer-Tarjan

algorithm [23]. Then, we can get the estimated value of 𝐷𝑠 (𝑣) for
each node 𝑣 ∈ (𝑉 \{𝑣0}) by measuring the size of subtree with root

𝑣 in DT, i.e., �̂�𝑠 (𝑣1) = �̂�𝑠 (𝑣2) = �̂�𝑠 (𝑣5) = �̂�𝑠 (𝑣6) = 1, �̂�𝑠 (𝑣3) = 3,

and �̂�𝑠 (𝑣4) = 0 since 𝑣4 cannot be activated by 𝑣0 in 𝜙 .

By utilizing the greedy framework but with one difference, Xie

et al. [46] propose AdvancedGreedy (AG). That is, they use the

above estimation method to obtain the estimated value of 𝐷𝑠 (·|𝐵).
However, some critical nodes may be missed by AG, e.g., some out-

going neighbors of the seed nodes. Reconsider Figure 1(a), suppose

𝑘 = 2. 𝑣0 has two outgoing neighbors and if we directly select these

two nodes as blockers, 𝑣0 cannot activate any node. However, if

we block the blockers returned by AG (i.e., 𝑣3 and 𝑣1), 𝑣2 cannot

be protected. To address this issue, Xie et al. [46] further propose

GreedyReplace (GR), which consists of two stages. In the first stage,

the outgoing neighbors of seed nodes are stored in the candidate set.

They iteratively select the node 𝑣 from the candidate set with the

largest �̂�𝑠 (𝑣 |𝐵) and add it into 𝐵, until |𝐵 | = min{𝑑𝑜𝑢𝑡𝑠 , 𝑘}, where
𝑑𝑜𝑢𝑡𝑠 denotes the number of nodes in the candidate set. In the sec-

ond stage, they consider processing the blockers in 𝐵 according

to the reverse order of their insertion order. For each blocker in

𝐵, they first remove it from 𝐵, called the replaced node. Then they

select the node 𝑣 from 𝑉 \𝑆 with the largest �̂�𝑠 (𝑣 |𝐵) and add it

into 𝐵, called the current best blocker. If the replaced node is the

current best blocker, they return 𝐵 directly. Otherwise, continue

the replacement process. Compared with AG, GR can achieve a

better result quality. However, in most cases, AG is more efficient

since GR requires two stages to select nodes, and often requires

multiple rounds of replacement process in the second stage before

it terminates, resulting in additional time cost for GR.

Limitations. Despite the efficiency of dominator tree based es-

timation method, AG and GR still incur significant computation

overhead in practice. This is because when AG/GR selects a node as

a blocker, it needs to remove that node from the graph. Therefore,

AG/GR cannot reuse the realizations generated in the last round.

Correspondingly, Xie et al. need to regenerate realizations and con-

struct the corresponding DTs, which incurs significant time cost for

large values of 𝑘 . Moreover, there is no theoretical analysis provided

for AG and GR, which are both based on the greedy framework.

Based on the curvature and submodularity ratio [4], in this paper,

we analyze the approximation guarantee for the greedy strategy

on our non-submodular objective. The submodularity ratio serves

as a metric to assess how closely the objective approximates being

submodular. Formally, for all 𝐴, 𝐵 ⊂ 𝑉 , the submodularity ratio of

𝐷𝑠 (·) is the largest scalar𝜓 such that,∑︁
𝜔∈𝐴\𝐵 [𝐷𝑠 (𝐵 ∪ {𝜔}) − 𝐷𝑠 (𝐵)] ≥ 𝜓 [𝐷𝑠 (𝐵 ∪𝐴) − 𝐷𝑠 (𝐵)] . (2)

Considering an example with the graph 𝐺 = (𝑉 , 𝐸), where 𝑉 =

{𝑣0, 𝑣1, . . . , 𝑣𝑛−1} and 𝐸 = {⟨𝑣0, 𝑣1⟩, ⟨𝑣0, 𝑣2⟩, ⟨𝑣1, 𝑣3⟩, ⟨𝑣2, 𝑣3⟩, ⟨𝑣3, 𝑣4⟩
, ⟨𝑣3, 𝑣5⟩, . . . , ⟨𝑣3, 𝑣𝑛−1⟩}. The probability on each edge is set to 1 and
𝑣0 is the misinformation seed node. When 𝐵 = ∅ and 𝐴 = {𝑣1, 𝑣2},
the left side of Eq. (2) is equal to 2, and the right side of Eq. (2) is

equal to 𝑛 − 1, i.e., 2 ≥ 𝜓 · (𝑛 − 1). As 𝑛 gradually becomes larger,

the submodularity ratio 𝜓 approaches 0 infinitely, consequently

using the greedy strategy yields approximation guarantee that also

approaches 0 infinitely [4]. Thus, the result returned by the state-

of-the-art algorithms for IMIN does not provide any non-trivial

guarantees. To fill these gaps, in this paper, we design efficient

approximation algorithms with theoretical guarantees for IMIN.

3 SANDWICH APPROXIMATION STRATEGY
To solve the IMIN problem, we propose efficient approximation

algorithms based on the Sandwich framework [27, 45], which is

widely used for non-submodular maximization. In Section 3.1, we

first give the general framework of our algorithm. Then we propose

the lower and upper bounds in Section 3.2 and 3.3, respectively.

3.1 Overview of SandIMIN
Generally, our SandIMIN algorithm first finds the 𝛼1-approximate

solution and 𝛼2-approximate solution (breads of Sandwich) to the

lower bound and the upper bound of the objective function, respec-

tively. Then, it finds a solution (filling of Sandwich) to the original

problemwith a heuristic method. Finally, it returns the best solution

among these three results. The pseudocode of the above process is

shown in Algorithm 1 and has the following result,

𝐷𝑠 (𝐵) ≥ max

{︄
𝐷𝐿
𝑠 (𝐵𝑜𝐿)

𝐷𝑠 (𝐵𝑜 )
𝛼1,

𝐷𝑠 (𝐵𝑈 )
𝐷𝑈
𝑠 (𝐵𝑈 )

𝛼2

}︄
1 − 𝛾
1 + 𝛾 𝐷𝑠 (𝐵𝑜 ), (3)

where𝐷𝐿
𝑠 ,𝐷

𝑈
𝑠 are the non-negative, monotonic and submodular set

functions defined on 𝑉 , i.e., 𝐷𝐿
𝑠 : 2

𝑉 → R≥0 and 𝐷𝑈
𝑠 : 2

𝑉 → R≥0,
such that ∀𝐵 ⊆ (𝑉 \𝑆), 𝐷𝐿

𝑠 (𝐵) ≤ 𝐷𝑠 (𝐵) ≤ 𝐷𝑈
𝑠 (𝐵). 𝐵𝑜𝐿 , 𝐵

𝑜
𝑈

and 𝐵𝑜
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Algorithm 1: SandIMIN

Input : The graph𝐺 = (𝑉 , 𝐸 ) , the seed set 𝑆 , the unified seed node 𝑠 , the

budget 𝑘 and the error parameters 𝛼1 , 𝛼2 , 𝛿 , 𝛾 .

Output : The blocker set 𝐵.

// LSBM Algorithm in Section 5.1

𝐵𝐿 ← the 𝛼1-approximate solution for lower bounding function maximization;1

// GSBM Algorithm in Section 5.2

𝐵𝑈 ← the 𝛼2-approximate solution for upper bounding function maximization;2

// LHGA Algorithm in Section 5.3

𝐵𝑅 ← the heuristic solution for original problem;3

𝐼𝐺 [𝑉 \·] (𝑠 ) ← the (𝛾, 𝛿 )-estimate of E[𝐼𝐺 [𝑉 \·] (𝑠 ) ];4

𝐵 ← argmin𝐵∗∈{𝐵𝐿,𝐵𝑈 ,𝐵𝑅 } 𝐼𝐺 [𝑉 \𝐵∗ ] (𝑠 ) ;5
return 𝐵;6

are the optimal solutions to maximize the lower bounding function,

upper bounding function and objective function, respectively. In

addition, we call �̂� is the (𝛾, 𝛿)-estimate of 𝜇 if �̂� satisfies:

Pr[(1 − 𝛾)𝜇 ≤ �̂� ≤ (1 + 𝛾)𝜇] ≥ 1 − 𝛿. (4)

As observed, the key to SandIMIN is to find the lower and up-

per bounds of the objective function, which are both monotonic

and submodular. Before presenting our bounds, we first introduce

the technique of how to transfer multiple seeds to one seed for

presentation simplicity. We create a unified seed node 𝑠 and then

introduce the edges with the propagation probability of 1 from 𝑠 to

every seed node 𝑣 ∈ 𝑆 . Note that, 𝑠 is the virtual node and it does

not belong to 𝑉 . Under such a setting, we can guarantee that 𝑠 and

𝑆 have the same spread under the IC model and there is no need to

pre-compute 1−∏︁ℎ
𝑖=1 (1− 𝑝𝑖 ) for each node 𝑢 ∈ (𝑉 \𝑆) as stated in

Section 2.2. In the following, we use 𝐷𝑠 (·) to denote 𝐷𝑆 (·).
Roadmap of SandIMIN. In Section 3.2 and Section 3.3, we pro-

pose submodular and monotonic lower and upper bounds of the

objective function, respectively. We then design sampling methods

to estimate the value of lower and upper bounds in Section 4.1

and Section 4.2, respectively. In Section 5.1 and 5.2, we devise two

approximation algorithms that provide (1 − 1/𝑒 − 𝜖)-approximate

solutions for lower and upper bounding functions maximization,

respectively (Lines 1-2 of Algorithm 1). In Section 5.3, we devise a

heuristic method for IMIN (Line 3 of Algorithm 1) and show that

SandIMIN yields a data-dependent approximation guarantee.

3.2 Lower Bound
A function 𝑓 : 2

𝑉 → R≥0 is submodular if for any 𝑆 ⊆ 𝑇 ⊆ 𝑉 and

any 𝑥 ∈ (𝑉 \𝑇 ), 𝑓 (·) satisfies 𝑓 (𝑆∪{𝑥})− 𝑓 (𝑆) ≥ 𝑓 (𝑇 ∪{𝑥})− 𝑓 (𝑇 ).
The reason for the non-submodularity of function 𝐷𝑠 (·) is due to
the combination effect of nodes in the blocker set. That is, to prevent

a node from being activated by 𝑠 , we need to simultaneously block

two or more nodes. For example, reconsidering Figure 1, to protect

𝑣3, we need to simultaneously block 𝑣1 and 𝑣2. Motivated by this,

we disregard the combination effect to obtain a lower bound that

is submodular. Specifically, we only consider nodes that can be

protected by blocking only one node in 𝐺 . Accordingly, given a

blocker set 𝐵, the lower bound of 𝐷𝑠 (𝐵) can be defined as:

𝐷𝐿
𝑠 (𝐵) = EΦ∼Ω [| ∪𝑣∈𝐵 𝑁Φ (𝑣) |] =

∑︂
𝜙∈Ω

𝑝 (𝜙) · | ∪𝑣∈𝐵 𝑁𝜙 (𝑣) |, (5)

5

2
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3

12

6 7

4

13

8 9

1

s
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Figure 2: Example of the bounds

where 𝑁𝜙 (𝑣) denotes the set of nodes whose status changes from
active to inactive under 𝜙 after 𝑣 is blocked.

Lemma 3.1. Given a seed set 𝑆 and its unified seed node 𝑠 , 𝐷𝐿
𝑠 (·)

is monotone nondecreasing and submodular under the IC model.

Due to the space limitation, the detailed proof for Lemma 3.1

and other omitted proofs can be found in the full version [40].

In addition, since 𝐷𝐿
𝑠 (∅) = E[𝐼𝐺 (𝑠)] and computing E[𝐼𝐺 (𝑠)] is

#P-hard [8], the computation of 𝐷𝐿
𝑠 (·) is #P-hard.

3.3 Upper Bound
For each node 𝑣 activated by 𝑠 , 𝑣 can be protected if all the paths

from 𝑠 to 𝑣 are blocked. Intuitively, we can obtain the upper bound

of the objective function by relaxing the condition for nodes to be

protected. We call that 𝑣 can be alternative-protected if there exists

one path from 𝑠 to 𝑣 is blocked. Given a realization𝜙 = (𝑉 (𝜙), 𝐸 (𝜙)),
let 𝜙𝑠 = (𝑉 (𝜙𝑠 ), 𝐸 (𝜙𝑠 )) be the graph of misinformation receivers

under 𝜙 . Specifically, 𝑉 (𝜙𝑠 ) = 𝑅𝜙 (𝑠)\𝑆 , where 𝑅𝜙 (𝑠) is the set of
nodes reachable from 𝑠 in 𝜙 and 𝐸 (𝜙𝑠 ) = {⟨𝑢, 𝑣⟩ ∈ 𝐸 (𝜙) : 𝑢 ∈
𝑉 (𝜙𝑠 ), 𝑣 ∈ 𝑉 (𝜙𝑠 )}. In such a setting, for any node 𝑣 ∈ 𝑉 (𝜙𝑠 ), 𝑣
can alternative-protect those nodes that are reachable from 𝑣 in 𝜙𝑠 .

Given a blocker set 𝐵, the upper bound of 𝐷𝑠 (𝐵) can be defined as:

𝐷𝑈
𝑠 (𝐵) = 𝐸Φ∼Ω [|𝑀𝜙 (𝐵) |] =

∑︂
𝜙∈Ω

𝑝 (𝜙) · |𝑀𝜙 (𝐵) |, (6)

where 𝑀𝜙 (𝐵) is the set of nodes reachable from 𝐵 in 𝜙𝑠 . Upper

bounding function maximization is essentially the influence maxi-

mization problem [19], thus it also possesses monotonicity, submod-

ularity and NP-hardness, and the computation of 𝐷𝑈
𝑆
(·) is #P-hard.

Example 3.1. Here we first illustrate how to transfer multiple

seeds to one seed. As shown in Figure 2, the misinformation seed

set 𝑆 = {𝑣1, 𝑣5, 𝑣10}. We create a unified seed node 𝑠 and three edges,

⟨𝑠, 𝑣1⟩, ⟨𝑠, 𝑣5⟩, ⟨𝑠, 𝑣10⟩, with the propagation probability of 1.

Then we illustrate an example of our proposed bounds. Sup-

pose the blocker set is 𝐵 = {𝑣3, 𝑣7, 𝑣12}. For the objective function
of IMIN, 𝐷𝑠 (𝐵) = |{𝑣3, 𝑣4, 𝑣7, 𝑣8, 𝑣9, 𝑣12, 𝑣13}| = 7. For the lower

bound, 𝐷𝐿
𝑠 (𝐵) = |{𝑣3, 𝑣4, 𝑣7, 𝑣9, 𝑣12, 𝑣13}| = 6. For the upper bound,

𝐷𝑈
𝑠 (𝐵) = |{𝑣3, 𝑣4, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣12, 𝑣13}| = 8.

4 BOUNDING FUNCTIONS ESTIMATION
To achieve Lines 1-2 in Algorithm 1, we first need to compute

𝐷𝐿
𝑠 (·) and 𝐷𝑈

𝑠 (·). However, the computation of them is #P-hard.

Additionally, the state-of-the-art technique for influence estimation

(i.e., RIS [5]) cannot be applied to estimate our bounding functions.

Specifically, we only need to consider the nodes that can be reached

by misinformation, since only these nodes need to be protected

and can contribute to the bounding functions. Besides, the number

of these nodes is unknown due to the randomness of propagation.
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To address this issue, in Section 4.1 and Section 4.2, we devise two

sampling methods named Local Sampling and Global Sampling to

estimate the lower bound and upper bound, respectively.

4.1 Lower Bounding Function Estimation
In the following, we first clarify some concepts mentioned in the

sampling technique.

Definition 4.1 (Common Path (CP) Set & Common Path (CP) Se-
quence). Given a graph 𝐺 = (𝑉 , 𝐸), a seed set 𝑆 ⊆ 𝑉 , a unified

source node 𝑠 and a realization 𝜙 obtained from 𝐺 , for any node

𝑣 ∈ (𝑉 \𝑆), a Common Path (CP) set of 𝑣 , denoted by 𝐶𝜙 (𝑠, 𝑣), is
the set of common nodes on all paths from 𝑠 to 𝑣 in 𝜙 (exclude

𝑆), i.e., 𝐶𝜙 (𝑠, 𝑣) = {𝑢 ∈ (𝑉 \𝑆) : 𝑢 ∈
⋂︁𝑗

𝑖=1
𝑃𝑖 (𝑠, 𝑣)}, where 𝑃𝑖 (𝑠, 𝑣)

(1 ≤ 𝑖 ≤ 𝑗 ) denotes the set of nodes on a path from 𝑠 to 𝑣 and 𝑗

is the number of paths from 𝑠 to 𝑣 . Let 𝑅𝜙 (𝑠) be the set of nodes
reachable from 𝑠 in 𝜙 . A Common Path (CP) sequence in 𝜙 , denoted

by 𝐶𝑠
𝜙
, is the set of CP sets of the nodes in 𝑅𝜙 (𝑠) (exclude 𝑆), i.e.,

𝐶𝑠
𝜙
= {𝐶𝜙 (𝑠, 𝑣) : 𝑣 ∈ (𝑅𝜙 (𝑠)\𝑆)}.

Example 4.1. Reconsider the social network𝐺 in Figure 1. Given

the realization 𝜙 of 𝐺 in Figure 1(b) and the misinformation seed

node 𝑣0, we first illustrate the CP set of node 𝑣6 as follows. We can

find that there are four paths between 𝑣0 and 𝑣6, i.e., 𝑃1 (𝑣0, 𝑣6) =
{𝑣1, 𝑣3, 𝑣6}, 𝑃2 (𝑣0, 𝑣6) = {𝑣2, 𝑣3, 𝑣6}, 𝑃3 (𝑣0, 𝑣6) = {𝑣1, 𝑣3, 𝑣5, 𝑣6} and
𝑃4 (𝑣0, 𝑣6) = {𝑣2, 𝑣3, 𝑣5, 𝑣6}. Note that, 𝑃𝑖 (𝑣0, 𝑣6) (1 ≤ 𝑖 ≤ 4) does
not include 𝑣0. The CP set of 𝑣6 in 𝜙 is the common nodes on four

paths, i.e., 𝐶𝜙 (𝑣0, 𝑣6) = {𝑣3, 𝑣6}. Due to 𝑅𝜙 (𝑣0) = {𝑣1, 𝑣2, 𝑣3, 𝑣5, 𝑣6},
a CP sequence in 𝜙 is the set of CP sets of nodes in 𝑅𝜙 (𝑣0).

In this paper, 𝜙 can be dropped when it is clear from the
context. Given a blocker set 𝐵 ⊆ (𝑉 \𝑆) and a set of CP sequences

C𝑠 , we use𝐶𝑜𝑣C𝑠 (𝐵) denote the coverage of𝐵 inC𝑠 , i.e.,𝐶𝑜𝑣C𝑠 (𝐵) =∑︁
𝐶𝑠 ∈C𝑠

∑︁
𝐶 (𝑠,𝑣) ∈𝐶𝑠 min{|𝐵 ∩ 𝐶 (𝑠, 𝑣) |, 1}. We can estimate 𝐷𝐿

𝑠 (𝐵)
by generating a certain number of CP sequences. Lemma 4.2 shows

that
𝐶𝑜𝑣C𝑠 (𝐵)
|C𝑠 | is an unbiased estimator of 𝐷𝐿

𝑠 (𝐵).

Lemma 4.2. Given a misinformation seed set 𝑆 ⊆ 𝑉 , a unified seed
node 𝑠 and the set of CP sequences C𝑠 , for any blocker set 𝐵 ⊆ (𝑉 \𝑆),

𝐷𝐿
𝑠 (𝐵) = E[

𝐶𝑜𝑣C𝑠 (𝐵)
|C𝑠 | ], (7)

where the expectation is taken over the random choices of C𝑠 .

Based on the above analysis, to accurately estimate 𝐷𝐿
𝑠 (𝐵), we

need to generate sufficient CP sequences, which consist of numer-

ous CP sets. A straightforward method to generate a CP set is first

to find all paths between two nodes and then identify the com-

mon nodes on these paths. However, finding all paths between two

nodes is time-consuming. To address this issue, we devise a scalable

implementation to generate a CP set in polynomial time based on

the DT (Definition 2.3 in Section 2.2). Given the source node 𝑠 and

a node 𝑣 ∈ (𝑉 \𝑆), the construction of the CP set of 𝑣 is as follows.

• Generate a realization 𝜙 from 𝐺 .

• Construct the DT of 𝜙 by Lengauer-Tarjan algorithm [23], obtain

all the nodes on the path from 𝑠 to 𝑣 (exclude 𝑠) in DT and store

them into 𝐶𝜙 (𝑠, 𝑣).
We can observe that the time complexity of generating a CP set

is the same as that of the Lengauer-Tarjan algorithm [23], which is

Algorithm 2: Local Sampling

Input : The graph𝐺 = (𝑉 , 𝐸 ) , the seed set 𝑆 and the unified seed node 𝑠 .

Output : The CP sequence𝐶𝑠
𝜙
.

generate a realization 𝜙 from𝐺 ;1
obtain all reachable nodes of 𝑠 in 𝜙 by DFS and store them into 𝑅𝜙 (𝑠 ) ;2
record the immediate dominator of each node 𝑢 ∈ 𝑅𝜙 (𝑠 ) as idom[𝑢 ] and3
construct the DT roots at 𝑠 of 𝜙 ;

𝐶𝑠
𝜙
← ∅,𝑀 [ · ] ← 0;4

for each 𝑣 ∈ 𝑆 do𝑀 [𝑣 ] ← 1;5
for each 𝑢 ∈ 𝑅𝜙 (𝑠 ) with the order of DFS traversal from 𝑠 do6

if 𝑀 [𝑢 ] = 0 then7
if 𝑀 [idom[𝑢 ] ] = 0 then8

𝐶𝜙 (𝑠,𝑢 ) ← 𝐶𝜙 (𝑠,𝑢 ) ∪𝐶𝜙 (𝑠, idom[𝑢 ] ) ∪ {𝑢};9

else10
𝐶𝜙 (𝑠,𝑢 ) ← 𝐶𝜙 (𝑠,𝑢 ) ∪ {𝑢};11

𝐶𝑠
𝜙
← 𝐶𝑠

𝜙
∪𝐶𝜙 (𝑠,𝑢 ) ;12

return𝐶𝑠
𝜙
;13

O(𝑚 ·𝛼 (𝑚,𝑛)), 𝛼 is the inverse function of Ackerman’s function [1].

Since DT is a tree, each node in DT has only one incoming neighbor.

Based on this property, we further propose an efficient algorithm for

constructing a CP sequence, whose details are shown in Algorithm

2.We first generate a random realization𝜙 from𝐺 (Line 1). Then we

obtain all reachable nodes of 𝑠 in 𝜙 by applying DFS, and store them

into 𝑅𝜙 (𝑠) (Line 2). By applying Lengauer-Tarjan algorithm [23],

the immediate dominator of each node 𝑢 ∈ 𝑅𝜙 (𝑠) is recorded as

idom[𝑢] and we construct the corresponding DT roots at 𝑠 of 𝜙

(Line 3). In Line 4, we initialize𝐶𝑠
𝜙
as ∅ to store the CP sequence and

𝑀 [·] as 0. If 𝑣 ∈ 𝑆 , we set𝑀 [𝑣] = 1 (Line 5) and we only construct

the CP set for the nodes in 𝑅𝜙 (𝑠)\𝑆 (Line 7). Note that, we prioritize

constructing the CP set for nodes with the order of DFS traversal

from 𝑠 (Line 6). In such a setting, for each node 𝑢 ∈ (𝑅𝜙 (𝑠)\𝑆), the
CP set of idom[𝑢] will be generated earlier than that of 𝑢 since

idom[𝑢] will be traversed earlier. When constructing the CP set

for node 𝑢, if𝑀 [idom[𝑢]] = 0 (i.e., idom[𝑢] ∉ 𝑆), 𝑢 can inherit the

CP set of idom[𝑢] (Lines 8-9). Otherwise, the CP set for 𝑢 will only

consist of 𝑢 itself (Lines 10-11). It is clear that in Lines 6-12, we only

need to process a DFS traversal starting from 𝑠 . Therefore, the time

complexity of Algorithm 2 is O(𝑚 · 𝛼 (𝑚,𝑛)).

Example 4.2. Here is an example to illustrate the process of Local

Sampling. As shown in Figure 1(a), 𝑣0 is the misinformation seed

node. A realization obtained from Figure 1(a) and the corresponding

DT are shown in Figure 1(b) and Figure 1(c), respectively. Suppose

the DFS order is (𝑣1, 𝑣3, 𝑣6, 𝑣5, 𝑣2). Since the immediate dominator

of 𝑣1 and 𝑣3 is both 𝑣0, i.e., idom[𝑣1] = idom[𝑣3] = 𝑣0, the CP

set of them only consists themselves, i.e., 𝐶𝜙 (𝑣0, 𝑣1) = {𝑣1} and
𝐶𝜙 (𝑣0, 𝑣3) = {𝑣3}. Since idom[𝑣6] = idom[𝑣5] = 𝑣3, we can ob-

tain that 𝐶𝜙 (𝑣0, 𝑣6) = {𝑣3, 𝑣6} and 𝐶𝜙 (𝑣0, 𝑣5) = {𝑣3, 𝑣5}. Similarly,

𝐶𝜙 (𝑣0, 𝑣2) = {𝑣2}.

4.2 Upper Bounding Function Estimation
To estimate the upper bounding function, in the following, we first

propose the concept of LRR set.

Definition 4.3 (Local Reverse Reachable (LRR) Set). Given a graph

𝐺 = (𝑉 , 𝐸), a seed set 𝑆 ⊆ 𝑉 , a unified seed node 𝑠 , a node 𝑣 ∈ (𝑉 \𝑆)
and a realization𝜙 = (𝑉 (𝜙), 𝐸 (𝜙)), a Local Reverse Reachable (LRR)
set of 𝑣 , denoted by 𝐿𝜙 (𝑣), is the set of nodes that can reach 𝑣 in 𝜙𝑠 .
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Algorithm 3: Global Sampling

Input : The graph𝐺 = (𝑉 , 𝐸 ) , the seed set 𝑆 and the unified seed node 𝑠 .

Output : The random LRR set 𝐿𝜙 (𝑣) .
generate a realization 𝜙 obtained from𝐺 and a node 𝑣 is randomly selected1

from𝑉 ′𝑠 with the probability of
1

|𝑉 ′𝑠 |
;

if 𝑣 ∈ 𝑅𝜙 (𝑠 ) then2
𝐿𝜙 (𝑣) ← the set of nodes that can reach 𝑣 in 𝜙𝑠

;3

else 𝐿𝜙 (𝑣) ← ∅;4
return 𝐿𝜙 (𝑣) ;5

Table 2: Time cost of generating 10K LRR sequences on DBLP

|𝑆 | 10 20 30 40 50

time (s) 26438.5 48907.3 67038.2 83011.5 99088.0

By generating a certain number of random LRR sets L, we can ob-

tain that |𝑉 ′𝑠 | ·
𝐶𝑜𝑣L (𝐵)
|L | is an unbiased estimate of 𝐷𝑈

𝑠 (𝐵), where𝑉 ′𝑠
denotes the set of nodes that can be reached by 𝑠 in 𝐺 (exclude 𝑆).

Lemma 4.4. Given a seed set 𝑆 ⊆ 𝑉 , a unified seed node 𝑠 and the
set of random LRR sets L, for any blocker set 𝐵 ⊆ (𝑉 \𝑆),

𝐷𝑈
𝑠 (𝐵) = |𝑉 ′𝑠 | · E[

𝐶𝑜𝑣L (𝐵)
|L| ], (8)

where the expectation is taken over the random choices of L,𝐶𝑜𝑣L (𝐵)
is the coverage of 𝐵 in L,i.e.,𝐶𝑜𝑣L (𝐵) =

∑︁
𝐿 (𝑣) ∈Lmin{|𝐵 ∩ 𝐿(𝑣) |, 1}.

Based on the above lemma, we propose Global Sampling to en-

able an accurate estimation of 𝐷𝑈
𝑠 (·). As shown in Algorithm 3, we

first generate a realization 𝜙 and randomly select a node 𝑣 from 𝑉 ′𝑠
(Line 1). If the selected node 𝑣 cannot be influenced by 𝑠 in 𝜙 , which

implies that there are no nodes that can alternative-protect 𝑣 within

this realization, we set the LRR set to an empty set (Line 4).

Discussion. Actually, the upper bounding function can be esti-

mated in a similar manner to Local Sampling based on the concept

of Local Reverse Reachable (LRR) sequence for 𝜙 , denoted by 𝐿𝑠
𝜙
. 𝐿𝑠

𝜙

is the sequence of the LRR sets of the nodes that can be reached by

𝑠 in 𝜙 (exclude 𝑆), i.e., 𝐿𝑠
𝜙
= {𝐿𝜙 (𝑣) : 𝑣 ∈ 𝑅𝜙 (𝑠)\𝑆}. By generating

a certain number of LRR sequences L𝑠 , 𝐷𝑈
𝑠 (𝐵) can be unbiasedly

estimated via
𝐶𝑜𝑣L𝑠 (𝐵)
|L𝑠 | , where𝐶𝑜𝑣L𝑠 (𝐵) denotes the coverage of 𝐵

in L𝑠 , i.e., 𝐶𝑜𝑣L𝑠 (𝐵) =
∑︁
𝐿𝑠 ∈L𝑠

∑︁
𝐿 (𝑣) ∈𝐿𝑠 min{|𝐵 ∩ 𝐿(𝑣) |, 1}.

However, since 𝜙𝑠 is not necessarily a tree structure, we cannot

generate an LRR sequence with only one single DFS traversal, as we

do when generating a CP sequence. Generally, we need to conduct

|𝑅𝜙 (𝑠)\𝑆 | DFS traversals for each LRR sequence generation, which

is rather time-consuming, especially when a substantial number

of users can receive the misinformation. Thus, we propose the

Global Sampling method to tackle the problem. In Table 2, we

present the time cost of generating 10K LRR sequences on the

DBLP network, which has more than one million edges (the dataset

details can be seen in Section 6). As observed, with the increase

of the number of misinformation seed nodes, the time cost of LRR

sequence generation grows. In particular, when |𝑆 | = 50, the time

required to produce the samples even exceeds one day, which is

practically infeasible. In contrast, based on Global Sampling, our

solution for maximizing the upper bounding function only needs

7693.55 seconds when |𝑆 | = 50 on DBLP, and the sample size is

larger than 10K to ensure the desired approximation guarantee.

Table 3: The number of CP sequences generated by OPBM
and LSBM on DBLP (𝑘 = 100, |𝑆 | = 10, 𝛽 = 0.1, 𝛿 = 1/𝑛)

𝜖 0.1 0.2 0.3 0.4 0.5

OPBM 2,871,296 1,435,648 717,824 358,912 179,456

LSBM 22,544 11,272 5,636 2,818 2,818

5 BOUNDING FUNCTIONS MAXIMIZATION
Based on the proposed estimation methods in Section 4, we first

design two algorithms for bounding functions maximization in

Section 5.1 and Section 5.2, which aim to find a set of blockers to

maximize the bounding functions with approximation guarantees.

We then propose a heuristic algorithm to solve IMIN in Section 5.3.

5.1 Lower Bounding Function Maximization
In general, to get a solution for lower bounding function maxi-

mization, we need to obtain the value of 𝐷𝐿
𝑠 (·). As we stated in

Section 4.1, 𝐶𝑜𝑣C𝑠 (·)/|C𝑠 | is an unbiased estimator of 𝐷𝐿
𝑠 (·). That

is, for estimating 𝐷𝐿
𝑠 (·) accurately, we need to generate a certain

number of samples (i.e., CP sequences). However, the generation of

numerous samples may lead to significant computation overhead

for the algorithm. Therefore, it is imperative for us to determine an

appropriate sample size, so as to strike a balance between efficiency

and accuracy. A straightforward approach is to employ the state-

of-the-art algorithm for influence maximization (i.e., OPIM-C [33]).

Specifically, OPIM-C first generates two independent collections of

samples R1 and R2 and then generates a solution using the greedy

algorithm on R1. Afterward, OPIM-C assesses whether the solu-

tion can meet the stopping criterion. If the criterion is met, the

solution is returned; otherwise, the above-mentioned steps are re-

peated until the algorithm terminates. In particular, the stopping

criterion of OPIM-C isM(𝑆) ≥ 1 − 1/𝑒 − 𝜖 , where 𝑆 is the solution

in the current round andM(·) is the function determined by two

martingale-based concentration bounds [36] on R1 and R2.
However, OPIM-C cannot be directly applied for our problem.

The main reason is that OPIM-C relies on RIS, which is not suitable

for the estimation of bounding function as stated before. Besides,

since only the nodes eligible to be reached by the misinformation

seed set can contribute to the bounding function, the concentration

bounds leveraged by OPIM-C are also not tailored to the unbiased

estimator proposed in Section 4.1, which results in the stopping cri-

terion of OPIM-C being infeasible for our problem. This motivates

us to develop an efficient algorithm for lower bounding function

maximization. In this section, we first propose two martingale-

based concentration bounds, based on which, we then derive a

novel stopping criterion. Combining this with Local Sampling, we

propose Local Sampling based Bounding Function Maximization

(LSBM). In Table 3, we report the number of CP sequences gen-

erated by LSBM and the algorithm, which employs OPIM-C for

our problem directly but with the proposed unbiased estimator of

𝐷𝐿
𝑠 (·) (termed as OPBM) on DBLP. As can be seen, in most cases,

the number of samples generated by OPBM is more than 100x larger

than that of LSBM. In addition, on the larger datasets, OPBM cannot

even finish due to the memory overflow. In the following, we first

propose two novel concentration bounds, which are based on the

concept of martingale [13].
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Algorithm 4: LSBM
Input : The graph𝐺 = (𝑉 , 𝐸 ) , the seed set 𝑆 , the unified seed node 𝑠 , the

budget 𝑘 and parameter 𝛽, 𝜖, 𝛿 .

Output : The blocker set 𝐵𝐿 with (1 − 1/𝑒 − 𝜖 )-approximation.

ON← the set of nodes that can be directly activated by 𝑆 ;1
if |ON | ≤ 𝑘 then2

return 𝐵𝐿 = ON;3

𝐼𝐺 (𝑠 ) ← the estimated value of E[𝐼𝐺 (𝑠 ) ] with (𝛽, 𝛿
6
)-approximation;4

OPT
𝐿 ← the lower bound of 𝐷𝐿

𝑠 (𝐵𝑜
𝐿
) ;5

𝜃max ←
2𝐼𝐺 (𝑠 )

(︄
(1−1/𝑒 )

√︂
ln

12

𝛿
+
√︃
(1−1/𝑒 ) (ln (𝑛−|𝑆 |𝑘 )+ln 12

𝛿
)
)︄
2

(1−𝛽 )𝜖2OPT𝐿
;6

𝜃0 ← 𝜃max · (1 − 𝛽 )𝜖2OPT𝐿/𝐼𝐺 (𝑠 ) ;7

𝑖max ← ⌈log2
𝜃max

𝜃
0

⌉;8
generate two sets C𝑠

1
, C𝑠

2
of 𝜃0 random CP sequences, respectively;9

𝑎1 ← ln
3𝑖𝑚𝑎𝑥

𝛿
, 𝑎2 ← ln

3𝑖𝑚𝑎𝑥
𝛿

;10
for 𝑖 ← 1 to 𝑖max do11

𝐵𝐿 ← Max-Coverage(C𝑠
1
, 𝑘 ) ;12

𝜎𝐿 (𝐵𝐿 ) ← 0;13

if 𝐶𝑜𝑣C𝑠
2

(𝐵𝐿 ) · (1 − 𝛽 )/𝐼𝐺 (𝑠 ) ≥ 5𝑎1/18 then14

𝜎𝐿 (𝐵𝐿 ) ←
⎛⎜⎝(

√︄
𝐶𝑜𝑣C𝑠

2

(𝐵𝐿 ) · (1−𝛽 )

𝐼𝐺 (𝑠 )
+ 2𝑎

1

9
−

√︂
𝑎
1

2
)2 − 𝑎

1

18

⎞⎟⎠ · 1

|C𝑠
2
| ;

15

else if 𝐶𝑜𝑣C𝑠
2

(𝐵𝐿 ) · (1 + 𝛽 )/𝐼𝐺 (𝑠 ) ≤ 5𝑎1/18 then16

𝜎𝐿 (𝐵𝐿 ) ←
⎛⎜⎝(

√︄
𝐶𝑜𝑣C𝑠

2

(𝐵𝐿 ) · (1+𝛽 )

𝐼𝐺 (𝑠 )
+ 2𝑎

1

9
−

√︂
𝑎
1

2
)2 − 𝑎

1

18

⎞⎟⎠ · 1

|C𝑠
2
| ;

17

𝐶𝑜𝑣𝑢
C𝑠
1

(𝐵𝑜
𝐿
) ← min

0≤𝑖≤𝑘

(︄
𝐶𝑜𝑣C𝑠

1

(𝐵𝑖 ) +
∑︁

𝑣∈𝑚𝑎𝑥𝑀𝐶 (𝐵𝑖 ,𝑘 )
𝐶𝑜𝑣C𝑠

1

(𝑣 | 𝐵𝑖 )
)︄
;

18

𝜎𝑈 (𝐵𝑜
𝐿
) ← ⎛⎜⎝

√︄
𝐶𝑜𝑣𝑢
C𝑠
1

(𝐵𝑜
𝐿
) · (1+𝛽 )

𝐼𝐺 (𝑠 )
+ 𝑎

2

2
+

√︂
𝑎
2

2

⎞⎟⎠
2

· 1

|C𝑠
1
| ;

19

if 𝜎𝐿 (𝐵𝐿 )/𝜎𝑈 (𝐵𝑜
𝐿
) ≥ 1 − 1/𝑒 − 𝜖 or 𝑖 = 𝑖max then20

return 𝐵𝐿 ;21

double the sizes of C𝑠
1
and C𝑠

2
with new CP sequences;22

Procedure Max-Coverage(C𝑠 , 𝑘 ) ;23
𝐵 ← ∅;24
for 𝑖 ← 1 to 𝑘 do25

𝑢 ← argmax𝑣∈ (𝑉 \𝑆 ) (𝐶𝑜𝑣C𝑠 (𝐵 ∪ {𝑣}) − 𝐶𝑜𝑣C𝑠 (𝐵) ) ;26
𝐵 ← 𝐵 ∪ {𝑢};27

end for28
return 𝐵;29

Lemma 5.1 (Concentration Bounds). Given a blocker set 𝐵, a
seed node 𝑠 and a set of 𝜃 random CP sequences C𝑠 . For any 𝜆 > 0,

Pr[𝐶𝑜𝑣C𝑠 (𝐵)
E[𝐼𝐺 (𝑠)]

− 𝐷𝐿
𝑠 (𝐵) · 𝜃
E[𝐼𝐺 (𝑠)]

≥ 𝜆] ≤ exp(− 𝜆2

2𝐷𝐿
𝑠 (𝐵)

E[𝐼𝐺 (𝑠 ) ] · 𝜃 +
2

3
𝜆

), (9)

Pr[𝐶𝑜𝑣C𝑠 (𝐵)
E[𝐼𝐺 (𝑠)]

− 𝐷𝐿
𝑠 (𝐵) · 𝜃
E[𝐼𝐺 (𝑠)]

≤ −𝜆] ≤ exp(− 𝜆2

2𝐷𝐿
𝑠 (𝐵)

E[𝐼𝐺 (𝑠 ) ] · 𝜃
). (10)

LSBM algorithm. Based on these concentration bounds, we devise

a scalable implementation called LSBM for lower bounding function

maximization. The pseudocode of LSBM is shown in Algorithm 4.

Let ON be the set of outgoing neighbors of 𝑆 (Line 1). When the

budget 𝑘 is no less than the number of nodes in ON, LSBM directly

returns ON as the blocker set (Lines 2-3). Then we calculate 𝐼𝐺 (𝑠)
with (𝛽, 𝛿

6
)-approximation by employing the generalized stopping

rule algorithm introduced in [47]. In addition, we derive the lower

bound of 𝐷𝐿
𝑠 (𝐵𝑜𝐿) and define the constants 𝜃max and 𝜃0 (Lines 4-7).

Afterwards, we generate two sets of CP sequences C𝑠
1
and C𝑠

2
, each

of size 𝜃0 (Line 9). The subsequent part of the algorithm consists

of at most 𝑖𝑚𝑎𝑥 iterations. In each iteration, we first invoke Pro-

cedure Max-Coverage to get a blocker set 𝐵𝐿 , i.e., finding a set

of 𝑘 nodes such that 𝐵𝐿 intersects with as many CP sequences as

possible in C𝑠
1
(Line 12). Then we derive 𝜎𝐿 (𝐵𝐿) and 𝜎𝑈 (𝐵𝑜𝐿) from

C𝑠
2
and C𝑠

1
, respectively (Lines 14-19). Specifically, 𝜎𝐿 (𝐵𝐿) is the

lower bound of 𝐷𝐿
𝑠 (𝐵𝐿)/E[𝐼𝐺 (𝑠)] and 𝜎𝑈 (𝐵𝑜𝐿) is the upper bound

of 𝐷𝐿
𝑠 (𝐵𝑜𝐿)/E[𝐼𝐺 (𝑠)]. If 𝜎

𝐿 (𝐵𝐿)/𝜎𝑈 (𝐵𝑜𝐿) ≥ 1 − 1/𝑒 − 𝜖 or 𝑖 = 𝑖max,

LSBM returns 𝐵𝐿 and terminates. Otherwise, the quantities of CP

sequences in C𝑠
1
and C𝑠

2
will be doubled, and LSBM will proceed to

the next iteration (Lines 20-22). Next, we will explain in detail how

LSBM can return a solution with an approximation guarantee. Note

that, when deriving 𝜃max, 𝜎
𝐿 (𝐵𝐿) and 𝜎𝑈 (𝐵𝑜𝐿), it is imperative to

carefully consider the error associated with estimating E[𝐼𝐺 (𝑠)], to
ensure the desired approximation guarantee.

Deriving 𝜃max. Based on previous concentration bounds [36], Tang

et al. derive an upper bound on the sample size required to ensure

(1 − 1/𝑒 − 𝜖)-approximation holds with probability at least 1 − 𝛿
for IM. Similarly, we derive the corresponding upper bound on the

sample size for the IMIN problem based on our proposed novel

concentration bounds. The following lemma provides the setting

of 𝜃𝑚𝑎𝑥 , ensuring the correctness of LSBM when 𝑖 = 𝑖max.

Lemma 5.2. Let C𝑠 be a set of random CP sequences, 𝐵𝐿 be a size-𝑘
blocker set generated by applying Max-Coverage on C𝑠 , 𝐵𝑜

𝐿
be the

optimal solution with size-𝑘 ,𝑂𝑃𝑇𝐿 be the lower bound of𝐷𝐿
𝑠 (𝐵𝑜𝐿) and

𝐼𝐺 (𝑠) be the estimated value of E[𝐼𝐺 (𝑠)] with (𝛽, 𝛿6 )-approximation.
For fixed 𝛽, 𝜖 and 𝛿 , let

𝜃𝑚𝑎𝑥 =

2𝐼𝐺 (𝑠)
(︃
(1 − 1/𝑒)

√︂
ln

12

𝛿
+

√︂
(1 − 1/𝑒) (ln

(︁𝑛−|𝑆 |
𝑘

)︁
+ ln 12

𝛿
)
)︃
2

(1 − 𝛽)𝜖2𝑂𝑃𝑇𝐿
,

if |C𝑠 | = 𝜃 ≥ 𝜃max, then 𝐵𝐿 is (1 − 1/𝑒 − 𝜖)-approximate solution
with at least 1 − 𝛿/3 probability.

Deriving 𝑂𝑃𝑇𝐿
. Due to the different properties of the objective func-

tions of IMIN and IM, we cannot directly replace OPT
𝐿
with 𝑘 as

OPIM-C [33]. To address this issue, we set OPT
𝐿 =

∑︁
𝑣∈𝐵∗ Pr[𝑠 →

𝑣], where 𝐵∗ denote the set of 𝑘 nodes of ON with the 𝑘 largest

probability of being activated by 𝑠 and Pr[𝑠 → 𝑣] is the probability
that 𝑠 can activate 𝑣 . Since when we select a node 𝑣 as a blocker,

𝐷𝐿
𝑠 ({𝑣} ∪ 𝐵) − 𝐷𝐿

𝑠 (𝐵) ≥ Pr[𝑠 → 𝑣]. The reason why we set ON
as the candidate set is that the value of Pr[𝑠 → 𝑣] of each node

𝑣 ∈ ON can be computed efficiently, otherwise it will become the

bottleneck of the whole algorithm.

Deriving 𝜎𝐿 (𝐵𝐿) and 𝜎𝑈 (𝐵𝑜𝐿). Next, we derive the lower bound

𝜎𝐿 (𝐵𝐿) of
𝐷𝐿
𝑠 (𝐵𝐿 )
E[𝐼𝐺 (𝑠 ) ] and the upper bound 𝜎𝑈 (𝐵𝑜

𝐿
) of 𝐷𝐿

𝑠 (𝐵𝑜
𝐿
)

E[𝐼𝐺 (𝑠 ) ] such

that the approximation ratio
𝐷𝐿
𝑠 (𝐵𝐿 )

𝐷𝐿
𝑠 (𝐵𝑜

𝐿
) ≥

𝜎𝐿 (𝐵𝐿 )
𝜎𝑈 (𝐵𝑜

𝐿
) .

Lemma 5.3. For any 0 ≤ 𝛽, 𝜖, 𝛿 ≤ 1, we have

Pr[𝜎𝐿 (𝐵𝐿) ≤
𝐷𝐿
𝑠 (𝐵𝐿)
E[𝐼𝐺 (𝑠)]

] ≥ 1 − 𝛿

3𝑖max

,

Pr[𝜎𝑈 (𝐵𝑜𝐿) ≥
𝐷𝐿
𝑠 (𝐵𝑜𝐿)
E[𝐼𝐺 (𝑠)]

] ≥ 1 − 𝛿

3𝑖max

.
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Putting together. The reason that LSBM ensures (1 − 1/𝑒 − 𝜖)-
approximation with at least 1 − 𝛿 probability can be explained as

follows. First, the algorithm has at most 𝑖max iterations. In each of

the first 𝑖max − 1 iterations, a blocker set 𝐵𝐿 is generated and we

derive an approximation guarantee 𝜎𝐿 (𝐵𝐿)/𝜎𝑈 (𝐵𝑜𝐿) that is incor-
rect with at most 2𝛿/(3𝑖max) probability (Lemma 5.3). By the union

bound, LSBM has at most 2𝛿/3 to return an incorrect solution in the

first 𝑖max − 1 iterations. Meanwhile, in the last iteration, a blocker

set 𝐵𝐿 obtained by applying Procedure Max-Coverage on C𝑠
1
, with

|C𝑠
1
| ≥ 𝜃max. This ensures that 𝐵𝐿 is an (1−1/𝑒 −𝜖)-approximation

with at least 1 − 𝛿/3 probability when 𝑖 = 𝑖max (Lemma 5.2). There-

fore, the probability that LSBM returns an incorrect solution in any

iteration is at most 𝛿 , leading to the following theorem.

Theorem 5.4. Given 0 ≤ 𝛽, 𝜖, 𝛿 ≤ 1, 𝐵𝑜
𝐿
is the optimal solution of

lower bounding function maximization, LSBM returns 𝐵𝐿 satisfies:

Pr[𝐷𝐿
𝑠 (𝐵𝐿) ≥ (1 − 1/𝑒 − 𝜖)𝐷𝐿

𝑠 (𝐵𝑜𝐿)] ≥ 1 − 𝛿. (11)

Moreover, we have the following theorem to guarantee the ex-

pected time complexity of LSBM.

Theorem 5.5. When 2𝛽

1+𝛽 ≤ 𝜖 and 𝛿 ≤ 1/2, LSBM runs

in O( (𝑘 ln (𝑛−|𝑆 | )+ln 1/𝛿 )E[𝐼𝐺 (𝑠 ) ] (𝑚 ·𝛼 (𝑚,𝑛)+𝐷𝐿
𝑠 (𝐵𝑜

𝐿
) )

(𝜖+𝜖𝛽−2𝛽 )2𝐷𝐿
𝑠 (𝐵𝑜

𝐿
) + 𝑚 ·ln 1/𝛿

𝛽2
) ex-

pected time under the IC model.

5.2 Upper Bounding Function Maximization
In what follows, we propose Global Sampling based Bounding Func-

tion Maximization (GSBM) for upper bounding function maximiza-

tion. GSBM is similar to the framework of LSBM and the differences

between them are that we use Global Sampling to estimate 𝐷𝑈
𝑠 (·)

with a certain number of random LRR sets and we set:

𝜃max =

2|𝑉 ′𝑠 |
(︃
(1 − 1/𝑒)

√︂
ln

6

𝛿
+

√︂
(1 − 1/𝑒) (ln

(︁ |𝑉 ′𝑠 |− |𝑆 |
𝑘

)︁
+ ln 6

𝛿
)
)︃
2

𝜖2OPT𝐿
,

𝜃0 = 𝜃max · 𝜖2OPT𝐿/|𝑉 ′𝑠 |,

𝜎𝐿 (𝐵𝑈 ) =
(︄
(
√︃
𝐶𝑜𝑣L2 (𝐵𝑈 ) +

2𝑎1

9

−
√︃

𝑎1

2

)2 − 𝑎1

18

)︄
· |𝑉
′
𝑠 |
|L2 |

,

𝜎𝑈 (𝐵𝑜𝑈 ) ←
(︃√︃

𝐶𝑜𝑣𝑢
L1
(𝐵𝑜

𝑈
) + 𝑎2

2

+
√︃

𝑎2

2

)︃2
· |𝑉
′
𝑠 |
|L1 |

.

Similar to the proof of Theorem 5.4, we also show GSBM can return

a solution with (1 − 1/𝑒 − 𝜖)-approximation.

Theorem 5.6. Given 0 ≤ 𝜖, 𝛿 ≤ 1, 𝐵𝑜
𝑈
is the optimal solution of

upper bounding function maximization, GSBM returns 𝐵𝑈 satisfies:

Pr[𝐷𝑈
𝑠 (𝐵𝑈 ) ≥ (1 − 1/𝑒 − 𝜖)𝐷𝑈

𝑠 (𝐵𝑜𝑈 )] ≥ 1 − 𝛿. (12)

Besides, the time complexity of GSBM is shown in Theorem 5.7.

Theorem 5.7. When 𝛿 ≤ 1/2, the time complexity of GSBM under
the IC model is O( (𝑘 ln (𝑛−|𝑆 | )+ln(1/𝛿 ) ) ( |𝑉 ′𝑠 |+𝑚)

𝜖2
).

5.3 A Lightweight Heuristic for IMIN
Here we consider the filling of the Sandwich, i.e., the solution for

the original problem IMIN. To address this problem, we propose a

Lightweight Heuristic algorithm that adopts the greedy framework
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Figure 3: Time cost on all the datasets

(LHGA) combining the following proposed function to evaluate the

quality score of each node:

𝑠 (𝑣) = Pr[𝑠 → 𝑣] · 𝑑𝑒𝑔[𝑣]. (13)

Specifically, we iteratively select the node from𝑂𝑁 with the largest

quality score 𝑠 (·). The motivations of our proposed function are

that 𝑖) the outgoing neighbors of the misinformation seeds are more

likely to be blockers; 𝑖𝑖) the nodes with a relatively high probability

of being activated by 𝑠 are more likely to be blockers; 𝑖𝑖𝑖) the nodes
with large influence are more likely to be blockers. If the budget

is no less than the number of nodes in 𝑂𝑁 , we directly return 𝑂𝑁

as the blocker set. Although LHGA does not make any theoretical

contribution to SandIMIN as shown in Eq. (3), it can enhance the

effectiveness of our algorithm without sacrificing efficiency. More

details can be seen in Section 6.

Summary. Based on the above results, i.e., 𝐵𝐿 returned by LSBM,

𝐵𝑈 returned byGSBM and𝐵𝑅 returned by LHGA, SandIMIN returns

the blocker set 𝐵∗ ∈ {𝐵𝐿, 𝐵𝑈 , 𝐵𝑅}with the smallest (𝛾, 𝛿)-estimated

value of E[𝐼𝐺 [𝑉 \𝐵∗ ] (𝑠)]. According to the Theorem 5.4 and 5.6, the

constant 𝛼1 and 𝛼2 in Eq. (3) are both set to (1 − 1/𝑒 − 𝜖), by union

bound, the blocker set 𝐵 produced by SandIMIN has the following

theoretical guarantees with at least 1 − 3𝛿 probability,

𝐷𝑠 (𝐵) ≥ max

{︃
𝐷𝑠 (𝐵𝑈 )
𝐷𝑈
𝑠 (𝐵𝑈 )

,
𝐷𝐿
𝑠 (𝐵𝑜

𝐿
)

𝐷𝑠 (𝐵𝑜 )

}︃
(1 − 1

𝑒 − 𝜖)
1−𝛾
1+𝛾 𝐷𝑠 (𝐵𝑜 ) . (14)

6 EXPERIMENTS
In this section, we conduct extensive experiments on 9 real-world

datasets to evaluate the performance of our algorithms.

Algorithms. In the experiment, we implement and evaluate the

following algorithms. 𝑖) AG/GR: the state-of-the-art algorithms

proposed in [46]. 𝑖𝑖) SandIMIN: the Sandwich framework based

approach proposed in this paper with tight theoretical guarantee.

Note that, both AG and GR are heuristic solutions without theoret-

ical guarantees about the final result. Therefore, in the experiment,

we also implement 𝑖𝑖𝑖) SandIMIN-, which relaxes the theoretical

result of SandIMIN by setting 𝛼1 = 1−1/𝑒−𝜖 , 𝛼2 = 0 in Algorithm 1,

i.e., without GSBM. It can provide better performance in efficiency

and competitive quality of results.

Datasets. We use 9 real datasets which are available on SNAP
1
in

our experiments, i.e., EmailCore, Facebook, Wiki-Vote, EmailAll,

DBLP, Twitter, Stanford, Youtube and Pokec. Due to the limited

space, the details of the datasets can be found in the full version [40].

Parameter settings. Following the convention [16, 30, 33, 36, 37],

we set the propagation probability 𝑝 (𝑢, 𝑣) of each edge ⟨𝑢, 𝑣⟩ as
1
http://snap.stanford.edu
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Figure 4: Efficiency evaluation by varying |𝑆 | and 𝑘
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Figure 5: Decreased spread on all the datasets

the inverse of 𝑣 ’s in-degree in IC model. By default, we set 𝜖 = 0.2,

𝛽 = 𝛾 = 0.1 and 𝛿 = 1/𝑛 for SandIMIN and SandIMIN-. For AG

and GR, we set the number of generated realizations to 10
4
, which

is recommended in [46]. |𝑆 | and 𝑘 are 10 and 100 by default, re-

spectively. In addition, the nodes in misinformation seed set are

randomly selected from the top 200 most influential nodes. Finally,

we estimate the expected spread of the seed set by taking the av-

erage of its spreads over 10
5
Monte-Carlo simulations. For each

parameter setting, we repeat each algorithm 10 times and report

the average value. For those experiments that cannot finish within

24 hours, we set them as INF. All the programs are implemented

in C++ and performed on a PC with an Intel Xeon 2.10GHz CPU

and 512GB memory.

6.1 Efficiency Evaluation
Results on all the datasets. In Figure 3, we first evaluate the time

cost on all the datasets with the default settings. As can be seen,

SandIMIN and SandIMIN- cost less time than AG and GR on all

the datasets and they can achieve up to two orders of magnitude

speedup. In most cases, AG is more efficient than GR. Besides, AG

and GR cannot complete on large datasets (i.e., Youtube and Pokec)

in a reasonable time. The primary reasons are that 𝑖) our methods

transform the original non-submodular maximization problem into

the submodular maximization scenario. This allows us to avoid

generating new samples after selecting each blocker. Furthermore,

our heuristic algorithm for IMIN incurs almost no computation

overhead. 𝑖𝑖) Building upon the novel martingale-based concentra-

tion bounds, the sample size of our methods can be significantly

reduced. As shown in Table 3, on DBLP with 𝜖 = 0.3, the sample

size generated by LSBM is only 5636, even smaller than the sample

size produced by AG and GR in each round. In addition, SandIMIN-

is more efficient than SandIMIN on all the datasets, which is not

surprising given that SandIMIN- does not execute GSBM. Besides,

as the dataset becomes large, the gap between the time cost of our

solutions and that of AG and GR becomes smaller. This is because,

to provide theoretical guarantees for our solutions, the number

of samples generated will increase as the dataset becomes large,

while AG and GR use a fixed number of realizations each round for

graphs of any size and offer no approximation guarantee for the

quality of the returned results.

Varying |𝑆 | and 𝑘 . Figures 4(a)-4(e) report the response time by

varying |𝑆 | on the largest five datasets. As shown, SandIMIN and

SandIMIN- always run faster than AG and GR on all five datasets.

SandIMIN- is faster than SandIMIN due to the relaxed requirements.

Generally, SandIMIN- can achieve at least an order of magnitude

speedup compared with AG and GR on all five datasets under all

settings except Stanford. In particular, AG and GR cannot complete

within a day on Youtube and Pokec, while SandIMIN- takes only

a few thousand seconds to complete. In addition, with |𝑆 | = 40

on Twitter, the response time of SandIMIN- (resp. SandIMIN) is

35.7 (resp. 166.7) seconds while AG (resp. GR) needs 9228.6 (resp.

9240.6) seconds to complete. This is because AG and GR need to

regenerate a large number of realizations in each iteration. On

Twitter and Stanford, the gap of SandIMIN and SandIMIN- is smaller

than that on the other three datasets. The reason is that the large

number of nodes in these three datasets may result in a relatively

small value forE[𝐼𝐺 (𝑠)]/|𝑉 ′𝑠 |. Under such circumstances, the Global

Sampling is more prone to generating empty LRR sets, which do not

contribute to the blocker set construction, and increase computation

overhead. Figures 4(f)-4(j) present the response time by varying

𝑘 , where similar trends can be observed. In addition, AG and GR

cannot finish within one day when 𝑘 becomes larger on all five

datasets except Twitter and it is seen that SandIMIN and SandIMIN-

are orders of magnitude faster than AG and GR on Twitter dataset.

Note that, the response time for our algorithms may either increase

or decrease by increasing |𝑆 | and 𝑘 . This is because the time cost of
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Figure 6: Effectiveness evaluation by varying |𝑆 | and 𝑘

Table 4: Decreased spread of GSBM, LSBM and LHGA by varying 𝑘

EmailCore EmailAll DBLP Stanford Youtube Pokec

𝑘 GSBM LSBM LHGA GSBM LSBM LHGA GSBM LSBM LHGA GSBM LSBM LHGA GSBM LSBM LHGA GSBM LSBM LHGA

𝑘 = 10 26.726 31.292 33.140 313.66 307.643 153.96 49.160 57.260 59.350 6921.6 7123.6 217.35 1150.5 705.20 980.40 785.90 656.50 1000.2
𝑘 = 20 55.870 52.544 49.614 405.77 455.15 240.40 65.790 67.150 74.980 7631.3 8108.0 689.32 1962.6 1795.9 1295.1 1506.9 1302.4 1111.6

𝑘 = 30 66.408 70.629 72.460 538.61 582.23 332.03 93.000 98.620 80.850 8319.7 8991.2 940.73 2246.9 2284.5 2310.5 1922.9 1591.2 1545.3

𝑘 = 40 81.816 83.650 80.379 588.76 643.87 455.00 114.45 116.67 92.290 8699.7 9688.3 1302.6 2743.6 2694.1 2406.6 2071.9 2193.1 1580.2

𝑘 = 50 90.907 102.50 97.018 664.88 714.80 505.38 128.21 136.95 143.41 9169.3 10168 1991.2 3046.4 3271.5 2551.7 2734.1 2590.6 2179

LSBM and GSBM mainly depends on when the stopping condition

is reached, as we stated in Section 5. The larger |𝑆 | (𝑘) may make it

easier or harder to reach the stopping condition. Moreover, observe

that on Stanford with 𝑘 = 500, SandIMIN and SandIMIN- only

take very short time to finish. The reason lies in that our proposed

algorithms can return the outgoing neighbors of 𝑆 as the blocker

set directly when 𝑘 is large enough.

6.2 Effectiveness Evaluation
Results on all the datasets. In Figure 5, we demonstrate the

effectiveness of the proposed techniques on all the datasets with

the default settings. The results indicate that our solutions exhibit

similar performance to AG and GR in terms of decreased spread

on all the datasets. Note that, on large datasets, i.e., Youtube and

Pokec, AG and GR cannot finish in a reasonable time. Therefore,

the corresponding value is not shown in the figure.

Varying |𝑆 | and 𝑘 . Figure 6 shows the decreased spread by varying
the parameters |𝑆 | and 𝑘 on the largest five datasets. It can be

observed that SandIMIN achieves the similar decreased spread to

AG and GR under different parameter settings, which reflects the

effectiveness of our proposed method. In addition, the performance

of SandIMIN and SandIMIN- is also very close. This validates that

our proposed lower bound is very tight and close to the objective

function, and the relaxation in theoretical parameters does not

affect much on the real performance. For all the algorithms, the

decreased spread grows with the increase of |𝑆 |, since more nodes

could be protected. Similarly, the decreased spread increases when

𝑘 becomes larger, since more blockers are selected.

Effectiveness evaluation of LSBM,GSBMand LHGA. In Table 4,
we report the decreased spread of LSBM, GSBM, LHGA by varying

𝑘 on six datasets with different scales. Recall that, SandIMIN returns

the best solution regarding the effectiveness among the results ob-

tained by its three components. As can be seen, within SandIMIN,

each sub-algorithm possesses the potential to outperform others

in achieving the largest decrease in spread. This demonstrates the

effectiveness of the three algorithms. In most cases, it can be seen

that LSBM performs the best in terms of effectiveness, indicating

that the scenario where multiple blockers jointly protect a node is

not very common. Therefore, the proposed lower bound is relatively

tight w.r.t. the objective function. Additionally, our trivial heuristic

method, LHGA, exhibits the best decrease in spread in a few cases.

That is, if we remove LHGA from SandIMIN, its empirical accu-

racy would decrease in such cases. It is worth noting that LHGA

almost incurs no time overhead. Therefore, LHGA can enhance the

effectiveness of our algorithms without sacrificing efficiency.

6.3 Sensitivity Evaluation by Varying 𝜖
Figures 7(a)-7(c) show the response time by varying 𝜖 on DBLP,

Youtube and Pokec. As observed, the time cost of SandIMIN and

SandIMIN- is reduced with the increase of 𝜖 , since a larger 𝜖 leads

to smaller sample size. Figures 7(d)-7(e) present the corresponding

decreased spread by varying 𝜖 . It can be seen that with the increase

of 𝜖 , the decreased spread of SandIMIN and SandIMIN- slightly

drops due to the smaller sample size. For example, on Pokec, the

decreased spread of SandIMIN (resp. SandIMIN-) is 2553.3 (resp.

2553.3) with 𝜖 = 0.1, and the reduction in spread of SandIMIN (resp.

SandIMIN-) is 2513.6 (resp. 2511.2) with 𝜖 = 0.5.
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Figure 7: Efficiency and effectiveness evaluation by varying 𝜖

6.4 Approximation Quality Evaluation
The approximation guarantee of SandIMIN can be seen in Eq. (14).

Obviously, the exact approximation ratio is intractable to compute,

as 𝐵𝑜 and 𝐵𝑜
𝐿
are unknown. According to [45],

(1−𝛾 )2
(1+𝛾 )2 · (1 − 1/𝑒 −

𝜖) · �̂�𝑠 (𝐵𝑈 )
�̂�
𝑈

𝑠 (𝐵𝑈 )
is a computable lower bound of the approximation

ratio for SandIMIN. Note that, no computable approximation ratio

is provided for SandIMIN-, since it does not return 𝐵𝑈 . The average

lower bound of the approximation ratio (i.e., empirical approxima-

tion ratio) of SandIMIN on all the datasets (averaged over 𝑘 = 10, 50

and 100) is shown in Figure 8. We report the results under two

different settings of 𝜖 and 𝛾 . In particular, on all the datasets, the

empirical approximation ratio exceeds 20% with 𝜖 = 0.2, 𝛾 = 0.1,

and exceeds 30%with 𝜖 = 0.1, 𝛾 = 0.05. As a data-dependent approx-

imation guaranteed algorithm, SandIMIN performs well in terms

of approximation, as the ratios closely approximate the value of

1 − 1/𝑒 − 𝜖 (≈ 53.2% when 𝜖 = 0.1).

7 RELATEDWORK
Influence Maximization. The Influence Maximization (IM) prob-

lem, which aims to find a set of users with the largest expected

spread, is a fundamental problem in graph analysis. Kempe et al. [19]

first formulate IM problem and propose independent cascade (IC)

as well as linear threshold (LT) models. In addition, they utilize a

greedy algorithm that returns (1 − 1/𝑒 − 𝜖)-approximate solution.

Afterwards, a large number of work [8–12, 14, 18, 31, 34, 35, 44]

focuses on the development of heuristic algorithms to reduce the

computation overhead. However, such solutions return the results

without theoretical guarantees. To address this issue, Brogs et al. [5]

propose the Reverse Influence Sampling (RIS) technique, which re-

duces the time complexity to almost linear to the graph size. Subse-

quently, many RIS-based algorithms [16, 30, 33, 36, 37] that ensure

(1 − 1/𝑒 − 𝜖)-approximations with reduced computation overhead

are proposed. In addition, the variants of IM have also been exten-

sively studied, such as considering time aspect [21, 25] and location

aspect [24, 42, 43]. In [27], Lu et al. propose a Sandwich approxi-

mation strategy to solve non-submodular competitive and comple-

mentary IM. Then Wang et al. [45] extend Sandwich to the case

where the objective function is intractable. Huang et al. [17] study

influence maximization in closed social networks, which is non-

submodular. They resort to the influence lower bounds, which are
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Figure 8: Empirical approximation ratio on all the datasets

computed with the Restricted Maximum Probability Path (RMPP)

model [7], to preserve submodularity. Recently, Hu et al. [15] study

the triangular stability maximization problem, which is also non-

submodular. They propose the Joint Baking Algorithmic Framework

with theoretical guarantees to solve this problem.

InfluenceMinimization. As an important variant of IM, Influence

minimization (IMIN) has attracted great attention due to its wide

applications [3, 28]. Generally, the existing solutions for IMIN can

be divided into three categories: positive information spreading,

edge blocking and node blocking. Budak et al. [6] first propose to

spread positive information to achieve IMIN under the IC model.

Under this strategy, the objective is shown to be monotonic and

submodular. Based on these properties, Tong et al. [38, 39] later

design the sampling based methods and present the algorithms that

provide (1 − 1/𝑒 − 𝜖)-approximations. Simpson et al. [32] study a

time-sensitive variant of IMIN via spreading positive information.

In [22] and [20], IMIN via edge blocking is investigated under

the LT and IC model, respectively. Wang et al. [41] first study

IMIN through node blocking under the IC model. Recently, Xie et

al. [46] propose a novel approach based on dominator trees that

can effectively estimate the decrease in influence of misinformation

after blocking a specific node. However, the above solutions are

all heuristic. Prior to our work, there is still no approximation

algorithm with theoretical guarantees for IMIN via node blocking.

8 CONCLUSION
In this paper, we study the influence minimization problem via node

blocking. To our best knowledge, we are the first to propose algo-

rithms with approximation guarantees for the problem. Based on

the Sandwich framework, we develop submodular and monotonic

lower and upper bounds of the objective function and propose two

sampling based methods to estimate the value of bounds. Besides,

we design novel martingale-based concentration bounds and devise

two non-trivial algorithms that provide (1 − 1/𝑒 − 𝜖)-approximate

solutions to maximize our proposed bounding functions. We also

present a lightweight heuristic for IMIN. Finally, our algorithm,

SandIMIN, returns the best blocker set among these three solutions

and yields a data-dependent approximation guarantee to the IMIN

objective. Extensive experiments over 9 real-world datasets demon-

strate the effectiveness and efficiency of our proposed approaches.
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